github.com/d4l3k/go@v0.0.0-20151015000803-65fc379daeda/src/debug/dwarf/type.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // DWARF type information structures. 6 // The format is heavily biased toward C, but for simplicity 7 // the String methods use a pseudo-Go syntax. 8 9 package dwarf 10 11 import "strconv" 12 13 // A Type conventionally represents a pointer to any of the 14 // specific Type structures (CharType, StructType, etc.). 15 type Type interface { 16 Common() *CommonType 17 String() string 18 Size() int64 19 } 20 21 // A CommonType holds fields common to multiple types. 22 // If a field is not known or not applicable for a given type, 23 // the zero value is used. 24 type CommonType struct { 25 ByteSize int64 // size of value of this type, in bytes 26 Name string // name that can be used to refer to type 27 } 28 29 func (c *CommonType) Common() *CommonType { return c } 30 31 func (c *CommonType) Size() int64 { return c.ByteSize } 32 33 // Basic types 34 35 // A BasicType holds fields common to all basic types. 36 type BasicType struct { 37 CommonType 38 BitSize int64 39 BitOffset int64 40 } 41 42 func (b *BasicType) Basic() *BasicType { return b } 43 44 func (t *BasicType) String() string { 45 if t.Name != "" { 46 return t.Name 47 } 48 return "?" 49 } 50 51 // A CharType represents a signed character type. 52 type CharType struct { 53 BasicType 54 } 55 56 // A UcharType represents an unsigned character type. 57 type UcharType struct { 58 BasicType 59 } 60 61 // An IntType represents a signed integer type. 62 type IntType struct { 63 BasicType 64 } 65 66 // A UintType represents an unsigned integer type. 67 type UintType struct { 68 BasicType 69 } 70 71 // A FloatType represents a floating point type. 72 type FloatType struct { 73 BasicType 74 } 75 76 // A ComplexType represents a complex floating point type. 77 type ComplexType struct { 78 BasicType 79 } 80 81 // A BoolType represents a boolean type. 82 type BoolType struct { 83 BasicType 84 } 85 86 // An AddrType represents a machine address type. 87 type AddrType struct { 88 BasicType 89 } 90 91 // An UnspecifiedType represents an implicit, unknown, ambiguous or nonexistent type. 92 type UnspecifiedType struct { 93 BasicType 94 } 95 96 // qualifiers 97 98 // A QualType represents a type that has the C/C++ "const", "restrict", or "volatile" qualifier. 99 type QualType struct { 100 CommonType 101 Qual string 102 Type Type 103 } 104 105 func (t *QualType) String() string { return t.Qual + " " + t.Type.String() } 106 107 func (t *QualType) Size() int64 { return t.Type.Size() } 108 109 // An ArrayType represents a fixed size array type. 110 type ArrayType struct { 111 CommonType 112 Type Type 113 StrideBitSize int64 // if > 0, number of bits to hold each element 114 Count int64 // if == -1, an incomplete array, like char x[]. 115 } 116 117 func (t *ArrayType) String() string { 118 return "[" + strconv.FormatInt(t.Count, 10) + "]" + t.Type.String() 119 } 120 121 func (t *ArrayType) Size() int64 { 122 if t.Count == -1 { 123 return 0 124 } 125 return t.Count * t.Type.Size() 126 } 127 128 // A VoidType represents the C void type. 129 type VoidType struct { 130 CommonType 131 } 132 133 func (t *VoidType) String() string { return "void" } 134 135 // A PtrType represents a pointer type. 136 type PtrType struct { 137 CommonType 138 Type Type 139 } 140 141 func (t *PtrType) String() string { return "*" + t.Type.String() } 142 143 // A StructType represents a struct, union, or C++ class type. 144 type StructType struct { 145 CommonType 146 StructName string 147 Kind string // "struct", "union", or "class". 148 Field []*StructField 149 Incomplete bool // if true, struct, union, class is declared but not defined 150 } 151 152 // A StructField represents a field in a struct, union, or C++ class type. 153 type StructField struct { 154 Name string 155 Type Type 156 ByteOffset int64 157 ByteSize int64 158 BitOffset int64 // within the ByteSize bytes at ByteOffset 159 BitSize int64 // zero if not a bit field 160 } 161 162 func (t *StructType) String() string { 163 if t.StructName != "" { 164 return t.Kind + " " + t.StructName 165 } 166 return t.Defn() 167 } 168 169 func (t *StructType) Defn() string { 170 s := t.Kind 171 if t.StructName != "" { 172 s += " " + t.StructName 173 } 174 if t.Incomplete { 175 s += " /*incomplete*/" 176 return s 177 } 178 s += " {" 179 for i, f := range t.Field { 180 if i > 0 { 181 s += "; " 182 } 183 s += f.Name + " " + f.Type.String() 184 s += "@" + strconv.FormatInt(f.ByteOffset, 10) 185 if f.BitSize > 0 { 186 s += " : " + strconv.FormatInt(f.BitSize, 10) 187 s += "@" + strconv.FormatInt(f.BitOffset, 10) 188 } 189 } 190 s += "}" 191 return s 192 } 193 194 // An EnumType represents an enumerated type. 195 // The only indication of its native integer type is its ByteSize 196 // (inside CommonType). 197 type EnumType struct { 198 CommonType 199 EnumName string 200 Val []*EnumValue 201 } 202 203 // An EnumValue represents a single enumeration value. 204 type EnumValue struct { 205 Name string 206 Val int64 207 } 208 209 func (t *EnumType) String() string { 210 s := "enum" 211 if t.EnumName != "" { 212 s += " " + t.EnumName 213 } 214 s += " {" 215 for i, v := range t.Val { 216 if i > 0 { 217 s += "; " 218 } 219 s += v.Name + "=" + strconv.FormatInt(v.Val, 10) 220 } 221 s += "}" 222 return s 223 } 224 225 // A FuncType represents a function type. 226 type FuncType struct { 227 CommonType 228 ReturnType Type 229 ParamType []Type 230 } 231 232 func (t *FuncType) String() string { 233 s := "func(" 234 for i, t := range t.ParamType { 235 if i > 0 { 236 s += ", " 237 } 238 s += t.String() 239 } 240 s += ")" 241 if t.ReturnType != nil { 242 s += " " + t.ReturnType.String() 243 } 244 return s 245 } 246 247 // A DotDotDotType represents the variadic ... function parameter. 248 type DotDotDotType struct { 249 CommonType 250 } 251 252 func (t *DotDotDotType) String() string { return "..." } 253 254 // A TypedefType represents a named type. 255 type TypedefType struct { 256 CommonType 257 Type Type 258 } 259 260 func (t *TypedefType) String() string { return t.Name } 261 262 func (t *TypedefType) Size() int64 { return t.Type.Size() } 263 264 // typeReader is used to read from either the info section or the 265 // types section. 266 type typeReader interface { 267 Seek(Offset) 268 Next() (*Entry, error) 269 clone() typeReader 270 offset() Offset 271 // AddressSize returns the size in bytes of addresses in the current 272 // compilation unit. 273 AddressSize() int 274 } 275 276 // Type reads the type at off in the DWARF ``info'' section. 277 func (d *Data) Type(off Offset) (Type, error) { 278 return d.readType("info", d.Reader(), off, d.typeCache) 279 } 280 281 // readType reads a type from r at off of name using and updating a 282 // type cache. 283 func (d *Data) readType(name string, r typeReader, off Offset, typeCache map[Offset]Type) (Type, error) { 284 if t, ok := typeCache[off]; ok { 285 return t, nil 286 } 287 r.Seek(off) 288 e, err := r.Next() 289 if err != nil { 290 return nil, err 291 } 292 addressSize := r.AddressSize() 293 if e == nil || e.Offset != off { 294 return nil, DecodeError{name, off, "no type at offset"} 295 } 296 297 // Parse type from Entry. 298 // Must always set typeCache[off] before calling 299 // d.Type recursively, to handle circular types correctly. 300 var typ Type 301 302 nextDepth := 0 303 304 // Get next child; set err if error happens. 305 next := func() *Entry { 306 if !e.Children { 307 return nil 308 } 309 // Only return direct children. 310 // Skip over composite entries that happen to be nested 311 // inside this one. Most DWARF generators wouldn't generate 312 // such a thing, but clang does. 313 // See golang.org/issue/6472. 314 for { 315 kid, err1 := r.Next() 316 if err1 != nil { 317 err = err1 318 return nil 319 } 320 if kid == nil { 321 err = DecodeError{name, r.offset(), "unexpected end of DWARF entries"} 322 return nil 323 } 324 if kid.Tag == 0 { 325 if nextDepth > 0 { 326 nextDepth-- 327 continue 328 } 329 return nil 330 } 331 if kid.Children { 332 nextDepth++ 333 } 334 if nextDepth > 0 { 335 continue 336 } 337 return kid 338 } 339 } 340 341 // Get Type referred to by Entry's AttrType field. 342 // Set err if error happens. Not having a type is an error. 343 typeOf := func(e *Entry) Type { 344 tval := e.Val(AttrType) 345 var t Type 346 switch toff := tval.(type) { 347 case Offset: 348 if t, err = d.readType(name, r.clone(), toff, typeCache); err != nil { 349 return nil 350 } 351 case uint64: 352 if t, err = d.sigToType(toff); err != nil { 353 return nil 354 } 355 default: 356 // It appears that no Type means "void". 357 return new(VoidType) 358 } 359 return t 360 } 361 362 switch e.Tag { 363 case TagArrayType: 364 // Multi-dimensional array. (DWARF v2 §5.4) 365 // Attributes: 366 // AttrType:subtype [required] 367 // AttrStrideSize: size in bits of each element of the array 368 // AttrByteSize: size of entire array 369 // Children: 370 // TagSubrangeType or TagEnumerationType giving one dimension. 371 // dimensions are in left to right order. 372 t := new(ArrayType) 373 typ = t 374 typeCache[off] = t 375 if t.Type = typeOf(e); err != nil { 376 goto Error 377 } 378 t.StrideBitSize, _ = e.Val(AttrStrideSize).(int64) 379 380 // Accumulate dimensions, 381 var dims []int64 382 for kid := next(); kid != nil; kid = next() { 383 // TODO(rsc): Can also be TagEnumerationType 384 // but haven't seen that in the wild yet. 385 switch kid.Tag { 386 case TagSubrangeType: 387 count, ok := kid.Val(AttrCount).(int64) 388 if !ok { 389 // Old binaries may have an upper bound instead. 390 count, ok = kid.Val(AttrUpperBound).(int64) 391 if ok { 392 count++ // Length is one more than upper bound. 393 } else if len(dims) == 0 { 394 count = -1 // As in x[]. 395 } 396 } 397 dims = append(dims, count) 398 case TagEnumerationType: 399 err = DecodeError{name, kid.Offset, "cannot handle enumeration type as array bound"} 400 goto Error 401 } 402 } 403 if len(dims) == 0 { 404 // LLVM generates this for x[]. 405 dims = []int64{-1} 406 } 407 408 t.Count = dims[0] 409 for i := len(dims) - 1; i >= 1; i-- { 410 t.Type = &ArrayType{Type: t.Type, Count: dims[i]} 411 } 412 413 case TagBaseType: 414 // Basic type. (DWARF v2 §5.1) 415 // Attributes: 416 // AttrName: name of base type in programming language of the compilation unit [required] 417 // AttrEncoding: encoding value for type (encFloat etc) [required] 418 // AttrByteSize: size of type in bytes [required] 419 // AttrBitOffset: for sub-byte types, size in bits 420 // AttrBitSize: for sub-byte types, bit offset of high order bit in the AttrByteSize bytes 421 name, _ := e.Val(AttrName).(string) 422 enc, ok := e.Val(AttrEncoding).(int64) 423 if !ok { 424 err = DecodeError{name, e.Offset, "missing encoding attribute for " + name} 425 goto Error 426 } 427 switch enc { 428 default: 429 err = DecodeError{name, e.Offset, "unrecognized encoding attribute value"} 430 goto Error 431 432 case encAddress: 433 typ = new(AddrType) 434 case encBoolean: 435 typ = new(BoolType) 436 case encComplexFloat: 437 typ = new(ComplexType) 438 if name == "complex" { 439 // clang writes out 'complex' instead of 'complex float' or 'complex double'. 440 // clang also writes out a byte size that we can use to distinguish. 441 // See issue 8694. 442 switch byteSize, _ := e.Val(AttrByteSize).(int64); byteSize { 443 case 8: 444 name = "complex float" 445 case 16: 446 name = "complex double" 447 } 448 } 449 case encFloat: 450 typ = new(FloatType) 451 case encSigned: 452 typ = new(IntType) 453 case encUnsigned: 454 typ = new(UintType) 455 case encSignedChar: 456 typ = new(CharType) 457 case encUnsignedChar: 458 typ = new(UcharType) 459 } 460 typeCache[off] = typ 461 t := typ.(interface { 462 Basic() *BasicType 463 }).Basic() 464 t.Name = name 465 t.BitSize, _ = e.Val(AttrBitSize).(int64) 466 t.BitOffset, _ = e.Val(AttrBitOffset).(int64) 467 468 case TagClassType, TagStructType, TagUnionType: 469 // Structure, union, or class type. (DWARF v2 §5.5) 470 // Attributes: 471 // AttrName: name of struct, union, or class 472 // AttrByteSize: byte size [required] 473 // AttrDeclaration: if true, struct/union/class is incomplete 474 // Children: 475 // TagMember to describe one member. 476 // AttrName: name of member [required] 477 // AttrType: type of member [required] 478 // AttrByteSize: size in bytes 479 // AttrBitOffset: bit offset within bytes for bit fields 480 // AttrBitSize: bit size for bit fields 481 // AttrDataMemberLoc: location within struct [required for struct, class] 482 // There is much more to handle C++, all ignored for now. 483 t := new(StructType) 484 typ = t 485 typeCache[off] = t 486 switch e.Tag { 487 case TagClassType: 488 t.Kind = "class" 489 case TagStructType: 490 t.Kind = "struct" 491 case TagUnionType: 492 t.Kind = "union" 493 } 494 t.StructName, _ = e.Val(AttrName).(string) 495 t.Incomplete = e.Val(AttrDeclaration) != nil 496 t.Field = make([]*StructField, 0, 8) 497 var lastFieldType *Type 498 var lastFieldBitOffset int64 499 for kid := next(); kid != nil; kid = next() { 500 if kid.Tag == TagMember { 501 f := new(StructField) 502 if f.Type = typeOf(kid); err != nil { 503 goto Error 504 } 505 switch loc := kid.Val(AttrDataMemberLoc).(type) { 506 case []byte: 507 // TODO: Should have original compilation 508 // unit here, not unknownFormat. 509 b := makeBuf(d, unknownFormat{}, "location", 0, loc) 510 if b.uint8() != opPlusUconst { 511 err = DecodeError{name, kid.Offset, "unexpected opcode"} 512 goto Error 513 } 514 f.ByteOffset = int64(b.uint()) 515 if b.err != nil { 516 err = b.err 517 goto Error 518 } 519 case int64: 520 f.ByteOffset = loc 521 } 522 523 haveBitOffset := false 524 f.Name, _ = kid.Val(AttrName).(string) 525 f.ByteSize, _ = kid.Val(AttrByteSize).(int64) 526 f.BitOffset, haveBitOffset = kid.Val(AttrBitOffset).(int64) 527 f.BitSize, _ = kid.Val(AttrBitSize).(int64) 528 t.Field = append(t.Field, f) 529 530 bito := f.BitOffset 531 if !haveBitOffset { 532 bito = f.ByteOffset * 8 533 } 534 if bito == lastFieldBitOffset && t.Kind != "union" { 535 // Last field was zero width. Fix array length. 536 // (DWARF writes out 0-length arrays as if they were 1-length arrays.) 537 zeroArray(lastFieldType) 538 } 539 lastFieldType = &f.Type 540 lastFieldBitOffset = bito 541 } 542 } 543 if t.Kind != "union" { 544 b, ok := e.Val(AttrByteSize).(int64) 545 if ok && b*8 == lastFieldBitOffset { 546 // Final field must be zero width. Fix array length. 547 zeroArray(lastFieldType) 548 } 549 } 550 551 case TagConstType, TagVolatileType, TagRestrictType: 552 // Type modifier (DWARF v2 §5.2) 553 // Attributes: 554 // AttrType: subtype 555 t := new(QualType) 556 typ = t 557 typeCache[off] = t 558 if t.Type = typeOf(e); err != nil { 559 goto Error 560 } 561 switch e.Tag { 562 case TagConstType: 563 t.Qual = "const" 564 case TagRestrictType: 565 t.Qual = "restrict" 566 case TagVolatileType: 567 t.Qual = "volatile" 568 } 569 570 case TagEnumerationType: 571 // Enumeration type (DWARF v2 §5.6) 572 // Attributes: 573 // AttrName: enum name if any 574 // AttrByteSize: bytes required to represent largest value 575 // Children: 576 // TagEnumerator: 577 // AttrName: name of constant 578 // AttrConstValue: value of constant 579 t := new(EnumType) 580 typ = t 581 typeCache[off] = t 582 t.EnumName, _ = e.Val(AttrName).(string) 583 t.Val = make([]*EnumValue, 0, 8) 584 for kid := next(); kid != nil; kid = next() { 585 if kid.Tag == TagEnumerator { 586 f := new(EnumValue) 587 f.Name, _ = kid.Val(AttrName).(string) 588 f.Val, _ = kid.Val(AttrConstValue).(int64) 589 n := len(t.Val) 590 if n >= cap(t.Val) { 591 val := make([]*EnumValue, n, n*2) 592 copy(val, t.Val) 593 t.Val = val 594 } 595 t.Val = t.Val[0 : n+1] 596 t.Val[n] = f 597 } 598 } 599 600 case TagPointerType: 601 // Type modifier (DWARF v2 §5.2) 602 // Attributes: 603 // AttrType: subtype [not required! void* has no AttrType] 604 // AttrAddrClass: address class [ignored] 605 t := new(PtrType) 606 typ = t 607 typeCache[off] = t 608 if e.Val(AttrType) == nil { 609 t.Type = &VoidType{} 610 break 611 } 612 t.Type = typeOf(e) 613 614 case TagSubroutineType: 615 // Subroutine type. (DWARF v2 §5.7) 616 // Attributes: 617 // AttrType: type of return value if any 618 // AttrName: possible name of type [ignored] 619 // AttrPrototyped: whether used ANSI C prototype [ignored] 620 // Children: 621 // TagFormalParameter: typed parameter 622 // AttrType: type of parameter 623 // TagUnspecifiedParameter: final ... 624 t := new(FuncType) 625 typ = t 626 typeCache[off] = t 627 if t.ReturnType = typeOf(e); err != nil { 628 goto Error 629 } 630 t.ParamType = make([]Type, 0, 8) 631 for kid := next(); kid != nil; kid = next() { 632 var tkid Type 633 switch kid.Tag { 634 default: 635 continue 636 case TagFormalParameter: 637 if tkid = typeOf(kid); err != nil { 638 goto Error 639 } 640 case TagUnspecifiedParameters: 641 tkid = &DotDotDotType{} 642 } 643 t.ParamType = append(t.ParamType, tkid) 644 } 645 646 case TagTypedef: 647 // Typedef (DWARF v2 §5.3) 648 // Attributes: 649 // AttrName: name [required] 650 // AttrType: type definition [required] 651 t := new(TypedefType) 652 typ = t 653 typeCache[off] = t 654 t.Name, _ = e.Val(AttrName).(string) 655 t.Type = typeOf(e) 656 657 case TagUnspecifiedType: 658 // Unspecified type (DWARF v3 §5.2) 659 // Attributes: 660 // AttrName: name 661 t := new(UnspecifiedType) 662 typ = t 663 typeCache[off] = t 664 t.Name, _ = e.Val(AttrName).(string) 665 } 666 667 if err != nil { 668 goto Error 669 } 670 671 { 672 b, ok := e.Val(AttrByteSize).(int64) 673 if !ok { 674 b = -1 675 switch t := typ.(type) { 676 case *TypedefType: 677 b = t.Type.Size() 678 case *PtrType: 679 b = int64(addressSize) 680 } 681 } 682 typ.Common().ByteSize = b 683 } 684 return typ, nil 685 686 Error: 687 // If the parse fails, take the type out of the cache 688 // so that the next call with this offset doesn't hit 689 // the cache and return success. 690 delete(typeCache, off) 691 return nil, err 692 } 693 694 func zeroArray(t *Type) { 695 if t == nil { 696 return 697 } 698 at, ok := (*t).(*ArrayType) 699 if !ok || at.Type.Size() == 0 { 700 return 701 } 702 // Make a copy to avoid invalidating typeCache. 703 tt := *at 704 tt.Count = 0 705 *t = &tt 706 }