github.com/d4l3k/go@v0.0.0-20151015000803-65fc379daeda/src/debug/dwarf/type.go (about)

     1  // Copyright 2009 The Go Authors.  All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // DWARF type information structures.
     6  // The format is heavily biased toward C, but for simplicity
     7  // the String methods use a pseudo-Go syntax.
     8  
     9  package dwarf
    10  
    11  import "strconv"
    12  
    13  // A Type conventionally represents a pointer to any of the
    14  // specific Type structures (CharType, StructType, etc.).
    15  type Type interface {
    16  	Common() *CommonType
    17  	String() string
    18  	Size() int64
    19  }
    20  
    21  // A CommonType holds fields common to multiple types.
    22  // If a field is not known or not applicable for a given type,
    23  // the zero value is used.
    24  type CommonType struct {
    25  	ByteSize int64  // size of value of this type, in bytes
    26  	Name     string // name that can be used to refer to type
    27  }
    28  
    29  func (c *CommonType) Common() *CommonType { return c }
    30  
    31  func (c *CommonType) Size() int64 { return c.ByteSize }
    32  
    33  // Basic types
    34  
    35  // A BasicType holds fields common to all basic types.
    36  type BasicType struct {
    37  	CommonType
    38  	BitSize   int64
    39  	BitOffset int64
    40  }
    41  
    42  func (b *BasicType) Basic() *BasicType { return b }
    43  
    44  func (t *BasicType) String() string {
    45  	if t.Name != "" {
    46  		return t.Name
    47  	}
    48  	return "?"
    49  }
    50  
    51  // A CharType represents a signed character type.
    52  type CharType struct {
    53  	BasicType
    54  }
    55  
    56  // A UcharType represents an unsigned character type.
    57  type UcharType struct {
    58  	BasicType
    59  }
    60  
    61  // An IntType represents a signed integer type.
    62  type IntType struct {
    63  	BasicType
    64  }
    65  
    66  // A UintType represents an unsigned integer type.
    67  type UintType struct {
    68  	BasicType
    69  }
    70  
    71  // A FloatType represents a floating point type.
    72  type FloatType struct {
    73  	BasicType
    74  }
    75  
    76  // A ComplexType represents a complex floating point type.
    77  type ComplexType struct {
    78  	BasicType
    79  }
    80  
    81  // A BoolType represents a boolean type.
    82  type BoolType struct {
    83  	BasicType
    84  }
    85  
    86  // An AddrType represents a machine address type.
    87  type AddrType struct {
    88  	BasicType
    89  }
    90  
    91  // An UnspecifiedType represents an implicit, unknown, ambiguous or nonexistent type.
    92  type UnspecifiedType struct {
    93  	BasicType
    94  }
    95  
    96  // qualifiers
    97  
    98  // A QualType represents a type that has the C/C++ "const", "restrict", or "volatile" qualifier.
    99  type QualType struct {
   100  	CommonType
   101  	Qual string
   102  	Type Type
   103  }
   104  
   105  func (t *QualType) String() string { return t.Qual + " " + t.Type.String() }
   106  
   107  func (t *QualType) Size() int64 { return t.Type.Size() }
   108  
   109  // An ArrayType represents a fixed size array type.
   110  type ArrayType struct {
   111  	CommonType
   112  	Type          Type
   113  	StrideBitSize int64 // if > 0, number of bits to hold each element
   114  	Count         int64 // if == -1, an incomplete array, like char x[].
   115  }
   116  
   117  func (t *ArrayType) String() string {
   118  	return "[" + strconv.FormatInt(t.Count, 10) + "]" + t.Type.String()
   119  }
   120  
   121  func (t *ArrayType) Size() int64 {
   122  	if t.Count == -1 {
   123  		return 0
   124  	}
   125  	return t.Count * t.Type.Size()
   126  }
   127  
   128  // A VoidType represents the C void type.
   129  type VoidType struct {
   130  	CommonType
   131  }
   132  
   133  func (t *VoidType) String() string { return "void" }
   134  
   135  // A PtrType represents a pointer type.
   136  type PtrType struct {
   137  	CommonType
   138  	Type Type
   139  }
   140  
   141  func (t *PtrType) String() string { return "*" + t.Type.String() }
   142  
   143  // A StructType represents a struct, union, or C++ class type.
   144  type StructType struct {
   145  	CommonType
   146  	StructName string
   147  	Kind       string // "struct", "union", or "class".
   148  	Field      []*StructField
   149  	Incomplete bool // if true, struct, union, class is declared but not defined
   150  }
   151  
   152  // A StructField represents a field in a struct, union, or C++ class type.
   153  type StructField struct {
   154  	Name       string
   155  	Type       Type
   156  	ByteOffset int64
   157  	ByteSize   int64
   158  	BitOffset  int64 // within the ByteSize bytes at ByteOffset
   159  	BitSize    int64 // zero if not a bit field
   160  }
   161  
   162  func (t *StructType) String() string {
   163  	if t.StructName != "" {
   164  		return t.Kind + " " + t.StructName
   165  	}
   166  	return t.Defn()
   167  }
   168  
   169  func (t *StructType) Defn() string {
   170  	s := t.Kind
   171  	if t.StructName != "" {
   172  		s += " " + t.StructName
   173  	}
   174  	if t.Incomplete {
   175  		s += " /*incomplete*/"
   176  		return s
   177  	}
   178  	s += " {"
   179  	for i, f := range t.Field {
   180  		if i > 0 {
   181  			s += "; "
   182  		}
   183  		s += f.Name + " " + f.Type.String()
   184  		s += "@" + strconv.FormatInt(f.ByteOffset, 10)
   185  		if f.BitSize > 0 {
   186  			s += " : " + strconv.FormatInt(f.BitSize, 10)
   187  			s += "@" + strconv.FormatInt(f.BitOffset, 10)
   188  		}
   189  	}
   190  	s += "}"
   191  	return s
   192  }
   193  
   194  // An EnumType represents an enumerated type.
   195  // The only indication of its native integer type is its ByteSize
   196  // (inside CommonType).
   197  type EnumType struct {
   198  	CommonType
   199  	EnumName string
   200  	Val      []*EnumValue
   201  }
   202  
   203  // An EnumValue represents a single enumeration value.
   204  type EnumValue struct {
   205  	Name string
   206  	Val  int64
   207  }
   208  
   209  func (t *EnumType) String() string {
   210  	s := "enum"
   211  	if t.EnumName != "" {
   212  		s += " " + t.EnumName
   213  	}
   214  	s += " {"
   215  	for i, v := range t.Val {
   216  		if i > 0 {
   217  			s += "; "
   218  		}
   219  		s += v.Name + "=" + strconv.FormatInt(v.Val, 10)
   220  	}
   221  	s += "}"
   222  	return s
   223  }
   224  
   225  // A FuncType represents a function type.
   226  type FuncType struct {
   227  	CommonType
   228  	ReturnType Type
   229  	ParamType  []Type
   230  }
   231  
   232  func (t *FuncType) String() string {
   233  	s := "func("
   234  	for i, t := range t.ParamType {
   235  		if i > 0 {
   236  			s += ", "
   237  		}
   238  		s += t.String()
   239  	}
   240  	s += ")"
   241  	if t.ReturnType != nil {
   242  		s += " " + t.ReturnType.String()
   243  	}
   244  	return s
   245  }
   246  
   247  // A DotDotDotType represents the variadic ... function parameter.
   248  type DotDotDotType struct {
   249  	CommonType
   250  }
   251  
   252  func (t *DotDotDotType) String() string { return "..." }
   253  
   254  // A TypedefType represents a named type.
   255  type TypedefType struct {
   256  	CommonType
   257  	Type Type
   258  }
   259  
   260  func (t *TypedefType) String() string { return t.Name }
   261  
   262  func (t *TypedefType) Size() int64 { return t.Type.Size() }
   263  
   264  // typeReader is used to read from either the info section or the
   265  // types section.
   266  type typeReader interface {
   267  	Seek(Offset)
   268  	Next() (*Entry, error)
   269  	clone() typeReader
   270  	offset() Offset
   271  	// AddressSize returns the size in bytes of addresses in the current
   272  	// compilation unit.
   273  	AddressSize() int
   274  }
   275  
   276  // Type reads the type at off in the DWARF ``info'' section.
   277  func (d *Data) Type(off Offset) (Type, error) {
   278  	return d.readType("info", d.Reader(), off, d.typeCache)
   279  }
   280  
   281  // readType reads a type from r at off of name using and updating a
   282  // type cache.
   283  func (d *Data) readType(name string, r typeReader, off Offset, typeCache map[Offset]Type) (Type, error) {
   284  	if t, ok := typeCache[off]; ok {
   285  		return t, nil
   286  	}
   287  	r.Seek(off)
   288  	e, err := r.Next()
   289  	if err != nil {
   290  		return nil, err
   291  	}
   292  	addressSize := r.AddressSize()
   293  	if e == nil || e.Offset != off {
   294  		return nil, DecodeError{name, off, "no type at offset"}
   295  	}
   296  
   297  	// Parse type from Entry.
   298  	// Must always set typeCache[off] before calling
   299  	// d.Type recursively, to handle circular types correctly.
   300  	var typ Type
   301  
   302  	nextDepth := 0
   303  
   304  	// Get next child; set err if error happens.
   305  	next := func() *Entry {
   306  		if !e.Children {
   307  			return nil
   308  		}
   309  		// Only return direct children.
   310  		// Skip over composite entries that happen to be nested
   311  		// inside this one. Most DWARF generators wouldn't generate
   312  		// such a thing, but clang does.
   313  		// See golang.org/issue/6472.
   314  		for {
   315  			kid, err1 := r.Next()
   316  			if err1 != nil {
   317  				err = err1
   318  				return nil
   319  			}
   320  			if kid == nil {
   321  				err = DecodeError{name, r.offset(), "unexpected end of DWARF entries"}
   322  				return nil
   323  			}
   324  			if kid.Tag == 0 {
   325  				if nextDepth > 0 {
   326  					nextDepth--
   327  					continue
   328  				}
   329  				return nil
   330  			}
   331  			if kid.Children {
   332  				nextDepth++
   333  			}
   334  			if nextDepth > 0 {
   335  				continue
   336  			}
   337  			return kid
   338  		}
   339  	}
   340  
   341  	// Get Type referred to by Entry's AttrType field.
   342  	// Set err if error happens.  Not having a type is an error.
   343  	typeOf := func(e *Entry) Type {
   344  		tval := e.Val(AttrType)
   345  		var t Type
   346  		switch toff := tval.(type) {
   347  		case Offset:
   348  			if t, err = d.readType(name, r.clone(), toff, typeCache); err != nil {
   349  				return nil
   350  			}
   351  		case uint64:
   352  			if t, err = d.sigToType(toff); err != nil {
   353  				return nil
   354  			}
   355  		default:
   356  			// It appears that no Type means "void".
   357  			return new(VoidType)
   358  		}
   359  		return t
   360  	}
   361  
   362  	switch e.Tag {
   363  	case TagArrayType:
   364  		// Multi-dimensional array.  (DWARF v2 §5.4)
   365  		// Attributes:
   366  		//	AttrType:subtype [required]
   367  		//	AttrStrideSize: size in bits of each element of the array
   368  		//	AttrByteSize: size of entire array
   369  		// Children:
   370  		//	TagSubrangeType or TagEnumerationType giving one dimension.
   371  		//	dimensions are in left to right order.
   372  		t := new(ArrayType)
   373  		typ = t
   374  		typeCache[off] = t
   375  		if t.Type = typeOf(e); err != nil {
   376  			goto Error
   377  		}
   378  		t.StrideBitSize, _ = e.Val(AttrStrideSize).(int64)
   379  
   380  		// Accumulate dimensions,
   381  		var dims []int64
   382  		for kid := next(); kid != nil; kid = next() {
   383  			// TODO(rsc): Can also be TagEnumerationType
   384  			// but haven't seen that in the wild yet.
   385  			switch kid.Tag {
   386  			case TagSubrangeType:
   387  				count, ok := kid.Val(AttrCount).(int64)
   388  				if !ok {
   389  					// Old binaries may have an upper bound instead.
   390  					count, ok = kid.Val(AttrUpperBound).(int64)
   391  					if ok {
   392  						count++ // Length is one more than upper bound.
   393  					} else if len(dims) == 0 {
   394  						count = -1 // As in x[].
   395  					}
   396  				}
   397  				dims = append(dims, count)
   398  			case TagEnumerationType:
   399  				err = DecodeError{name, kid.Offset, "cannot handle enumeration type as array bound"}
   400  				goto Error
   401  			}
   402  		}
   403  		if len(dims) == 0 {
   404  			// LLVM generates this for x[].
   405  			dims = []int64{-1}
   406  		}
   407  
   408  		t.Count = dims[0]
   409  		for i := len(dims) - 1; i >= 1; i-- {
   410  			t.Type = &ArrayType{Type: t.Type, Count: dims[i]}
   411  		}
   412  
   413  	case TagBaseType:
   414  		// Basic type.  (DWARF v2 §5.1)
   415  		// Attributes:
   416  		//	AttrName: name of base type in programming language of the compilation unit [required]
   417  		//	AttrEncoding: encoding value for type (encFloat etc) [required]
   418  		//	AttrByteSize: size of type in bytes [required]
   419  		//	AttrBitOffset: for sub-byte types, size in bits
   420  		//	AttrBitSize: for sub-byte types, bit offset of high order bit in the AttrByteSize bytes
   421  		name, _ := e.Val(AttrName).(string)
   422  		enc, ok := e.Val(AttrEncoding).(int64)
   423  		if !ok {
   424  			err = DecodeError{name, e.Offset, "missing encoding attribute for " + name}
   425  			goto Error
   426  		}
   427  		switch enc {
   428  		default:
   429  			err = DecodeError{name, e.Offset, "unrecognized encoding attribute value"}
   430  			goto Error
   431  
   432  		case encAddress:
   433  			typ = new(AddrType)
   434  		case encBoolean:
   435  			typ = new(BoolType)
   436  		case encComplexFloat:
   437  			typ = new(ComplexType)
   438  			if name == "complex" {
   439  				// clang writes out 'complex' instead of 'complex float' or 'complex double'.
   440  				// clang also writes out a byte size that we can use to distinguish.
   441  				// See issue 8694.
   442  				switch byteSize, _ := e.Val(AttrByteSize).(int64); byteSize {
   443  				case 8:
   444  					name = "complex float"
   445  				case 16:
   446  					name = "complex double"
   447  				}
   448  			}
   449  		case encFloat:
   450  			typ = new(FloatType)
   451  		case encSigned:
   452  			typ = new(IntType)
   453  		case encUnsigned:
   454  			typ = new(UintType)
   455  		case encSignedChar:
   456  			typ = new(CharType)
   457  		case encUnsignedChar:
   458  			typ = new(UcharType)
   459  		}
   460  		typeCache[off] = typ
   461  		t := typ.(interface {
   462  			Basic() *BasicType
   463  		}).Basic()
   464  		t.Name = name
   465  		t.BitSize, _ = e.Val(AttrBitSize).(int64)
   466  		t.BitOffset, _ = e.Val(AttrBitOffset).(int64)
   467  
   468  	case TagClassType, TagStructType, TagUnionType:
   469  		// Structure, union, or class type.  (DWARF v2 §5.5)
   470  		// Attributes:
   471  		//	AttrName: name of struct, union, or class
   472  		//	AttrByteSize: byte size [required]
   473  		//	AttrDeclaration: if true, struct/union/class is incomplete
   474  		// Children:
   475  		//	TagMember to describe one member.
   476  		//		AttrName: name of member [required]
   477  		//		AttrType: type of member [required]
   478  		//		AttrByteSize: size in bytes
   479  		//		AttrBitOffset: bit offset within bytes for bit fields
   480  		//		AttrBitSize: bit size for bit fields
   481  		//		AttrDataMemberLoc: location within struct [required for struct, class]
   482  		// There is much more to handle C++, all ignored for now.
   483  		t := new(StructType)
   484  		typ = t
   485  		typeCache[off] = t
   486  		switch e.Tag {
   487  		case TagClassType:
   488  			t.Kind = "class"
   489  		case TagStructType:
   490  			t.Kind = "struct"
   491  		case TagUnionType:
   492  			t.Kind = "union"
   493  		}
   494  		t.StructName, _ = e.Val(AttrName).(string)
   495  		t.Incomplete = e.Val(AttrDeclaration) != nil
   496  		t.Field = make([]*StructField, 0, 8)
   497  		var lastFieldType *Type
   498  		var lastFieldBitOffset int64
   499  		for kid := next(); kid != nil; kid = next() {
   500  			if kid.Tag == TagMember {
   501  				f := new(StructField)
   502  				if f.Type = typeOf(kid); err != nil {
   503  					goto Error
   504  				}
   505  				switch loc := kid.Val(AttrDataMemberLoc).(type) {
   506  				case []byte:
   507  					// TODO: Should have original compilation
   508  					// unit here, not unknownFormat.
   509  					b := makeBuf(d, unknownFormat{}, "location", 0, loc)
   510  					if b.uint8() != opPlusUconst {
   511  						err = DecodeError{name, kid.Offset, "unexpected opcode"}
   512  						goto Error
   513  					}
   514  					f.ByteOffset = int64(b.uint())
   515  					if b.err != nil {
   516  						err = b.err
   517  						goto Error
   518  					}
   519  				case int64:
   520  					f.ByteOffset = loc
   521  				}
   522  
   523  				haveBitOffset := false
   524  				f.Name, _ = kid.Val(AttrName).(string)
   525  				f.ByteSize, _ = kid.Val(AttrByteSize).(int64)
   526  				f.BitOffset, haveBitOffset = kid.Val(AttrBitOffset).(int64)
   527  				f.BitSize, _ = kid.Val(AttrBitSize).(int64)
   528  				t.Field = append(t.Field, f)
   529  
   530  				bito := f.BitOffset
   531  				if !haveBitOffset {
   532  					bito = f.ByteOffset * 8
   533  				}
   534  				if bito == lastFieldBitOffset && t.Kind != "union" {
   535  					// Last field was zero width.  Fix array length.
   536  					// (DWARF writes out 0-length arrays as if they were 1-length arrays.)
   537  					zeroArray(lastFieldType)
   538  				}
   539  				lastFieldType = &f.Type
   540  				lastFieldBitOffset = bito
   541  			}
   542  		}
   543  		if t.Kind != "union" {
   544  			b, ok := e.Val(AttrByteSize).(int64)
   545  			if ok && b*8 == lastFieldBitOffset {
   546  				// Final field must be zero width.  Fix array length.
   547  				zeroArray(lastFieldType)
   548  			}
   549  		}
   550  
   551  	case TagConstType, TagVolatileType, TagRestrictType:
   552  		// Type modifier (DWARF v2 §5.2)
   553  		// Attributes:
   554  		//	AttrType: subtype
   555  		t := new(QualType)
   556  		typ = t
   557  		typeCache[off] = t
   558  		if t.Type = typeOf(e); err != nil {
   559  			goto Error
   560  		}
   561  		switch e.Tag {
   562  		case TagConstType:
   563  			t.Qual = "const"
   564  		case TagRestrictType:
   565  			t.Qual = "restrict"
   566  		case TagVolatileType:
   567  			t.Qual = "volatile"
   568  		}
   569  
   570  	case TagEnumerationType:
   571  		// Enumeration type (DWARF v2 §5.6)
   572  		// Attributes:
   573  		//	AttrName: enum name if any
   574  		//	AttrByteSize: bytes required to represent largest value
   575  		// Children:
   576  		//	TagEnumerator:
   577  		//		AttrName: name of constant
   578  		//		AttrConstValue: value of constant
   579  		t := new(EnumType)
   580  		typ = t
   581  		typeCache[off] = t
   582  		t.EnumName, _ = e.Val(AttrName).(string)
   583  		t.Val = make([]*EnumValue, 0, 8)
   584  		for kid := next(); kid != nil; kid = next() {
   585  			if kid.Tag == TagEnumerator {
   586  				f := new(EnumValue)
   587  				f.Name, _ = kid.Val(AttrName).(string)
   588  				f.Val, _ = kid.Val(AttrConstValue).(int64)
   589  				n := len(t.Val)
   590  				if n >= cap(t.Val) {
   591  					val := make([]*EnumValue, n, n*2)
   592  					copy(val, t.Val)
   593  					t.Val = val
   594  				}
   595  				t.Val = t.Val[0 : n+1]
   596  				t.Val[n] = f
   597  			}
   598  		}
   599  
   600  	case TagPointerType:
   601  		// Type modifier (DWARF v2 §5.2)
   602  		// Attributes:
   603  		//	AttrType: subtype [not required!  void* has no AttrType]
   604  		//	AttrAddrClass: address class [ignored]
   605  		t := new(PtrType)
   606  		typ = t
   607  		typeCache[off] = t
   608  		if e.Val(AttrType) == nil {
   609  			t.Type = &VoidType{}
   610  			break
   611  		}
   612  		t.Type = typeOf(e)
   613  
   614  	case TagSubroutineType:
   615  		// Subroutine type.  (DWARF v2 §5.7)
   616  		// Attributes:
   617  		//	AttrType: type of return value if any
   618  		//	AttrName: possible name of type [ignored]
   619  		//	AttrPrototyped: whether used ANSI C prototype [ignored]
   620  		// Children:
   621  		//	TagFormalParameter: typed parameter
   622  		//		AttrType: type of parameter
   623  		//	TagUnspecifiedParameter: final ...
   624  		t := new(FuncType)
   625  		typ = t
   626  		typeCache[off] = t
   627  		if t.ReturnType = typeOf(e); err != nil {
   628  			goto Error
   629  		}
   630  		t.ParamType = make([]Type, 0, 8)
   631  		for kid := next(); kid != nil; kid = next() {
   632  			var tkid Type
   633  			switch kid.Tag {
   634  			default:
   635  				continue
   636  			case TagFormalParameter:
   637  				if tkid = typeOf(kid); err != nil {
   638  					goto Error
   639  				}
   640  			case TagUnspecifiedParameters:
   641  				tkid = &DotDotDotType{}
   642  			}
   643  			t.ParamType = append(t.ParamType, tkid)
   644  		}
   645  
   646  	case TagTypedef:
   647  		// Typedef (DWARF v2 §5.3)
   648  		// Attributes:
   649  		//	AttrName: name [required]
   650  		//	AttrType: type definition [required]
   651  		t := new(TypedefType)
   652  		typ = t
   653  		typeCache[off] = t
   654  		t.Name, _ = e.Val(AttrName).(string)
   655  		t.Type = typeOf(e)
   656  
   657  	case TagUnspecifiedType:
   658  		// Unspecified type (DWARF v3 §5.2)
   659  		// Attributes:
   660  		//	AttrName: name
   661  		t := new(UnspecifiedType)
   662  		typ = t
   663  		typeCache[off] = t
   664  		t.Name, _ = e.Val(AttrName).(string)
   665  	}
   666  
   667  	if err != nil {
   668  		goto Error
   669  	}
   670  
   671  	{
   672  		b, ok := e.Val(AttrByteSize).(int64)
   673  		if !ok {
   674  			b = -1
   675  			switch t := typ.(type) {
   676  			case *TypedefType:
   677  				b = t.Type.Size()
   678  			case *PtrType:
   679  				b = int64(addressSize)
   680  			}
   681  		}
   682  		typ.Common().ByteSize = b
   683  	}
   684  	return typ, nil
   685  
   686  Error:
   687  	// If the parse fails, take the type out of the cache
   688  	// so that the next call with this offset doesn't hit
   689  	// the cache and return success.
   690  	delete(typeCache, off)
   691  	return nil, err
   692  }
   693  
   694  func zeroArray(t *Type) {
   695  	if t == nil {
   696  		return
   697  	}
   698  	at, ok := (*t).(*ArrayType)
   699  	if !ok || at.Type.Size() == 0 {
   700  		return
   701  	}
   702  	// Make a copy to avoid invalidating typeCache.
   703  	tt := *at
   704  	tt.Count = 0
   705  	*t = &tt
   706  }