github.com/cryptotooltop/go-ethereum@v0.0.0-20231103184714-151d1922f3e5/trie/proof.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package trie 18 19 import ( 20 "bytes" 21 "errors" 22 "fmt" 23 24 "github.com/scroll-tech/go-ethereum/common" 25 "github.com/scroll-tech/go-ethereum/ethdb" 26 "github.com/scroll-tech/go-ethereum/ethdb/memorydb" 27 "github.com/scroll-tech/go-ethereum/log" 28 "github.com/scroll-tech/go-ethereum/rlp" 29 ) 30 31 // Prove constructs a merkle proof for key. The result contains all encoded nodes 32 // on the path to the value at key. The value itself is also included in the last 33 // node and can be retrieved by verifying the proof. 34 // 35 // If the trie does not contain a value for key, the returned proof contains all 36 // nodes of the longest existing prefix of the key (at least the root node), ending 37 // with the node that proves the absence of the key. 38 func (t *Trie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) error { 39 // Collect all nodes on the path to key. 40 key = keybytesToHex(key) 41 var nodes []node 42 tn := t.root 43 for len(key) > 0 && tn != nil { 44 switch n := tn.(type) { 45 case *shortNode: 46 if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) { 47 // The trie doesn't contain the key. 48 tn = nil 49 } else { 50 tn = n.Val 51 key = key[len(n.Key):] 52 } 53 nodes = append(nodes, n) 54 case *fullNode: 55 tn = n.Children[key[0]] 56 key = key[1:] 57 nodes = append(nodes, n) 58 case hashNode: 59 var err error 60 tn, err = t.resolveHash(n, nil) 61 if err != nil { 62 log.Error(fmt.Sprintf("Unhandled trie error: %v", err)) 63 return err 64 } 65 default: 66 panic(fmt.Sprintf("%T: invalid node: %v", tn, tn)) 67 } 68 } 69 hasher := newHasher(false) 70 defer returnHasherToPool(hasher) 71 72 for i, n := range nodes { 73 if fromLevel > 0 { 74 fromLevel-- 75 continue 76 } 77 var hn node 78 n, hn = hasher.proofHash(n) 79 if hash, ok := hn.(hashNode); ok || i == 0 { 80 // If the node's database encoding is a hash (or is the 81 // root node), it becomes a proof element. 82 enc, _ := rlp.EncodeToBytes(n) 83 if !ok { 84 hash = hasher.hashData(enc) 85 } 86 proofDb.Put(hash, enc) 87 } 88 } 89 return nil 90 } 91 92 // Prove constructs a merkle proof for key. The result contains all encoded nodes 93 // on the path to the value at key. The value itself is also included in the last 94 // node and can be retrieved by verifying the proof. 95 // 96 // If the trie does not contain a value for key, the returned proof contains all 97 // nodes of the longest existing prefix of the key (at least the root node), ending 98 // with the node that proves the absence of the key. 99 func (t *SecureTrie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) error { 100 return t.trie.Prove(key, fromLevel, proofDb) 101 } 102 103 // VerifyProof checks merkle proofs. The given proof must contain the value for 104 // key in a trie with the given root hash. VerifyProof returns an error if the 105 // proof contains invalid trie nodes or the wrong value. 106 func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader) (value []byte, err error) { 107 108 // test the type of proof (for trie or SMT) 109 if buf, _ := proofDb.Get(magicHash); buf != nil { 110 return VerifyProofSMT(rootHash, key, proofDb) 111 } 112 113 key = keybytesToHex(key) 114 wantHash := rootHash 115 for i := 0; ; i++ { 116 buf, _ := proofDb.Get(wantHash[:]) 117 if buf == nil { 118 return nil, fmt.Errorf("proof node %d (hash %064x) missing", i, wantHash) 119 } 120 n, err := decodeNode(wantHash[:], buf) 121 if err != nil { 122 return nil, fmt.Errorf("bad proof node %d: %v", i, err) 123 } 124 keyrest, cld := get(n, key, true) 125 switch cld := cld.(type) { 126 case nil: 127 // The trie doesn't contain the key. 128 return nil, nil 129 case hashNode: 130 key = keyrest 131 copy(wantHash[:], cld) 132 case valueNode: 133 return cld, nil 134 } 135 } 136 } 137 138 // proofToPath converts a merkle proof to trie node path. The main purpose of 139 // this function is recovering a node path from the merkle proof stream. All 140 // necessary nodes will be resolved and leave the remaining as hashnode. 141 // 142 // The given edge proof is allowed to be an existent or non-existent proof. 143 func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, []byte, error) { 144 // resolveNode retrieves and resolves trie node from merkle proof stream 145 resolveNode := func(hash common.Hash) (node, error) { 146 buf, _ := proofDb.Get(hash[:]) 147 if buf == nil { 148 return nil, fmt.Errorf("proof node (hash %064x) missing", hash) 149 } 150 n, err := decodeNode(hash[:], buf) 151 if err != nil { 152 return nil, fmt.Errorf("bad proof node %v", err) 153 } 154 return n, err 155 } 156 // If the root node is empty, resolve it first. 157 // Root node must be included in the proof. 158 if root == nil { 159 n, err := resolveNode(rootHash) 160 if err != nil { 161 return nil, nil, err 162 } 163 root = n 164 } 165 var ( 166 err error 167 child, parent node 168 keyrest []byte 169 valnode []byte 170 ) 171 key, parent = keybytesToHex(key), root 172 for { 173 keyrest, child = get(parent, key, false) 174 switch cld := child.(type) { 175 case nil: 176 // The trie doesn't contain the key. It's possible 177 // the proof is a non-existing proof, but at least 178 // we can prove all resolved nodes are correct, it's 179 // enough for us to prove range. 180 if allowNonExistent { 181 return root, nil, nil 182 } 183 return nil, nil, errors.New("the node is not contained in trie") 184 case *shortNode: 185 key, parent = keyrest, child // Already resolved 186 continue 187 case *fullNode: 188 key, parent = keyrest, child // Already resolved 189 continue 190 case hashNode: 191 child, err = resolveNode(common.BytesToHash(cld)) 192 if err != nil { 193 return nil, nil, err 194 } 195 case valueNode: 196 valnode = cld 197 } 198 // Link the parent and child. 199 switch pnode := parent.(type) { 200 case *shortNode: 201 pnode.Val = child 202 case *fullNode: 203 pnode.Children[key[0]] = child 204 default: 205 panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode)) 206 } 207 if len(valnode) > 0 { 208 return root, valnode, nil // The whole path is resolved 209 } 210 key, parent = keyrest, child 211 } 212 } 213 214 // unsetInternal removes all internal node references(hashnode, embedded node). 215 // It should be called after a trie is constructed with two edge paths. Also 216 // the given boundary keys must be the one used to construct the edge paths. 217 // 218 // It's the key step for range proof. All visited nodes should be marked dirty 219 // since the node content might be modified. Besides it can happen that some 220 // fullnodes only have one child which is disallowed. But if the proof is valid, 221 // the missing children will be filled, otherwise it will be thrown anyway. 222 // 223 // Note we have the assumption here the given boundary keys are different 224 // and right is larger than left. 225 func unsetInternal(n node, left []byte, right []byte) (bool, error) { 226 left, right = keybytesToHex(left), keybytesToHex(right) 227 228 // Step down to the fork point. There are two scenarios can happen: 229 // - the fork point is a shortnode: either the key of left proof or 230 // right proof doesn't match with shortnode's key. 231 // - the fork point is a fullnode: both two edge proofs are allowed 232 // to point to a non-existent key. 233 var ( 234 pos = 0 235 parent node 236 237 // fork indicator, 0 means no fork, -1 means proof is less, 1 means proof is greater 238 shortForkLeft, shortForkRight int 239 ) 240 findFork: 241 for { 242 switch rn := (n).(type) { 243 case *shortNode: 244 rn.flags = nodeFlag{dirty: true} 245 246 // If either the key of left proof or right proof doesn't match with 247 // shortnode, stop here and the forkpoint is the shortnode. 248 if len(left)-pos < len(rn.Key) { 249 shortForkLeft = bytes.Compare(left[pos:], rn.Key) 250 } else { 251 shortForkLeft = bytes.Compare(left[pos:pos+len(rn.Key)], rn.Key) 252 } 253 if len(right)-pos < len(rn.Key) { 254 shortForkRight = bytes.Compare(right[pos:], rn.Key) 255 } else { 256 shortForkRight = bytes.Compare(right[pos:pos+len(rn.Key)], rn.Key) 257 } 258 if shortForkLeft != 0 || shortForkRight != 0 { 259 break findFork 260 } 261 parent = n 262 n, pos = rn.Val, pos+len(rn.Key) 263 case *fullNode: 264 rn.flags = nodeFlag{dirty: true} 265 266 // If either the node pointed by left proof or right proof is nil, 267 // stop here and the forkpoint is the fullnode. 268 leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]] 269 if leftnode == nil || rightnode == nil || leftnode != rightnode { 270 break findFork 271 } 272 parent = n 273 n, pos = rn.Children[left[pos]], pos+1 274 default: 275 panic(fmt.Sprintf("%T: invalid node: %v", n, n)) 276 } 277 } 278 switch rn := n.(type) { 279 case *shortNode: 280 // There can have these five scenarios: 281 // - both proofs are less than the trie path => no valid range 282 // - both proofs are greater than the trie path => no valid range 283 // - left proof is less and right proof is greater => valid range, unset the shortnode entirely 284 // - left proof points to the shortnode, but right proof is greater 285 // - right proof points to the shortnode, but left proof is less 286 if shortForkLeft == -1 && shortForkRight == -1 { 287 return false, errors.New("empty range") 288 } 289 if shortForkLeft == 1 && shortForkRight == 1 { 290 return false, errors.New("empty range") 291 } 292 if shortForkLeft != 0 && shortForkRight != 0 { 293 // The fork point is root node, unset the entire trie 294 if parent == nil { 295 return true, nil 296 } 297 parent.(*fullNode).Children[left[pos-1]] = nil 298 return false, nil 299 } 300 // Only one proof points to non-existent key. 301 if shortForkRight != 0 { 302 if _, ok := rn.Val.(valueNode); ok { 303 // The fork point is root node, unset the entire trie 304 if parent == nil { 305 return true, nil 306 } 307 parent.(*fullNode).Children[left[pos-1]] = nil 308 return false, nil 309 } 310 return false, unset(rn, rn.Val, left[pos:], len(rn.Key), false) 311 } 312 if shortForkLeft != 0 { 313 if _, ok := rn.Val.(valueNode); ok { 314 // The fork point is root node, unset the entire trie 315 if parent == nil { 316 return true, nil 317 } 318 parent.(*fullNode).Children[right[pos-1]] = nil 319 return false, nil 320 } 321 return false, unset(rn, rn.Val, right[pos:], len(rn.Key), true) 322 } 323 return false, nil 324 case *fullNode: 325 // unset all internal nodes in the forkpoint 326 for i := left[pos] + 1; i < right[pos]; i++ { 327 rn.Children[i] = nil 328 } 329 if err := unset(rn, rn.Children[left[pos]], left[pos:], 1, false); err != nil { 330 return false, err 331 } 332 if err := unset(rn, rn.Children[right[pos]], right[pos:], 1, true); err != nil { 333 return false, err 334 } 335 return false, nil 336 default: 337 panic(fmt.Sprintf("%T: invalid node: %v", n, n)) 338 } 339 } 340 341 // unset removes all internal node references either the left most or right most. 342 // It can meet these scenarios: 343 // 344 // - The given path is existent in the trie, unset the associated nodes with the 345 // specific direction 346 // - The given path is non-existent in the trie 347 // - the fork point is a fullnode, the corresponding child pointed by path 348 // is nil, return 349 // - the fork point is a shortnode, the shortnode is included in the range, 350 // keep the entire branch and return. 351 // - the fork point is a shortnode, the shortnode is excluded in the range, 352 // unset the entire branch. 353 func unset(parent node, child node, key []byte, pos int, removeLeft bool) error { 354 switch cld := child.(type) { 355 case *fullNode: 356 if removeLeft { 357 for i := 0; i < int(key[pos]); i++ { 358 cld.Children[i] = nil 359 } 360 cld.flags = nodeFlag{dirty: true} 361 } else { 362 for i := key[pos] + 1; i < 16; i++ { 363 cld.Children[i] = nil 364 } 365 cld.flags = nodeFlag{dirty: true} 366 } 367 return unset(cld, cld.Children[key[pos]], key, pos+1, removeLeft) 368 case *shortNode: 369 if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) { 370 // Find the fork point, it's an non-existent branch. 371 if removeLeft { 372 if bytes.Compare(cld.Key, key[pos:]) < 0 { 373 // The key of fork shortnode is less than the path 374 // (it belongs to the range), unset the entrie 375 // branch. The parent must be a fullnode. 376 fn := parent.(*fullNode) 377 fn.Children[key[pos-1]] = nil 378 } else { 379 // The key of fork shortnode is greater than the 380 // path(it doesn't belong to the range), keep 381 // it with the cached hash available. 382 } 383 } else { 384 if bytes.Compare(cld.Key, key[pos:]) > 0 { 385 // The key of fork shortnode is greater than the 386 // path(it belongs to the range), unset the entrie 387 // branch. The parent must be a fullnode. 388 fn := parent.(*fullNode) 389 fn.Children[key[pos-1]] = nil 390 } else { 391 // The key of fork shortnode is less than the 392 // path(it doesn't belong to the range), keep 393 // it with the cached hash available. 394 } 395 } 396 return nil 397 } 398 if _, ok := cld.Val.(valueNode); ok { 399 fn := parent.(*fullNode) 400 fn.Children[key[pos-1]] = nil 401 return nil 402 } 403 cld.flags = nodeFlag{dirty: true} 404 return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft) 405 case nil: 406 // If the node is nil, then it's a child of the fork point 407 // fullnode(it's a non-existent branch). 408 return nil 409 default: 410 panic("it shouldn't happen") // hashNode, valueNode 411 } 412 } 413 414 // hasRightElement returns the indicator whether there exists more elements 415 // in the right side of the given path. The given path can point to an existent 416 // key or a non-existent one. This function has the assumption that the whole 417 // path should already be resolved. 418 func hasRightElement(node node, key []byte) bool { 419 pos, key := 0, keybytesToHex(key) 420 for node != nil { 421 switch rn := node.(type) { 422 case *fullNode: 423 for i := key[pos] + 1; i < 16; i++ { 424 if rn.Children[i] != nil { 425 return true 426 } 427 } 428 node, pos = rn.Children[key[pos]], pos+1 429 case *shortNode: 430 if len(key)-pos < len(rn.Key) || !bytes.Equal(rn.Key, key[pos:pos+len(rn.Key)]) { 431 return bytes.Compare(rn.Key, key[pos:]) > 0 432 } 433 node, pos = rn.Val, pos+len(rn.Key) 434 case valueNode: 435 return false // We have resolved the whole path 436 default: 437 panic(fmt.Sprintf("%T: invalid node: %v", node, node)) // hashnode 438 } 439 } 440 return false 441 } 442 443 // VerifyRangeProof checks whether the given leaf nodes and edge proof 444 // can prove the given trie leaves range is matched with the specific root. 445 // Besides, the range should be consecutive (no gap inside) and monotonic 446 // increasing. 447 // 448 // Note the given proof actually contains two edge proofs. Both of them can 449 // be non-existent proofs. For example the first proof is for a non-existent 450 // key 0x03, the last proof is for a non-existent key 0x10. The given batch 451 // leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove the given 452 // batch is valid. 453 // 454 // The firstKey is paired with firstProof, not necessarily the same as keys[0] 455 // (unless firstProof is an existent proof). Similarly, lastKey and lastProof 456 // are paired. 457 // 458 // Expect the normal case, this function can also be used to verify the following 459 // range proofs: 460 // 461 // - All elements proof. In this case the proof can be nil, but the range should 462 // be all the leaves in the trie. 463 // 464 // - One element proof. In this case no matter the edge proof is a non-existent 465 // proof or not, we can always verify the correctness of the proof. 466 // 467 // - Zero element proof. In this case a single non-existent proof is enough to prove. 468 // Besides, if there are still some other leaves available on the right side, then 469 // an error will be returned. 470 // 471 // Except returning the error to indicate the proof is valid or not, the function will 472 // also return a flag to indicate whether there exists more accounts/slots in the trie. 473 // 474 // Note: This method does not verify that the proof is of minimal form. If the input 475 // proofs are 'bloated' with neighbour leaves or random data, aside from the 'useful' 476 // data, then the proof will still be accepted. 477 func VerifyRangeProof(rootHash common.Hash, firstKey []byte, lastKey []byte, keys [][]byte, values [][]byte, proof ethdb.KeyValueReader) (bool, error) { 478 if len(keys) != len(values) { 479 return false, fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values)) 480 } 481 // Ensure the received batch is monotonic increasing and contains no deletions 482 for i := 0; i < len(keys)-1; i++ { 483 if bytes.Compare(keys[i], keys[i+1]) >= 0 { 484 return false, errors.New("range is not monotonically increasing") 485 } 486 } 487 for _, value := range values { 488 if len(value) == 0 { 489 return false, errors.New("range contains deletion") 490 } 491 } 492 // Special case, there is no edge proof at all. The given range is expected 493 // to be the whole leaf-set in the trie. 494 if proof == nil { 495 tr := NewStackTrie(nil) 496 for index, key := range keys { 497 tr.TryUpdate(key, values[index]) 498 } 499 if have, want := tr.Hash(), rootHash; have != want { 500 return false, fmt.Errorf("invalid proof, want hash %x, got %x", want, have) 501 } 502 return false, nil // No more elements 503 } 504 // Special case, there is a provided edge proof but zero key/value 505 // pairs, ensure there are no more accounts / slots in the trie. 506 if len(keys) == 0 { 507 root, val, err := proofToPath(rootHash, nil, firstKey, proof, true) 508 if err != nil { 509 return false, err 510 } 511 if val != nil || hasRightElement(root, firstKey) { 512 return false, errors.New("more entries available") 513 } 514 return hasRightElement(root, firstKey), nil 515 } 516 // Special case, there is only one element and two edge keys are same. 517 // In this case, we can't construct two edge paths. So handle it here. 518 if len(keys) == 1 && bytes.Equal(firstKey, lastKey) { 519 root, val, err := proofToPath(rootHash, nil, firstKey, proof, false) 520 if err != nil { 521 return false, err 522 } 523 if !bytes.Equal(firstKey, keys[0]) { 524 return false, errors.New("correct proof but invalid key") 525 } 526 if !bytes.Equal(val, values[0]) { 527 return false, errors.New("correct proof but invalid data") 528 } 529 return hasRightElement(root, firstKey), nil 530 } 531 // Ok, in all other cases, we require two edge paths available. 532 // First check the validity of edge keys. 533 if bytes.Compare(firstKey, lastKey) >= 0 { 534 return false, errors.New("invalid edge keys") 535 } 536 // todo(rjl493456442) different length edge keys should be supported 537 if len(firstKey) != len(lastKey) { 538 return false, errors.New("inconsistent edge keys") 539 } 540 // Convert the edge proofs to edge trie paths. Then we can 541 // have the same tree architecture with the original one. 542 // For the first edge proof, non-existent proof is allowed. 543 root, _, err := proofToPath(rootHash, nil, firstKey, proof, true) 544 if err != nil { 545 return false, err 546 } 547 // Pass the root node here, the second path will be merged 548 // with the first one. For the last edge proof, non-existent 549 // proof is also allowed. 550 root, _, err = proofToPath(rootHash, root, lastKey, proof, true) 551 if err != nil { 552 return false, err 553 } 554 // Remove all internal references. All the removed parts should 555 // be re-filled(or re-constructed) by the given leaves range. 556 empty, err := unsetInternal(root, firstKey, lastKey) 557 if err != nil { 558 return false, err 559 } 560 // Rebuild the trie with the leaf stream, the shape of trie 561 // should be same with the original one. 562 tr := &Trie{root: root, db: NewDatabase(memorydb.New())} 563 if empty { 564 tr.root = nil 565 } 566 for index, key := range keys { 567 tr.TryUpdate(key, values[index]) 568 } 569 if tr.Hash() != rootHash { 570 return false, fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, tr.Hash()) 571 } 572 return hasRightElement(root, keys[len(keys)-1]), nil 573 } 574 575 // get returns the child of the given node. Return nil if the 576 // node with specified key doesn't exist at all. 577 // 578 // There is an additional flag `skipResolved`. If it's set then 579 // all resolved nodes won't be returned. 580 func get(tn node, key []byte, skipResolved bool) ([]byte, node) { 581 for { 582 switch n := tn.(type) { 583 case *shortNode: 584 if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) { 585 return nil, nil 586 } 587 tn = n.Val 588 key = key[len(n.Key):] 589 if !skipResolved { 590 return key, tn 591 } 592 case *fullNode: 593 tn = n.Children[key[0]] 594 key = key[1:] 595 if !skipResolved { 596 return key, tn 597 } 598 case hashNode: 599 return key, n 600 case nil: 601 return key, nil 602 case valueNode: 603 return nil, n 604 default: 605 panic(fmt.Sprintf("%T: invalid node: %v", tn, tn)) 606 } 607 } 608 }