github.com/cybriq/giocore@v0.0.7-0.20210703034601-cfb9cb5f3900/gpu/shaders/coarse.comp (about)

     1  // SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense
     2  
     3  // The coarse rasterizer stage of the pipeline.
     4  //
     5  // As input we have the ordered partitions of paths from the binning phase and
     6  // the annotated tile list of segments and backdrop per path.
     7  //
     8  // Each workgroup operating on one bin by stream compacting
     9  // the elements corresponding to the bin.
    10  //
    11  // As output we have an ordered command stream per tile. Every tile from a path (backdrop + segment list) will be encoded.
    12  
    13  #version 450
    14  #extension GL_GOOGLE_include_directive : enable
    15  
    16  #include "mem.h"
    17  #include "setup.h"
    18  
    19  layout(local_size_x = N_TILE, local_size_y = 1) in;
    20  
    21  layout(set = 0, binding = 1) readonly buffer ConfigBuf {
    22      Config conf;
    23  };
    24  
    25  #include "annotated.h"
    26  #include "bins.h"
    27  #include "tile.h"
    28  #include "ptcl.h"
    29  
    30  #define LG_N_PART_READ (7 + LG_WG_FACTOR)
    31  #define N_PART_READ (1 << LG_N_PART_READ)
    32  
    33  shared uint sh_elements[N_TILE];
    34  
    35  // Number of elements in the partition; prefix sum.
    36  shared uint sh_part_count[N_PART_READ];
    37  shared Alloc sh_part_elements[N_PART_READ];
    38  
    39  shared uint sh_bitmaps[N_SLICE][N_TILE];
    40  
    41  shared uint sh_tile_count[N_TILE];
    42  // The width of the tile rect for the element, intersected with this bin
    43  shared uint sh_tile_width[N_TILE];
    44  shared uint sh_tile_x0[N_TILE];
    45  shared uint sh_tile_y0[N_TILE];
    46  
    47  // These are set up so base + tile_y * stride + tile_x points to a Tile.
    48  shared uint sh_tile_base[N_TILE];
    49  shared uint sh_tile_stride[N_TILE];
    50  
    51  #ifdef MEM_DEBUG
    52  // Store allocs only when MEM_DEBUG to save shared memory traffic.
    53  shared Alloc sh_tile_alloc[N_TILE];
    54  
    55  void write_tile_alloc(uint el_ix, Alloc a) {
    56      sh_tile_alloc[el_ix] = a;
    57  }
    58  
    59  Alloc read_tile_alloc(uint el_ix, bool mem_ok) {
    60      return sh_tile_alloc[el_ix];
    61  }
    62  #else
    63  void write_tile_alloc(uint el_ix, Alloc a) {
    64      // No-op
    65  }
    66  
    67  Alloc read_tile_alloc(uint el_ix, bool mem_ok) {
    68      // All memory.
    69      return new_alloc(0, memory.length()*4, mem_ok);
    70  }
    71  #endif
    72  
    73  // The maximum number of commands per annotated element.
    74  #define ANNO_COMMANDS 2
    75  
    76  // Perhaps cmd_alloc should be a global? This is a style question.
    77  bool alloc_cmd(inout Alloc cmd_alloc, inout CmdRef cmd_ref, inout uint cmd_limit) {
    78      if (cmd_ref.offset < cmd_limit) {
    79          return true;
    80      }
    81      MallocResult new_cmd = malloc(PTCL_INITIAL_ALLOC);
    82      if (new_cmd.failed) {
    83          return false;
    84      }
    85      CmdJump jump = CmdJump(new_cmd.alloc.offset);
    86      Cmd_Jump_write(cmd_alloc, cmd_ref, jump);
    87      cmd_alloc = new_cmd.alloc;
    88      cmd_ref = CmdRef(cmd_alloc.offset);
    89      // Reserve space for the maximum number of commands and a potential jump.
    90      cmd_limit = cmd_alloc.offset + PTCL_INITIAL_ALLOC - (ANNO_COMMANDS + 1) * Cmd_size;
    91      return true;
    92  }
    93  
    94  void write_fill(Alloc alloc, inout CmdRef cmd_ref, uint flags, Tile tile, float linewidth) {
    95      if (fill_mode_from_flags(flags) == MODE_NONZERO) {
    96          if (tile.tile.offset != 0) {
    97              CmdFill cmd_fill = CmdFill(tile.tile.offset, tile.backdrop);
    98              Cmd_Fill_write(alloc, cmd_ref, cmd_fill);
    99              cmd_ref.offset += 4 + CmdFill_size;
   100          } else {
   101              Cmd_Solid_write(alloc, cmd_ref);
   102              cmd_ref.offset += 4;
   103          }
   104      } else {
   105          CmdStroke cmd_stroke = CmdStroke(tile.tile.offset, 0.5 * linewidth);
   106          Cmd_Stroke_write(alloc, cmd_ref, cmd_stroke);
   107          cmd_ref.offset += 4 + CmdStroke_size;
   108      }
   109  }
   110  
   111  void main() {
   112      // Could use either linear or 2d layouts for both dispatch and
   113      // invocations within the workgroup. We'll use variables to abstract.
   114      uint width_in_bins = (conf.width_in_tiles + N_TILE_X - 1)/N_TILE_X;
   115      uint bin_ix = width_in_bins * gl_WorkGroupID.y + gl_WorkGroupID.x;
   116      uint partition_ix = 0;
   117      uint n_partitions = (conf.n_elements + N_TILE - 1) / N_TILE;
   118      uint th_ix = gl_LocalInvocationID.x;
   119  
   120      // Coordinates of top left of bin, in tiles.
   121      uint bin_tile_x = N_TILE_X * gl_WorkGroupID.x;
   122      uint bin_tile_y = N_TILE_Y * gl_WorkGroupID.y;
   123  
   124      // Per-tile state
   125      uint tile_x = gl_LocalInvocationID.x % N_TILE_X;
   126      uint tile_y = gl_LocalInvocationID.x / N_TILE_X;
   127      uint this_tile_ix = (bin_tile_y + tile_y) * conf.width_in_tiles + bin_tile_x + tile_x;
   128      Alloc cmd_alloc = slice_mem(conf.ptcl_alloc, this_tile_ix * PTCL_INITIAL_ALLOC, PTCL_INITIAL_ALLOC);
   129      CmdRef cmd_ref = CmdRef(cmd_alloc.offset);
   130      // Reserve space for the maximum number of commands and a potential jump.
   131      uint cmd_limit = cmd_ref.offset + PTCL_INITIAL_ALLOC - (ANNO_COMMANDS + 1) * Cmd_size;
   132      // The nesting depth of the clip stack
   133      uint clip_depth = 0;
   134      // State for the "clip zero" optimization. If it's nonzero, then we are
   135      // currently in a clip for which the entire tile has an alpha of zero, and
   136      // the value is the depth after the "begin clip" of that element.
   137      uint clip_zero_depth = 0;
   138      // State for the "clip one" optimization. If bit `i` is set, then that means
   139      // that the clip pushed at depth `i` has an alpha of all one.
   140      uint clip_one_mask = 0;
   141  
   142      // I'm sure we can figure out how to do this with at least one fewer register...
   143      // Items up to rd_ix have been read from sh_elements
   144      uint rd_ix = 0;
   145      // Items up to wr_ix have been written into sh_elements
   146      uint wr_ix = 0;
   147      // Items between part_start_ix and ready_ix are ready to be transferred from sh_part_elements
   148      uint part_start_ix = 0;
   149      uint ready_ix = 0;
   150  
   151      // Leave room for the fine rasterizer scratch allocation.
   152      Alloc scratch_alloc = slice_mem(cmd_alloc, 0, Alloc_size);
   153      cmd_ref.offset += Alloc_size;
   154  
   155      uint num_begin_slots = 0;
   156      uint begin_slot = 0;
   157      bool mem_ok = mem_error == NO_ERROR;
   158      while (true) {
   159          for (uint i = 0; i < N_SLICE; i++) {
   160              sh_bitmaps[i][th_ix] = 0;
   161          }
   162  
   163          // parallel read of input partitions
   164          do {
   165              if (ready_ix == wr_ix && partition_ix < n_partitions) {
   166                  part_start_ix = ready_ix;
   167                  uint count = 0;
   168                  if (th_ix < N_PART_READ && partition_ix + th_ix < n_partitions) {
   169                      uint in_ix = (conf.bin_alloc.offset >> 2) + ((partition_ix + th_ix) * N_TILE + bin_ix) * 2;
   170                      count = read_mem(conf.bin_alloc, in_ix);
   171                      uint offset = read_mem(conf.bin_alloc, in_ix + 1);
   172                      sh_part_elements[th_ix] = new_alloc(offset, count*BinInstance_size, mem_ok);
   173                  }
   174                  // prefix sum of counts
   175                  for (uint i = 0; i < LG_N_PART_READ; i++) {
   176                      if (th_ix < N_PART_READ) {
   177                          sh_part_count[th_ix] = count;
   178                      }
   179                      barrier();
   180                      if (th_ix < N_PART_READ) {
   181                          if (th_ix >= (1 << i)) {
   182                              count += sh_part_count[th_ix - (1 << i)];
   183                          }
   184                      }
   185                      barrier();
   186                  }
   187                  if (th_ix < N_PART_READ) {
   188                      sh_part_count[th_ix] = part_start_ix + count;
   189                  }
   190                  barrier();
   191                  ready_ix = sh_part_count[N_PART_READ - 1];
   192                  partition_ix += N_PART_READ;
   193              }
   194              // use binary search to find element to read
   195              uint ix = rd_ix + th_ix;
   196              if (ix >= wr_ix && ix < ready_ix && mem_ok) {
   197                  uint part_ix = 0;
   198                  for (uint i = 0; i < LG_N_PART_READ; i++) {
   199                      uint probe = part_ix + ((N_PART_READ / 2) >> i);
   200                      if (ix >= sh_part_count[probe - 1]) {
   201                          part_ix = probe;
   202                      }
   203                  }
   204                  ix -= part_ix > 0 ? sh_part_count[part_ix - 1] : part_start_ix;
   205                  Alloc bin_alloc = sh_part_elements[part_ix];
   206                  BinInstanceRef inst_ref = BinInstanceRef(bin_alloc.offset);
   207                  BinInstance inst = BinInstance_read(bin_alloc, BinInstance_index(inst_ref, ix));
   208                  sh_elements[th_ix] = inst.element_ix;
   209              }
   210              barrier();
   211  
   212              wr_ix = min(rd_ix + N_TILE, ready_ix);
   213          } while (wr_ix - rd_ix < N_TILE && (wr_ix < ready_ix || partition_ix < n_partitions));
   214  
   215          // We've done the merge and filled the buffer.
   216  
   217          // Read one element, compute coverage.
   218          uint tag = Annotated_Nop;
   219          uint element_ix;
   220          AnnotatedRef ref;
   221          if (th_ix + rd_ix < wr_ix) {
   222              element_ix = sh_elements[th_ix];
   223              ref = AnnotatedRef(conf.anno_alloc.offset + element_ix * Annotated_size);
   224              tag = Annotated_tag(conf.anno_alloc, ref).tag;
   225          }
   226  
   227          // Bounding box of element in pixel coordinates.
   228          uint tile_count;
   229          switch (tag) {
   230          case Annotated_Color:
   231          case Annotated_Image:
   232          case Annotated_BeginClip:
   233          case Annotated_EndClip:
   234              // We have one "path" for each element, even if the element isn't
   235              // actually a path (currently EndClip, but images etc in the future).
   236              uint path_ix = element_ix;
   237              Path path = Path_read(conf.tile_alloc, PathRef(conf.tile_alloc.offset + path_ix * Path_size));
   238              uint stride = path.bbox.z - path.bbox.x;
   239              sh_tile_stride[th_ix] = stride;
   240              int dx = int(path.bbox.x) - int(bin_tile_x);
   241              int dy = int(path.bbox.y) - int(bin_tile_y);
   242              int x0 = clamp(dx, 0, N_TILE_X);
   243              int y0 = clamp(dy, 0, N_TILE_Y);
   244              int x1 = clamp(int(path.bbox.z) - int(bin_tile_x), 0, N_TILE_X);
   245              int y1 = clamp(int(path.bbox.w) - int(bin_tile_y), 0, N_TILE_Y);
   246              sh_tile_width[th_ix] = uint(x1 - x0);
   247              sh_tile_x0[th_ix] = x0;
   248              sh_tile_y0[th_ix] = y0;
   249              tile_count = uint(x1 - x0) * uint(y1 - y0);
   250              // base relative to bin
   251              uint base = path.tiles.offset - uint(dy * stride + dx) * Tile_size;
   252              sh_tile_base[th_ix] = base;
   253              Alloc path_alloc = new_alloc(path.tiles.offset, (path.bbox.z - path.bbox.x) * (path.bbox.w - path.bbox.y) * Tile_size, mem_ok);
   254              write_tile_alloc(th_ix, path_alloc);
   255              break;
   256          default:
   257              tile_count = 0;
   258              break;
   259          }
   260  
   261          // Prefix sum of sh_tile_count
   262          sh_tile_count[th_ix] = tile_count;
   263          for (uint i = 0; i < LG_N_TILE; i++) {
   264              barrier();
   265              if (th_ix >= (1 << i)) {
   266                  tile_count += sh_tile_count[th_ix - (1 << i)];
   267              }
   268              barrier();
   269              sh_tile_count[th_ix] = tile_count;
   270          }
   271          barrier();
   272          uint total_tile_count = sh_tile_count[N_TILE - 1];
   273          for (uint ix = th_ix; ix < total_tile_count; ix += N_TILE) {
   274              // Binary search to find element
   275              uint el_ix = 0;
   276              for (uint i = 0; i < LG_N_TILE; i++) {
   277                  uint probe = el_ix + ((N_TILE / 2) >> i);
   278                  if (ix >= sh_tile_count[probe - 1]) {
   279                      el_ix = probe;
   280                  }
   281              }
   282              AnnotatedRef ref = AnnotatedRef(conf.anno_alloc.offset + sh_elements[el_ix] * Annotated_size);
   283              uint tag = Annotated_tag(conf.anno_alloc, ref).tag;
   284              uint seq_ix = ix - (el_ix > 0 ? sh_tile_count[el_ix - 1] : 0);
   285              uint width = sh_tile_width[el_ix];
   286              uint x = sh_tile_x0[el_ix] + seq_ix % width;
   287              uint y = sh_tile_y0[el_ix] + seq_ix / width;
   288              bool include_tile = false;
   289              if (tag == Annotated_BeginClip || tag == Annotated_EndClip) {
   290                  include_tile = true;
   291              } else if (mem_ok) {
   292                  Tile tile = Tile_read(read_tile_alloc(el_ix, mem_ok), TileRef(sh_tile_base[el_ix] + (sh_tile_stride[el_ix] * y + x) * Tile_size));
   293                  // Include the path in the tile if
   294                  // - the tile contains at least a segment (tile offset non-zero)
   295                  // - the tile is completely covered (backdrop non-zero)
   296                  include_tile = tile.tile.offset != 0 || tile.backdrop != 0;
   297              }
   298              if (include_tile) {
   299                  uint el_slice = el_ix / 32;
   300                  uint el_mask = 1 << (el_ix & 31);
   301                  atomicOr(sh_bitmaps[el_slice][y * N_TILE_X + x], el_mask);
   302              }
   303          }
   304  
   305          barrier();
   306  
   307          // Output non-segment elements for this tile. The thread does a sequential walk
   308          // through the non-segment elements.
   309          uint slice_ix = 0;
   310          uint bitmap = sh_bitmaps[0][th_ix];
   311          while (mem_ok) {
   312              if (bitmap == 0) {
   313                  slice_ix++;
   314                  if (slice_ix == N_SLICE) {
   315                      break;
   316                  }
   317                  bitmap = sh_bitmaps[slice_ix][th_ix];
   318                  if (bitmap == 0) {
   319                      continue;
   320                  }
   321              }
   322              uint element_ref_ix = slice_ix * 32 + findLSB(bitmap);
   323              uint element_ix = sh_elements[element_ref_ix];
   324  
   325              // Clear LSB
   326              bitmap &= bitmap - 1;
   327  
   328              // At this point, we read the element again from global memory.
   329              // If that turns out to be expensive, maybe we can pack it into
   330              // shared memory (or perhaps just the tag).
   331              ref = AnnotatedRef(conf.anno_alloc.offset + element_ix * Annotated_size);
   332              AnnotatedTag tag = Annotated_tag(conf.anno_alloc, ref);
   333  
   334              if (clip_zero_depth == 0) {
   335                  switch (tag.tag) {
   336                  case Annotated_Color:
   337                      Tile tile = Tile_read(read_tile_alloc(element_ref_ix, mem_ok), TileRef(sh_tile_base[element_ref_ix]
   338                          + (sh_tile_stride[element_ref_ix] * tile_y + tile_x) * Tile_size));
   339                      AnnoColor fill = Annotated_Color_read(conf.anno_alloc, ref);
   340                      if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) {
   341                          break;
   342                      }
   343                      write_fill(cmd_alloc, cmd_ref, tag.flags, tile, fill.linewidth);
   344                      Cmd_Color_write(cmd_alloc, cmd_ref, CmdColor(fill.rgba_color));
   345                      cmd_ref.offset += 4 + CmdColor_size;
   346                      break;
   347                  case Annotated_Image:
   348                      tile = Tile_read(read_tile_alloc(element_ref_ix, mem_ok), TileRef(sh_tile_base[element_ref_ix]
   349                          + (sh_tile_stride[element_ref_ix] * tile_y + tile_x) * Tile_size));
   350                      AnnoImage fill_img = Annotated_Image_read(conf.anno_alloc, ref);
   351                      if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) {
   352                          break;
   353                      }
   354                      write_fill(cmd_alloc, cmd_ref, tag.flags, tile, fill_img.linewidth);
   355                      Cmd_Image_write(cmd_alloc, cmd_ref, CmdImage(fill_img.index, fill_img.offset));
   356                      cmd_ref.offset += 4 + CmdImage_size;
   357                      break;
   358                  case Annotated_BeginClip:
   359                      tile = Tile_read(read_tile_alloc(element_ref_ix, mem_ok), TileRef(sh_tile_base[element_ref_ix]
   360                          + (sh_tile_stride[element_ref_ix] * tile_y + tile_x) * Tile_size));
   361                      if (tile.tile.offset == 0 && tile.backdrop == 0) {
   362                          clip_zero_depth = clip_depth + 1;
   363                      } else if (tile.tile.offset == 0 && clip_depth < 32) {
   364                          clip_one_mask |= (1 << clip_depth);
   365                      } else {
   366                          AnnoBeginClip begin_clip = Annotated_BeginClip_read(conf.anno_alloc, ref);
   367                          if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) {
   368                              break;
   369                          }
   370                          write_fill(cmd_alloc, cmd_ref, tag.flags, tile, begin_clip.linewidth);
   371                          Cmd_BeginClip_write(cmd_alloc, cmd_ref);
   372                          cmd_ref.offset += 4;
   373                          if (clip_depth < 32) {
   374                              clip_one_mask &= ~(1 << clip_depth);
   375                          }
   376                          begin_slot++;
   377                          num_begin_slots = max(num_begin_slots, begin_slot);
   378                      }
   379                      clip_depth++;
   380                      break;
   381                  case Annotated_EndClip:
   382                      clip_depth--;
   383                      if (clip_depth >= 32 || (clip_one_mask & (1 << clip_depth)) == 0) {
   384                          if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) {
   385                              break;
   386                          }
   387                          Cmd_Solid_write(cmd_alloc, cmd_ref);
   388                          cmd_ref.offset += 4;
   389                          begin_slot--;
   390                          Cmd_EndClip_write(cmd_alloc, cmd_ref);
   391                          cmd_ref.offset += 4;
   392                      }
   393                      break;
   394                  }
   395              } else {
   396                  // In "clip zero" state, suppress all drawing
   397                  switch (tag.tag) {
   398                  case Annotated_BeginClip:
   399                      clip_depth++;
   400                      break;
   401                  case Annotated_EndClip:
   402                      if (clip_depth == clip_zero_depth) {
   403                          clip_zero_depth = 0;
   404                      }
   405                      clip_depth--;
   406                      break;
   407                  }
   408              }
   409          }
   410          barrier();
   411  
   412          rd_ix += N_TILE;
   413          if (rd_ix >= ready_ix && partition_ix >= n_partitions) break;
   414      }
   415      if (bin_tile_x + tile_x < conf.width_in_tiles && bin_tile_y + tile_y < conf.height_in_tiles) {
   416          Cmd_End_write(cmd_alloc, cmd_ref);
   417          if (num_begin_slots > 0) {
   418              // Write scratch allocation: one state per BeginClip per rasterizer chunk.
   419              uint scratch_size = num_begin_slots * TILE_WIDTH_PX * TILE_HEIGHT_PX * CLIP_STATE_SIZE * 4;
   420              MallocResult scratch = malloc(scratch_size);
   421              // Ignore scratch.failed; we don't use the allocation and kernel4
   422              // checks for memory overflow before using it.
   423              alloc_write(scratch_alloc, scratch_alloc.offset, scratch.alloc);
   424          }
   425      }
   426  }