github.com/d4l3k/go@v0.0.0-20151015000803-65fc379daeda/src/go/types/expr.go (about)

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements typechecking of expressions.
     6  
     7  package types
     8  
     9  import (
    10  	"fmt"
    11  	"go/ast"
    12  	"go/constant"
    13  	"go/token"
    14  	"math"
    15  )
    16  
    17  /*
    18  Basic algorithm:
    19  
    20  Expressions are checked recursively, top down. Expression checker functions
    21  are generally of the form:
    22  
    23    func f(x *operand, e *ast.Expr, ...)
    24  
    25  where e is the expression to be checked, and x is the result of the check.
    26  The check performed by f may fail in which case x.mode == invalid, and
    27  related error messages will have been issued by f.
    28  
    29  If a hint argument is present, it is the composite literal element type
    30  of an outer composite literal; it is used to type-check composite literal
    31  elements that have no explicit type specification in the source
    32  (e.g.: []T{{...}, {...}}, the hint is the type T in this case).
    33  
    34  All expressions are checked via rawExpr, which dispatches according
    35  to expression kind. Upon returning, rawExpr is recording the types and
    36  constant values for all expressions that have an untyped type (those types
    37  may change on the way up in the expression tree). Usually these are constants,
    38  but the results of comparisons or non-constant shifts of untyped constants
    39  may also be untyped, but not constant.
    40  
    41  Untyped expressions may eventually become fully typed (i.e., not untyped),
    42  typically when the value is assigned to a variable, or is used otherwise.
    43  The updateExprType method is used to record this final type and update
    44  the recorded types: the type-checked expression tree is again traversed down,
    45  and the new type is propagated as needed. Untyped constant expression values
    46  that become fully typed must now be representable by the full type (constant
    47  sub-expression trees are left alone except for their roots). This mechanism
    48  ensures that a client sees the actual (run-time) type an untyped value would
    49  have. It also permits type-checking of lhs shift operands "as if the shift
    50  were not present": when updateExprType visits an untyped lhs shift operand
    51  and assigns it it's final type, that type must be an integer type, and a
    52  constant lhs must be representable as an integer.
    53  
    54  When an expression gets its final type, either on the way out from rawExpr,
    55  on the way down in updateExprType, or at the end of the type checker run,
    56  the type (and constant value, if any) is recorded via Info.Types, if present.
    57  */
    58  
    59  type opPredicates map[token.Token]func(Type) bool
    60  
    61  var unaryOpPredicates = opPredicates{
    62  	token.ADD: isNumeric,
    63  	token.SUB: isNumeric,
    64  	token.XOR: isInteger,
    65  	token.NOT: isBoolean,
    66  }
    67  
    68  func (check *Checker) op(m opPredicates, x *operand, op token.Token) bool {
    69  	if pred := m[op]; pred != nil {
    70  		if !pred(x.typ) {
    71  			check.invalidOp(x.pos(), "operator %s not defined for %s", op, x)
    72  			return false
    73  		}
    74  	} else {
    75  		check.invalidAST(x.pos(), "unknown operator %s", op)
    76  		return false
    77  	}
    78  	return true
    79  }
    80  
    81  // The unary expression e may be nil. It's passed in for better error messages only.
    82  func (check *Checker) unary(x *operand, e *ast.UnaryExpr, op token.Token) {
    83  	switch op {
    84  	case token.AND:
    85  		// spec: "As an exception to the addressability
    86  		// requirement x may also be a composite literal."
    87  		if _, ok := unparen(x.expr).(*ast.CompositeLit); !ok && x.mode != variable {
    88  			check.invalidOp(x.pos(), "cannot take address of %s", x)
    89  			x.mode = invalid
    90  			return
    91  		}
    92  		x.mode = value
    93  		x.typ = &Pointer{base: x.typ}
    94  		return
    95  
    96  	case token.ARROW:
    97  		typ, ok := x.typ.Underlying().(*Chan)
    98  		if !ok {
    99  			check.invalidOp(x.pos(), "cannot receive from non-channel %s", x)
   100  			x.mode = invalid
   101  			return
   102  		}
   103  		if typ.dir == SendOnly {
   104  			check.invalidOp(x.pos(), "cannot receive from send-only channel %s", x)
   105  			x.mode = invalid
   106  			return
   107  		}
   108  		x.mode = commaok
   109  		x.typ = typ.elem
   110  		check.hasCallOrRecv = true
   111  		return
   112  	}
   113  
   114  	if !check.op(unaryOpPredicates, x, op) {
   115  		x.mode = invalid
   116  		return
   117  	}
   118  
   119  	if x.mode == constant_ {
   120  		typ := x.typ.Underlying().(*Basic)
   121  		var prec uint
   122  		if isUnsigned(typ) {
   123  			prec = uint(check.conf.sizeof(typ) * 8)
   124  		}
   125  		x.val = constant.UnaryOp(op, x.val, prec)
   126  		// Typed constants must be representable in
   127  		// their type after each constant operation.
   128  		if isTyped(typ) {
   129  			if e != nil {
   130  				x.expr = e // for better error message
   131  			}
   132  			check.representable(x, typ)
   133  		}
   134  		return
   135  	}
   136  
   137  	x.mode = value
   138  	// x.typ remains unchanged
   139  }
   140  
   141  func isShift(op token.Token) bool {
   142  	return op == token.SHL || op == token.SHR
   143  }
   144  
   145  func isComparison(op token.Token) bool {
   146  	// Note: tokens are not ordered well to make this much easier
   147  	switch op {
   148  	case token.EQL, token.NEQ, token.LSS, token.LEQ, token.GTR, token.GEQ:
   149  		return true
   150  	}
   151  	return false
   152  }
   153  
   154  func fitsFloat32(x constant.Value) bool {
   155  	f32, _ := constant.Float32Val(x)
   156  	f := float64(f32)
   157  	return !math.IsInf(f, 0)
   158  }
   159  
   160  func roundFloat32(x constant.Value) constant.Value {
   161  	f32, _ := constant.Float32Val(x)
   162  	f := float64(f32)
   163  	if !math.IsInf(f, 0) {
   164  		return constant.MakeFloat64(f)
   165  	}
   166  	return nil
   167  }
   168  
   169  func fitsFloat64(x constant.Value) bool {
   170  	f, _ := constant.Float64Val(x)
   171  	return !math.IsInf(f, 0)
   172  }
   173  
   174  func roundFloat64(x constant.Value) constant.Value {
   175  	f, _ := constant.Float64Val(x)
   176  	if !math.IsInf(f, 0) {
   177  		return constant.MakeFloat64(f)
   178  	}
   179  	return nil
   180  }
   181  
   182  // representableConst reports whether x can be represented as
   183  // value of the given basic type kind and for the configuration
   184  // provided (only needed for int/uint sizes).
   185  //
   186  // If rounded != nil, *rounded is set to the rounded value of x for
   187  // representable floating-point values; it is left alone otherwise.
   188  // It is ok to provide the addressof the first argument for rounded.
   189  func representableConst(x constant.Value, conf *Config, as BasicKind, rounded *constant.Value) bool {
   190  	switch x.Kind() {
   191  	case constant.Unknown:
   192  		return true
   193  
   194  	case constant.Bool:
   195  		return as == Bool || as == UntypedBool
   196  
   197  	case constant.Int:
   198  		if x, ok := constant.Int64Val(x); ok {
   199  			switch as {
   200  			case Int:
   201  				var s = uint(conf.sizeof(Typ[as])) * 8
   202  				return int64(-1)<<(s-1) <= x && x <= int64(1)<<(s-1)-1
   203  			case Int8:
   204  				const s = 8
   205  				return -1<<(s-1) <= x && x <= 1<<(s-1)-1
   206  			case Int16:
   207  				const s = 16
   208  				return -1<<(s-1) <= x && x <= 1<<(s-1)-1
   209  			case Int32:
   210  				const s = 32
   211  				return -1<<(s-1) <= x && x <= 1<<(s-1)-1
   212  			case Int64:
   213  				return true
   214  			case Uint, Uintptr:
   215  				if s := uint(conf.sizeof(Typ[as])) * 8; s < 64 {
   216  					return 0 <= x && x <= int64(1)<<s-1
   217  				}
   218  				return 0 <= x
   219  			case Uint8:
   220  				const s = 8
   221  				return 0 <= x && x <= 1<<s-1
   222  			case Uint16:
   223  				const s = 16
   224  				return 0 <= x && x <= 1<<s-1
   225  			case Uint32:
   226  				const s = 32
   227  				return 0 <= x && x <= 1<<s-1
   228  			case Uint64:
   229  				return 0 <= x
   230  			case Float32, Float64, Complex64, Complex128,
   231  				UntypedInt, UntypedFloat, UntypedComplex:
   232  				return true
   233  			}
   234  		}
   235  
   236  		n := constant.BitLen(x)
   237  		switch as {
   238  		case Uint, Uintptr:
   239  			var s = uint(conf.sizeof(Typ[as])) * 8
   240  			return constant.Sign(x) >= 0 && n <= int(s)
   241  		case Uint64:
   242  			return constant.Sign(x) >= 0 && n <= 64
   243  		case Float32, Complex64:
   244  			if rounded == nil {
   245  				return fitsFloat32(x)
   246  			}
   247  			r := roundFloat32(x)
   248  			if r != nil {
   249  				*rounded = r
   250  				return true
   251  			}
   252  		case Float64, Complex128:
   253  			if rounded == nil {
   254  				return fitsFloat64(x)
   255  			}
   256  			r := roundFloat64(x)
   257  			if r != nil {
   258  				*rounded = r
   259  				return true
   260  			}
   261  		case UntypedInt, UntypedFloat, UntypedComplex:
   262  			return true
   263  		}
   264  
   265  	case constant.Float:
   266  		switch as {
   267  		case Float32, Complex64:
   268  			if rounded == nil {
   269  				return fitsFloat32(x)
   270  			}
   271  			r := roundFloat32(x)
   272  			if r != nil {
   273  				*rounded = r
   274  				return true
   275  			}
   276  		case Float64, Complex128:
   277  			if rounded == nil {
   278  				return fitsFloat64(x)
   279  			}
   280  			r := roundFloat64(x)
   281  			if r != nil {
   282  				*rounded = r
   283  				return true
   284  			}
   285  		case UntypedFloat, UntypedComplex:
   286  			return true
   287  		}
   288  
   289  	case constant.Complex:
   290  		switch as {
   291  		case Complex64:
   292  			if rounded == nil {
   293  				return fitsFloat32(constant.Real(x)) && fitsFloat32(constant.Imag(x))
   294  			}
   295  			re := roundFloat32(constant.Real(x))
   296  			im := roundFloat32(constant.Imag(x))
   297  			if re != nil && im != nil {
   298  				*rounded = constant.BinaryOp(re, token.ADD, constant.MakeImag(im))
   299  				return true
   300  			}
   301  		case Complex128:
   302  			if rounded == nil {
   303  				return fitsFloat64(constant.Real(x)) && fitsFloat64(constant.Imag(x))
   304  			}
   305  			re := roundFloat64(constant.Real(x))
   306  			im := roundFloat64(constant.Imag(x))
   307  			if re != nil && im != nil {
   308  				*rounded = constant.BinaryOp(re, token.ADD, constant.MakeImag(im))
   309  				return true
   310  			}
   311  		case UntypedComplex:
   312  			return true
   313  		}
   314  
   315  	case constant.String:
   316  		return as == String || as == UntypedString
   317  
   318  	default:
   319  		unreachable()
   320  	}
   321  
   322  	return false
   323  }
   324  
   325  // representable checks that a constant operand is representable in the given basic type.
   326  func (check *Checker) representable(x *operand, typ *Basic) {
   327  	assert(x.mode == constant_)
   328  	if !representableConst(x.val, check.conf, typ.kind, &x.val) {
   329  		var msg string
   330  		if isNumeric(x.typ) && isNumeric(typ) {
   331  			// numeric conversion : error msg
   332  			//
   333  			// integer -> integer : overflows
   334  			// integer -> float   : overflows (actually not possible)
   335  			// float   -> integer : truncated
   336  			// float   -> float   : overflows
   337  			//
   338  			if !isInteger(x.typ) && isInteger(typ) {
   339  				msg = "%s truncated to %s"
   340  			} else {
   341  				msg = "%s overflows %s"
   342  			}
   343  		} else {
   344  			msg = "cannot convert %s to %s"
   345  		}
   346  		check.errorf(x.pos(), msg, x, typ)
   347  		x.mode = invalid
   348  	}
   349  }
   350  
   351  // updateExprType updates the type of x to typ and invokes itself
   352  // recursively for the operands of x, depending on expression kind.
   353  // If typ is still an untyped and not the final type, updateExprType
   354  // only updates the recorded untyped type for x and possibly its
   355  // operands. Otherwise (i.e., typ is not an untyped type anymore,
   356  // or it is the final type for x), the type and value are recorded.
   357  // Also, if x is a constant, it must be representable as a value of typ,
   358  // and if x is the (formerly untyped) lhs operand of a non-constant
   359  // shift, it must be an integer value.
   360  //
   361  func (check *Checker) updateExprType(x ast.Expr, typ Type, final bool) {
   362  	old, found := check.untyped[x]
   363  	if !found {
   364  		return // nothing to do
   365  	}
   366  
   367  	// update operands of x if necessary
   368  	switch x := x.(type) {
   369  	case *ast.BadExpr,
   370  		*ast.FuncLit,
   371  		*ast.CompositeLit,
   372  		*ast.IndexExpr,
   373  		*ast.SliceExpr,
   374  		*ast.TypeAssertExpr,
   375  		*ast.StarExpr,
   376  		*ast.KeyValueExpr,
   377  		*ast.ArrayType,
   378  		*ast.StructType,
   379  		*ast.FuncType,
   380  		*ast.InterfaceType,
   381  		*ast.MapType,
   382  		*ast.ChanType:
   383  		// These expression are never untyped - nothing to do.
   384  		// The respective sub-expressions got their final types
   385  		// upon assignment or use.
   386  		if debug {
   387  			check.dump("%s: found old type(%s): %s (new: %s)", x.Pos(), x, old.typ, typ)
   388  			unreachable()
   389  		}
   390  		return
   391  
   392  	case *ast.CallExpr:
   393  		// Resulting in an untyped constant (e.g., built-in complex).
   394  		// The respective calls take care of calling updateExprType
   395  		// for the arguments if necessary.
   396  
   397  	case *ast.Ident, *ast.BasicLit, *ast.SelectorExpr:
   398  		// An identifier denoting a constant, a constant literal,
   399  		// or a qualified identifier (imported untyped constant).
   400  		// No operands to take care of.
   401  
   402  	case *ast.ParenExpr:
   403  		check.updateExprType(x.X, typ, final)
   404  
   405  	case *ast.UnaryExpr:
   406  		// If x is a constant, the operands were constants.
   407  		// They don't need to be updated since they never
   408  		// get "materialized" into a typed value; and they
   409  		// will be processed at the end of the type check.
   410  		if old.val != nil {
   411  			break
   412  		}
   413  		check.updateExprType(x.X, typ, final)
   414  
   415  	case *ast.BinaryExpr:
   416  		if old.val != nil {
   417  			break // see comment for unary expressions
   418  		}
   419  		if isComparison(x.Op) {
   420  			// The result type is independent of operand types
   421  			// and the operand types must have final types.
   422  		} else if isShift(x.Op) {
   423  			// The result type depends only on lhs operand.
   424  			// The rhs type was updated when checking the shift.
   425  			check.updateExprType(x.X, typ, final)
   426  		} else {
   427  			// The operand types match the result type.
   428  			check.updateExprType(x.X, typ, final)
   429  			check.updateExprType(x.Y, typ, final)
   430  		}
   431  
   432  	default:
   433  		unreachable()
   434  	}
   435  
   436  	// If the new type is not final and still untyped, just
   437  	// update the recorded type.
   438  	if !final && isUntyped(typ) {
   439  		old.typ = typ.Underlying().(*Basic)
   440  		check.untyped[x] = old
   441  		return
   442  	}
   443  
   444  	// Otherwise we have the final (typed or untyped type).
   445  	// Remove it from the map of yet untyped expressions.
   446  	delete(check.untyped, x)
   447  
   448  	// If x is the lhs of a shift, its final type must be integer.
   449  	// We already know from the shift check that it is representable
   450  	// as an integer if it is a constant.
   451  	if old.isLhs && !isInteger(typ) {
   452  		check.invalidOp(x.Pos(), "shifted operand %s (type %s) must be integer", x, typ)
   453  		return
   454  	}
   455  
   456  	// Everything's fine, record final type and value for x.
   457  	check.recordTypeAndValue(x, old.mode, typ, old.val)
   458  }
   459  
   460  // updateExprVal updates the value of x to val.
   461  func (check *Checker) updateExprVal(x ast.Expr, val constant.Value) {
   462  	if info, ok := check.untyped[x]; ok {
   463  		info.val = val
   464  		check.untyped[x] = info
   465  	}
   466  }
   467  
   468  // convertUntyped attempts to set the type of an untyped value to the target type.
   469  func (check *Checker) convertUntyped(x *operand, target Type) {
   470  	if x.mode == invalid || isTyped(x.typ) || target == Typ[Invalid] {
   471  		return
   472  	}
   473  
   474  	// TODO(gri) Sloppy code - clean up. This function is central
   475  	//           to assignment and expression checking.
   476  
   477  	if isUntyped(target) {
   478  		// both x and target are untyped
   479  		xkind := x.typ.(*Basic).kind
   480  		tkind := target.(*Basic).kind
   481  		if isNumeric(x.typ) && isNumeric(target) {
   482  			if xkind < tkind {
   483  				x.typ = target
   484  				check.updateExprType(x.expr, target, false)
   485  			}
   486  		} else if xkind != tkind {
   487  			goto Error
   488  		}
   489  		return
   490  	}
   491  
   492  	// typed target
   493  	switch t := target.Underlying().(type) {
   494  	case *Basic:
   495  		if x.mode == constant_ {
   496  			check.representable(x, t)
   497  			if x.mode == invalid {
   498  				return
   499  			}
   500  			// expression value may have been rounded - update if needed
   501  			// TODO(gri) A floating-point value may silently underflow to
   502  			// zero. If it was negative, the sign is lost. See issue 6898.
   503  			check.updateExprVal(x.expr, x.val)
   504  		} else {
   505  			// Non-constant untyped values may appear as the
   506  			// result of comparisons (untyped bool), intermediate
   507  			// (delayed-checked) rhs operands of shifts, and as
   508  			// the value nil.
   509  			switch x.typ.(*Basic).kind {
   510  			case UntypedBool:
   511  				if !isBoolean(target) {
   512  					goto Error
   513  				}
   514  			case UntypedInt, UntypedRune, UntypedFloat, UntypedComplex:
   515  				if !isNumeric(target) {
   516  					goto Error
   517  				}
   518  			case UntypedString:
   519  				// Non-constant untyped string values are not
   520  				// permitted by the spec and should not occur.
   521  				unreachable()
   522  			case UntypedNil:
   523  				// Unsafe.Pointer is a basic type that includes nil.
   524  				if !hasNil(target) {
   525  					goto Error
   526  				}
   527  			default:
   528  				goto Error
   529  			}
   530  		}
   531  	case *Interface:
   532  		if !x.isNil() && !t.Empty() /* empty interfaces are ok */ {
   533  			goto Error
   534  		}
   535  		// Update operand types to the default type rather then
   536  		// the target (interface) type: values must have concrete
   537  		// dynamic types. If the value is nil, keep it untyped
   538  		// (this is important for tools such as go vet which need
   539  		// the dynamic type for argument checking of say, print
   540  		// functions)
   541  		if x.isNil() {
   542  			target = Typ[UntypedNil]
   543  		} else {
   544  			// cannot assign untyped values to non-empty interfaces
   545  			if !t.Empty() {
   546  				goto Error
   547  			}
   548  			target = defaultType(x.typ)
   549  		}
   550  	case *Pointer, *Signature, *Slice, *Map, *Chan:
   551  		if !x.isNil() {
   552  			goto Error
   553  		}
   554  		// keep nil untyped - see comment for interfaces, above
   555  		target = Typ[UntypedNil]
   556  	default:
   557  		goto Error
   558  	}
   559  
   560  	x.typ = target
   561  	check.updateExprType(x.expr, target, true) // UntypedNils are final
   562  	return
   563  
   564  Error:
   565  	check.errorf(x.pos(), "cannot convert %s to %s", x, target)
   566  	x.mode = invalid
   567  }
   568  
   569  func (check *Checker) comparison(x, y *operand, op token.Token) {
   570  	// spec: "In any comparison, the first operand must be assignable
   571  	// to the type of the second operand, or vice versa."
   572  	err := ""
   573  	if x.assignableTo(check.conf, y.typ, nil) || y.assignableTo(check.conf, x.typ, nil) {
   574  		defined := false
   575  		switch op {
   576  		case token.EQL, token.NEQ:
   577  			// spec: "The equality operators == and != apply to operands that are comparable."
   578  			defined = Comparable(x.typ) || x.isNil() && hasNil(y.typ) || y.isNil() && hasNil(x.typ)
   579  		case token.LSS, token.LEQ, token.GTR, token.GEQ:
   580  			// spec: The ordering operators <, <=, >, and >= apply to operands that are ordered."
   581  			defined = isOrdered(x.typ)
   582  		default:
   583  			unreachable()
   584  		}
   585  		if !defined {
   586  			typ := x.typ
   587  			if x.isNil() {
   588  				typ = y.typ
   589  			}
   590  			err = check.sprintf("operator %s not defined for %s", op, typ)
   591  		}
   592  	} else {
   593  		err = check.sprintf("mismatched types %s and %s", x.typ, y.typ)
   594  	}
   595  
   596  	if err != "" {
   597  		check.errorf(x.pos(), "cannot compare %s %s %s (%s)", x.expr, op, y.expr, err)
   598  		x.mode = invalid
   599  		return
   600  	}
   601  
   602  	if x.mode == constant_ && y.mode == constant_ {
   603  		x.val = constant.MakeBool(constant.Compare(x.val, op, y.val))
   604  		// The operands are never materialized; no need to update
   605  		// their types.
   606  	} else {
   607  		x.mode = value
   608  		// The operands have now their final types, which at run-
   609  		// time will be materialized. Update the expression trees.
   610  		// If the current types are untyped, the materialized type
   611  		// is the respective default type.
   612  		check.updateExprType(x.expr, defaultType(x.typ), true)
   613  		check.updateExprType(y.expr, defaultType(y.typ), true)
   614  	}
   615  
   616  	// spec: "Comparison operators compare two operands and yield
   617  	//        an untyped boolean value."
   618  	x.typ = Typ[UntypedBool]
   619  }
   620  
   621  func (check *Checker) shift(x, y *operand, op token.Token) {
   622  	untypedx := isUntyped(x.typ)
   623  
   624  	// The lhs must be of integer type or be representable
   625  	// as an integer; otherwise the shift has no chance.
   626  	if !x.isInteger() {
   627  		check.invalidOp(x.pos(), "shifted operand %s must be integer", x)
   628  		x.mode = invalid
   629  		return
   630  	}
   631  
   632  	// spec: "The right operand in a shift expression must have unsigned
   633  	// integer type or be an untyped constant that can be converted to
   634  	// unsigned integer type."
   635  	switch {
   636  	case isInteger(y.typ) && isUnsigned(y.typ):
   637  		// nothing to do
   638  	case isUntyped(y.typ):
   639  		check.convertUntyped(y, Typ[UntypedInt])
   640  		if y.mode == invalid {
   641  			x.mode = invalid
   642  			return
   643  		}
   644  	default:
   645  		check.invalidOp(y.pos(), "shift count %s must be unsigned integer", y)
   646  		x.mode = invalid
   647  		return
   648  	}
   649  
   650  	if x.mode == constant_ {
   651  		if y.mode == constant_ {
   652  			// rhs must be an integer value
   653  			if !y.isInteger() {
   654  				check.invalidOp(y.pos(), "shift count %s must be unsigned integer", y)
   655  				x.mode = invalid
   656  				return
   657  			}
   658  			// rhs must be within reasonable bounds
   659  			const stupidShift = 1023 - 1 + 52 // so we can express smallestFloat64
   660  			s, ok := constant.Uint64Val(y.val)
   661  			if !ok || s > stupidShift {
   662  				check.invalidOp(y.pos(), "stupid shift count %s", y)
   663  				x.mode = invalid
   664  				return
   665  			}
   666  			// The lhs is representable as an integer but may not be an integer
   667  			// (e.g., 2.0, an untyped float) - this can only happen for untyped
   668  			// non-integer numeric constants. Correct the type so that the shift
   669  			// result is of integer type.
   670  			if !isInteger(x.typ) {
   671  				x.typ = Typ[UntypedInt]
   672  			}
   673  			x.val = constant.Shift(x.val, op, uint(s))
   674  			return
   675  		}
   676  
   677  		// non-constant shift with constant lhs
   678  		if untypedx {
   679  			// spec: "If the left operand of a non-constant shift
   680  			// expression is an untyped constant, the type of the
   681  			// constant is what it would be if the shift expression
   682  			// were replaced by its left operand alone.".
   683  			//
   684  			// Delay operand checking until we know the final type
   685  			// by marking the lhs expression as lhs shift operand.
   686  			//
   687  			// Usually (in correct programs), the lhs expression
   688  			// is in the untyped map. However, it is possible to
   689  			// create incorrect programs where the same expression
   690  			// is evaluated twice (via a declaration cycle) such
   691  			// that the lhs expression type is determined in the
   692  			// first round and thus deleted from the map, and then
   693  			// not found in the second round (double insertion of
   694  			// the same expr node still just leads to one entry for
   695  			// that node, and it can only be deleted once).
   696  			// Be cautious and check for presence of entry.
   697  			// Example: var e, f = int(1<<""[f]) // issue 11347
   698  			if info, found := check.untyped[x.expr]; found {
   699  				info.isLhs = true
   700  				check.untyped[x.expr] = info
   701  			}
   702  			// keep x's type
   703  			x.mode = value
   704  			return
   705  		}
   706  	}
   707  
   708  	// constant rhs must be >= 0
   709  	if y.mode == constant_ && constant.Sign(y.val) < 0 {
   710  		check.invalidOp(y.pos(), "shift count %s must not be negative", y)
   711  	}
   712  
   713  	// non-constant shift - lhs must be an integer
   714  	if !isInteger(x.typ) {
   715  		check.invalidOp(x.pos(), "shifted operand %s must be integer", x)
   716  		x.mode = invalid
   717  		return
   718  	}
   719  
   720  	x.mode = value
   721  }
   722  
   723  var binaryOpPredicates = opPredicates{
   724  	token.ADD: func(typ Type) bool { return isNumeric(typ) || isString(typ) },
   725  	token.SUB: isNumeric,
   726  	token.MUL: isNumeric,
   727  	token.QUO: isNumeric,
   728  	token.REM: isInteger,
   729  
   730  	token.AND:     isInteger,
   731  	token.OR:      isInteger,
   732  	token.XOR:     isInteger,
   733  	token.AND_NOT: isInteger,
   734  
   735  	token.LAND: isBoolean,
   736  	token.LOR:  isBoolean,
   737  }
   738  
   739  // The binary expression e may be nil. It's passed in for better error messages only.
   740  func (check *Checker) binary(x *operand, e *ast.BinaryExpr, lhs, rhs ast.Expr, op token.Token) {
   741  	var y operand
   742  
   743  	check.expr(x, lhs)
   744  	check.expr(&y, rhs)
   745  
   746  	if x.mode == invalid {
   747  		return
   748  	}
   749  	if y.mode == invalid {
   750  		x.mode = invalid
   751  		x.expr = y.expr
   752  		return
   753  	}
   754  
   755  	if isShift(op) {
   756  		check.shift(x, &y, op)
   757  		return
   758  	}
   759  
   760  	check.convertUntyped(x, y.typ)
   761  	if x.mode == invalid {
   762  		return
   763  	}
   764  	check.convertUntyped(&y, x.typ)
   765  	if y.mode == invalid {
   766  		x.mode = invalid
   767  		return
   768  	}
   769  
   770  	if isComparison(op) {
   771  		check.comparison(x, &y, op)
   772  		return
   773  	}
   774  
   775  	if !Identical(x.typ, y.typ) {
   776  		// only report an error if we have valid types
   777  		// (otherwise we had an error reported elsewhere already)
   778  		if x.typ != Typ[Invalid] && y.typ != Typ[Invalid] {
   779  			check.invalidOp(x.pos(), "mismatched types %s and %s", x.typ, y.typ)
   780  		}
   781  		x.mode = invalid
   782  		return
   783  	}
   784  
   785  	if !check.op(binaryOpPredicates, x, op) {
   786  		x.mode = invalid
   787  		return
   788  	}
   789  
   790  	if (op == token.QUO || op == token.REM) && (x.mode == constant_ || isInteger(x.typ)) && y.mode == constant_ && constant.Sign(y.val) == 0 {
   791  		check.invalidOp(y.pos(), "division by zero")
   792  		x.mode = invalid
   793  		return
   794  	}
   795  
   796  	if x.mode == constant_ && y.mode == constant_ {
   797  		typ := x.typ.Underlying().(*Basic)
   798  		// force integer division of integer operands
   799  		if op == token.QUO && isInteger(typ) {
   800  			op = token.QUO_ASSIGN
   801  		}
   802  		x.val = constant.BinaryOp(x.val, op, y.val)
   803  		// Typed constants must be representable in
   804  		// their type after each constant operation.
   805  		if isTyped(typ) {
   806  			if e != nil {
   807  				x.expr = e // for better error message
   808  			}
   809  			check.representable(x, typ)
   810  		}
   811  		return
   812  	}
   813  
   814  	x.mode = value
   815  	// x.typ is unchanged
   816  }
   817  
   818  // index checks an index expression for validity.
   819  // If max >= 0, it is the upper bound for index.
   820  // If index is valid and the result i >= 0, then i is the constant value of index.
   821  func (check *Checker) index(index ast.Expr, max int64) (i int64, valid bool) {
   822  	var x operand
   823  	check.expr(&x, index)
   824  	if x.mode == invalid {
   825  		return
   826  	}
   827  
   828  	// an untyped constant must be representable as Int
   829  	check.convertUntyped(&x, Typ[Int])
   830  	if x.mode == invalid {
   831  		return
   832  	}
   833  
   834  	// the index must be of integer type
   835  	if !isInteger(x.typ) {
   836  		check.invalidArg(x.pos(), "index %s must be integer", &x)
   837  		return
   838  	}
   839  
   840  	// a constant index i must be in bounds
   841  	if x.mode == constant_ {
   842  		if constant.Sign(x.val) < 0 {
   843  			check.invalidArg(x.pos(), "index %s must not be negative", &x)
   844  			return
   845  		}
   846  		i, valid = constant.Int64Val(x.val)
   847  		if !valid || max >= 0 && i >= max {
   848  			check.errorf(x.pos(), "index %s is out of bounds", &x)
   849  			return i, false
   850  		}
   851  		// 0 <= i [ && i < max ]
   852  		return i, true
   853  	}
   854  
   855  	return -1, true
   856  }
   857  
   858  // indexElts checks the elements (elts) of an array or slice composite literal
   859  // against the literal's element type (typ), and the element indices against
   860  // the literal length if known (length >= 0). It returns the length of the
   861  // literal (maximum index value + 1).
   862  //
   863  func (check *Checker) indexedElts(elts []ast.Expr, typ Type, length int64) int64 {
   864  	visited := make(map[int64]bool, len(elts))
   865  	var index, max int64
   866  	for _, e := range elts {
   867  		// determine and check index
   868  		validIndex := false
   869  		eval := e
   870  		if kv, _ := e.(*ast.KeyValueExpr); kv != nil {
   871  			if i, ok := check.index(kv.Key, length); ok {
   872  				if i >= 0 {
   873  					index = i
   874  					validIndex = true
   875  				} else {
   876  					check.errorf(e.Pos(), "index %s must be integer constant", kv.Key)
   877  				}
   878  			}
   879  			eval = kv.Value
   880  		} else if length >= 0 && index >= length {
   881  			check.errorf(e.Pos(), "index %d is out of bounds (>= %d)", index, length)
   882  		} else {
   883  			validIndex = true
   884  		}
   885  
   886  		// if we have a valid index, check for duplicate entries
   887  		if validIndex {
   888  			if visited[index] {
   889  				check.errorf(e.Pos(), "duplicate index %d in array or slice literal", index)
   890  			}
   891  			visited[index] = true
   892  		}
   893  		index++
   894  		if index > max {
   895  			max = index
   896  		}
   897  
   898  		// check element against composite literal element type
   899  		var x operand
   900  		check.exprWithHint(&x, eval, typ)
   901  		check.assignment(&x, typ, "array or slice literal")
   902  	}
   903  	return max
   904  }
   905  
   906  // exprKind describes the kind of an expression; the kind
   907  // determines if an expression is valid in 'statement context'.
   908  type exprKind int
   909  
   910  const (
   911  	conversion exprKind = iota
   912  	expression
   913  	statement
   914  )
   915  
   916  // rawExpr typechecks expression e and initializes x with the expression
   917  // value or type. If an error occurred, x.mode is set to invalid.
   918  // If hint != nil, it is the type of a composite literal element.
   919  //
   920  func (check *Checker) rawExpr(x *operand, e ast.Expr, hint Type) exprKind {
   921  	if trace {
   922  		check.trace(e.Pos(), "%s", e)
   923  		check.indent++
   924  		defer func() {
   925  			check.indent--
   926  			check.trace(e.Pos(), "=> %s", x)
   927  		}()
   928  	}
   929  
   930  	kind := check.exprInternal(x, e, hint)
   931  
   932  	// convert x into a user-friendly set of values
   933  	// TODO(gri) this code can be simplified
   934  	var typ Type
   935  	var val constant.Value
   936  	switch x.mode {
   937  	case invalid:
   938  		typ = Typ[Invalid]
   939  	case novalue:
   940  		typ = (*Tuple)(nil)
   941  	case constant_:
   942  		typ = x.typ
   943  		val = x.val
   944  	default:
   945  		typ = x.typ
   946  	}
   947  	assert(x.expr != nil && typ != nil)
   948  
   949  	if isUntyped(typ) {
   950  		// delay type and value recording until we know the type
   951  		// or until the end of type checking
   952  		check.rememberUntyped(x.expr, false, x.mode, typ.(*Basic), val)
   953  	} else {
   954  		check.recordTypeAndValue(e, x.mode, typ, val)
   955  	}
   956  
   957  	return kind
   958  }
   959  
   960  // exprInternal contains the core of type checking of expressions.
   961  // Must only be called by rawExpr.
   962  //
   963  func (check *Checker) exprInternal(x *operand, e ast.Expr, hint Type) exprKind {
   964  	// make sure x has a valid state in case of bailout
   965  	// (was issue 5770)
   966  	x.mode = invalid
   967  	x.typ = Typ[Invalid]
   968  
   969  	switch e := e.(type) {
   970  	case *ast.BadExpr:
   971  		goto Error // error was reported before
   972  
   973  	case *ast.Ident:
   974  		check.ident(x, e, nil, nil)
   975  
   976  	case *ast.Ellipsis:
   977  		// ellipses are handled explicitly where they are legal
   978  		// (array composite literals and parameter lists)
   979  		check.error(e.Pos(), "invalid use of '...'")
   980  		goto Error
   981  
   982  	case *ast.BasicLit:
   983  		x.setConst(e.Kind, e.Value)
   984  		if x.mode == invalid {
   985  			check.invalidAST(e.Pos(), "invalid literal %v", e.Value)
   986  			goto Error
   987  		}
   988  
   989  	case *ast.FuncLit:
   990  		if sig, ok := check.typ(e.Type).(*Signature); ok {
   991  			// Anonymous functions are considered part of the
   992  			// init expression/func declaration which contains
   993  			// them: use existing package-level declaration info.
   994  			check.funcBody(check.decl, "", sig, e.Body)
   995  			x.mode = value
   996  			x.typ = sig
   997  		} else {
   998  			check.invalidAST(e.Pos(), "invalid function literal %s", e)
   999  			goto Error
  1000  		}
  1001  
  1002  	case *ast.CompositeLit:
  1003  		typ := hint
  1004  		openArray := false
  1005  		if e.Type != nil {
  1006  			// [...]T array types may only appear with composite literals.
  1007  			// Check for them here so we don't have to handle ... in general.
  1008  			typ = nil
  1009  			if atyp, _ := e.Type.(*ast.ArrayType); atyp != nil && atyp.Len != nil {
  1010  				if ellip, _ := atyp.Len.(*ast.Ellipsis); ellip != nil && ellip.Elt == nil {
  1011  					// We have an "open" [...]T array type.
  1012  					// Create a new ArrayType with unknown length (-1)
  1013  					// and finish setting it up after analyzing the literal.
  1014  					typ = &Array{len: -1, elem: check.typ(atyp.Elt)}
  1015  					openArray = true
  1016  				}
  1017  			}
  1018  			if typ == nil {
  1019  				typ = check.typ(e.Type)
  1020  			}
  1021  		}
  1022  		if typ == nil {
  1023  			// TODO(gri) provide better error messages depending on context
  1024  			check.error(e.Pos(), "missing type in composite literal")
  1025  			goto Error
  1026  		}
  1027  
  1028  		switch typ, _ := deref(typ); utyp := typ.Underlying().(type) {
  1029  		case *Struct:
  1030  			if len(e.Elts) == 0 {
  1031  				break
  1032  			}
  1033  			fields := utyp.fields
  1034  			if _, ok := e.Elts[0].(*ast.KeyValueExpr); ok {
  1035  				// all elements must have keys
  1036  				visited := make([]bool, len(fields))
  1037  				for _, e := range e.Elts {
  1038  					kv, _ := e.(*ast.KeyValueExpr)
  1039  					if kv == nil {
  1040  						check.error(e.Pos(), "mixture of field:value and value elements in struct literal")
  1041  						continue
  1042  					}
  1043  					key, _ := kv.Key.(*ast.Ident)
  1044  					if key == nil {
  1045  						check.errorf(kv.Pos(), "invalid field name %s in struct literal", kv.Key)
  1046  						continue
  1047  					}
  1048  					i := fieldIndex(utyp.fields, check.pkg, key.Name)
  1049  					if i < 0 {
  1050  						check.errorf(kv.Pos(), "unknown field %s in struct literal", key.Name)
  1051  						continue
  1052  					}
  1053  					fld := fields[i]
  1054  					check.recordUse(key, fld)
  1055  					// 0 <= i < len(fields)
  1056  					if visited[i] {
  1057  						check.errorf(kv.Pos(), "duplicate field name %s in struct literal", key.Name)
  1058  						continue
  1059  					}
  1060  					visited[i] = true
  1061  					check.expr(x, kv.Value)
  1062  					etyp := fld.typ
  1063  					check.assignment(x, etyp, "struct literal")
  1064  				}
  1065  			} else {
  1066  				// no element must have a key
  1067  				for i, e := range e.Elts {
  1068  					if kv, _ := e.(*ast.KeyValueExpr); kv != nil {
  1069  						check.error(kv.Pos(), "mixture of field:value and value elements in struct literal")
  1070  						continue
  1071  					}
  1072  					check.expr(x, e)
  1073  					if i >= len(fields) {
  1074  						check.error(x.pos(), "too many values in struct literal")
  1075  						break // cannot continue
  1076  					}
  1077  					// i < len(fields)
  1078  					fld := fields[i]
  1079  					if !fld.Exported() && fld.pkg != check.pkg {
  1080  						check.errorf(x.pos(), "implicit assignment to unexported field %s in %s literal", fld.name, typ)
  1081  						continue
  1082  					}
  1083  					etyp := fld.typ
  1084  					check.assignment(x, etyp, "struct literal")
  1085  				}
  1086  				if len(e.Elts) < len(fields) {
  1087  					check.error(e.Rbrace, "too few values in struct literal")
  1088  					// ok to continue
  1089  				}
  1090  			}
  1091  
  1092  		case *Array:
  1093  			n := check.indexedElts(e.Elts, utyp.elem, utyp.len)
  1094  			// if we have an "open" [...]T array, set the length now that we know it
  1095  			if openArray {
  1096  				utyp.len = n
  1097  			}
  1098  
  1099  		case *Slice:
  1100  			check.indexedElts(e.Elts, utyp.elem, -1)
  1101  
  1102  		case *Map:
  1103  			visited := make(map[interface{}][]Type, len(e.Elts))
  1104  			for _, e := range e.Elts {
  1105  				kv, _ := e.(*ast.KeyValueExpr)
  1106  				if kv == nil {
  1107  					check.error(e.Pos(), "missing key in map literal")
  1108  					continue
  1109  				}
  1110  				check.exprWithHint(x, kv.Key, utyp.key)
  1111  				check.assignment(x, utyp.key, "map literal")
  1112  				if x.mode == invalid {
  1113  					continue
  1114  				}
  1115  				if x.mode == constant_ {
  1116  					duplicate := false
  1117  					// if the key is of interface type, the type is also significant when checking for duplicates
  1118  					if _, ok := utyp.key.Underlying().(*Interface); ok {
  1119  						for _, vtyp := range visited[x.val] {
  1120  							if Identical(vtyp, x.typ) {
  1121  								duplicate = true
  1122  								break
  1123  							}
  1124  						}
  1125  						visited[x.val] = append(visited[x.val], x.typ)
  1126  					} else {
  1127  						_, duplicate = visited[x.val]
  1128  						visited[x.val] = nil
  1129  					}
  1130  					if duplicate {
  1131  						check.errorf(x.pos(), "duplicate key %s in map literal", x.val)
  1132  						continue
  1133  					}
  1134  				}
  1135  				check.exprWithHint(x, kv.Value, utyp.elem)
  1136  				check.assignment(x, utyp.elem, "map literal")
  1137  			}
  1138  
  1139  		default:
  1140  			// if utyp is invalid, an error was reported before
  1141  			if utyp != Typ[Invalid] {
  1142  				check.errorf(e.Pos(), "invalid composite literal type %s", typ)
  1143  				goto Error
  1144  			}
  1145  		}
  1146  
  1147  		x.mode = value
  1148  		x.typ = typ
  1149  
  1150  	case *ast.ParenExpr:
  1151  		kind := check.rawExpr(x, e.X, nil)
  1152  		x.expr = e
  1153  		return kind
  1154  
  1155  	case *ast.SelectorExpr:
  1156  		check.selector(x, e)
  1157  
  1158  	case *ast.IndexExpr:
  1159  		check.expr(x, e.X)
  1160  		if x.mode == invalid {
  1161  			goto Error
  1162  		}
  1163  
  1164  		valid := false
  1165  		length := int64(-1) // valid if >= 0
  1166  		switch typ := x.typ.Underlying().(type) {
  1167  		case *Basic:
  1168  			if isString(typ) {
  1169  				valid = true
  1170  				if x.mode == constant_ {
  1171  					length = int64(len(constant.StringVal(x.val)))
  1172  				}
  1173  				// an indexed string always yields a byte value
  1174  				// (not a constant) even if the string and the
  1175  				// index are constant
  1176  				x.mode = value
  1177  				x.typ = universeByte // use 'byte' name
  1178  			}
  1179  
  1180  		case *Array:
  1181  			valid = true
  1182  			length = typ.len
  1183  			if x.mode != variable {
  1184  				x.mode = value
  1185  			}
  1186  			x.typ = typ.elem
  1187  
  1188  		case *Pointer:
  1189  			if typ, _ := typ.base.Underlying().(*Array); typ != nil {
  1190  				valid = true
  1191  				length = typ.len
  1192  				x.mode = variable
  1193  				x.typ = typ.elem
  1194  			}
  1195  
  1196  		case *Slice:
  1197  			valid = true
  1198  			x.mode = variable
  1199  			x.typ = typ.elem
  1200  
  1201  		case *Map:
  1202  			var key operand
  1203  			check.expr(&key, e.Index)
  1204  			check.assignment(&key, typ.key, "map index")
  1205  			if x.mode == invalid {
  1206  				goto Error
  1207  			}
  1208  			x.mode = mapindex
  1209  			x.typ = typ.elem
  1210  			x.expr = e
  1211  			return expression
  1212  		}
  1213  
  1214  		if !valid {
  1215  			check.invalidOp(x.pos(), "cannot index %s", x)
  1216  			goto Error
  1217  		}
  1218  
  1219  		if e.Index == nil {
  1220  			check.invalidAST(e.Pos(), "missing index for %s", x)
  1221  			goto Error
  1222  		}
  1223  
  1224  		check.index(e.Index, length)
  1225  		// ok to continue
  1226  
  1227  	case *ast.SliceExpr:
  1228  		check.expr(x, e.X)
  1229  		if x.mode == invalid {
  1230  			goto Error
  1231  		}
  1232  
  1233  		valid := false
  1234  		length := int64(-1) // valid if >= 0
  1235  		switch typ := x.typ.Underlying().(type) {
  1236  		case *Basic:
  1237  			if isString(typ) {
  1238  				if e.Slice3 {
  1239  					check.invalidOp(x.pos(), "3-index slice of string")
  1240  					goto Error
  1241  				}
  1242  				valid = true
  1243  				if x.mode == constant_ {
  1244  					length = int64(len(constant.StringVal(x.val)))
  1245  				}
  1246  				// spec: "For untyped string operands the result
  1247  				// is a non-constant value of type string."
  1248  				if typ.kind == UntypedString {
  1249  					x.typ = Typ[String]
  1250  				}
  1251  			}
  1252  
  1253  		case *Array:
  1254  			valid = true
  1255  			length = typ.len
  1256  			if x.mode != variable {
  1257  				check.invalidOp(x.pos(), "cannot slice %s (value not addressable)", x)
  1258  				goto Error
  1259  			}
  1260  			x.typ = &Slice{elem: typ.elem}
  1261  
  1262  		case *Pointer:
  1263  			if typ, _ := typ.base.Underlying().(*Array); typ != nil {
  1264  				valid = true
  1265  				length = typ.len
  1266  				x.typ = &Slice{elem: typ.elem}
  1267  			}
  1268  
  1269  		case *Slice:
  1270  			valid = true
  1271  			// x.typ doesn't change
  1272  		}
  1273  
  1274  		if !valid {
  1275  			check.invalidOp(x.pos(), "cannot slice %s", x)
  1276  			goto Error
  1277  		}
  1278  
  1279  		x.mode = value
  1280  
  1281  		// spec: "Only the first index may be omitted; it defaults to 0."
  1282  		if e.Slice3 && (e.High == nil || e.Max == nil) {
  1283  			check.error(e.Rbrack, "2nd and 3rd index required in 3-index slice")
  1284  			goto Error
  1285  		}
  1286  
  1287  		// check indices
  1288  		var ind [3]int64
  1289  		for i, expr := range []ast.Expr{e.Low, e.High, e.Max} {
  1290  			x := int64(-1)
  1291  			switch {
  1292  			case expr != nil:
  1293  				// The "capacity" is only known statically for strings, arrays,
  1294  				// and pointers to arrays, and it is the same as the length for
  1295  				// those types.
  1296  				max := int64(-1)
  1297  				if length >= 0 {
  1298  					max = length + 1
  1299  				}
  1300  				if t, ok := check.index(expr, max); ok && t >= 0 {
  1301  					x = t
  1302  				}
  1303  			case i == 0:
  1304  				// default is 0 for the first index
  1305  				x = 0
  1306  			case length >= 0:
  1307  				// default is length (== capacity) otherwise
  1308  				x = length
  1309  			}
  1310  			ind[i] = x
  1311  		}
  1312  
  1313  		// constant indices must be in range
  1314  		// (check.index already checks that existing indices >= 0)
  1315  	L:
  1316  		for i, x := range ind[:len(ind)-1] {
  1317  			if x > 0 {
  1318  				for _, y := range ind[i+1:] {
  1319  					if y >= 0 && x > y {
  1320  						check.errorf(e.Rbrack, "invalid slice indices: %d > %d", x, y)
  1321  						break L // only report one error, ok to continue
  1322  					}
  1323  				}
  1324  			}
  1325  		}
  1326  
  1327  	case *ast.TypeAssertExpr:
  1328  		check.expr(x, e.X)
  1329  		if x.mode == invalid {
  1330  			goto Error
  1331  		}
  1332  		xtyp, _ := x.typ.Underlying().(*Interface)
  1333  		if xtyp == nil {
  1334  			check.invalidOp(x.pos(), "%s is not an interface", x)
  1335  			goto Error
  1336  		}
  1337  		// x.(type) expressions are handled explicitly in type switches
  1338  		if e.Type == nil {
  1339  			check.invalidAST(e.Pos(), "use of .(type) outside type switch")
  1340  			goto Error
  1341  		}
  1342  		T := check.typ(e.Type)
  1343  		if T == Typ[Invalid] {
  1344  			goto Error
  1345  		}
  1346  		check.typeAssertion(x.pos(), x, xtyp, T)
  1347  		x.mode = commaok
  1348  		x.typ = T
  1349  
  1350  	case *ast.CallExpr:
  1351  		return check.call(x, e)
  1352  
  1353  	case *ast.StarExpr:
  1354  		check.exprOrType(x, e.X)
  1355  		switch x.mode {
  1356  		case invalid:
  1357  			goto Error
  1358  		case typexpr:
  1359  			x.typ = &Pointer{base: x.typ}
  1360  		default:
  1361  			if typ, ok := x.typ.Underlying().(*Pointer); ok {
  1362  				x.mode = variable
  1363  				x.typ = typ.base
  1364  			} else {
  1365  				check.invalidOp(x.pos(), "cannot indirect %s", x)
  1366  				goto Error
  1367  			}
  1368  		}
  1369  
  1370  	case *ast.UnaryExpr:
  1371  		check.expr(x, e.X)
  1372  		if x.mode == invalid {
  1373  			goto Error
  1374  		}
  1375  		check.unary(x, e, e.Op)
  1376  		if x.mode == invalid {
  1377  			goto Error
  1378  		}
  1379  		if e.Op == token.ARROW {
  1380  			x.expr = e
  1381  			return statement // receive operations may appear in statement context
  1382  		}
  1383  
  1384  	case *ast.BinaryExpr:
  1385  		check.binary(x, e, e.X, e.Y, e.Op)
  1386  		if x.mode == invalid {
  1387  			goto Error
  1388  		}
  1389  
  1390  	case *ast.KeyValueExpr:
  1391  		// key:value expressions are handled in composite literals
  1392  		check.invalidAST(e.Pos(), "no key:value expected")
  1393  		goto Error
  1394  
  1395  	case *ast.ArrayType, *ast.StructType, *ast.FuncType,
  1396  		*ast.InterfaceType, *ast.MapType, *ast.ChanType:
  1397  		x.mode = typexpr
  1398  		x.typ = check.typ(e)
  1399  		// Note: rawExpr (caller of exprInternal) will call check.recordTypeAndValue
  1400  		// even though check.typ has already called it. This is fine as both
  1401  		// times the same expression and type are recorded. It is also not a
  1402  		// performance issue because we only reach here for composite literal
  1403  		// types, which are comparatively rare.
  1404  
  1405  	default:
  1406  		panic(fmt.Sprintf("%s: unknown expression type %T", check.fset.Position(e.Pos()), e))
  1407  	}
  1408  
  1409  	// everything went well
  1410  	x.expr = e
  1411  	return expression
  1412  
  1413  Error:
  1414  	x.mode = invalid
  1415  	x.expr = e
  1416  	return statement // avoid follow-up errors
  1417  }
  1418  
  1419  // typeAssertion checks that x.(T) is legal; xtyp must be the type of x.
  1420  func (check *Checker) typeAssertion(pos token.Pos, x *operand, xtyp *Interface, T Type) {
  1421  	method, wrongType := assertableTo(xtyp, T)
  1422  	if method == nil {
  1423  		return
  1424  	}
  1425  
  1426  	var msg string
  1427  	if wrongType {
  1428  		msg = "wrong type for method"
  1429  	} else {
  1430  		msg = "missing method"
  1431  	}
  1432  	check.errorf(pos, "%s cannot have dynamic type %s (%s %s)", x, T, msg, method.name)
  1433  }
  1434  
  1435  func (check *Checker) singleValue(x *operand) {
  1436  	if x.mode == value {
  1437  		// tuple types are never named - no need for underlying type below
  1438  		if t, ok := x.typ.(*Tuple); ok {
  1439  			assert(t.Len() != 1)
  1440  			check.errorf(x.pos(), "%d-valued %s where single value is expected", t.Len(), x)
  1441  			x.mode = invalid
  1442  		}
  1443  	}
  1444  }
  1445  
  1446  // expr typechecks expression e and initializes x with the expression value.
  1447  // The result must be a single value.
  1448  // If an error occurred, x.mode is set to invalid.
  1449  //
  1450  func (check *Checker) expr(x *operand, e ast.Expr) {
  1451  	check.multiExpr(x, e)
  1452  	check.singleValue(x)
  1453  }
  1454  
  1455  // multiExpr is like expr but the result may be a multi-value.
  1456  func (check *Checker) multiExpr(x *operand, e ast.Expr) {
  1457  	check.rawExpr(x, e, nil)
  1458  	var msg string
  1459  	switch x.mode {
  1460  	default:
  1461  		return
  1462  	case novalue:
  1463  		msg = "%s used as value"
  1464  	case builtin:
  1465  		msg = "%s must be called"
  1466  	case typexpr:
  1467  		msg = "%s is not an expression"
  1468  	}
  1469  	check.errorf(x.pos(), msg, x)
  1470  	x.mode = invalid
  1471  }
  1472  
  1473  // exprWithHint typechecks expression e and initializes x with the expression value;
  1474  // hint is the type of a composite literal element.
  1475  // If an error occurred, x.mode is set to invalid.
  1476  //
  1477  func (check *Checker) exprWithHint(x *operand, e ast.Expr, hint Type) {
  1478  	assert(hint != nil)
  1479  	check.rawExpr(x, e, hint)
  1480  	check.singleValue(x)
  1481  	var msg string
  1482  	switch x.mode {
  1483  	default:
  1484  		return
  1485  	case novalue:
  1486  		msg = "%s used as value"
  1487  	case builtin:
  1488  		msg = "%s must be called"
  1489  	case typexpr:
  1490  		msg = "%s is not an expression"
  1491  	}
  1492  	check.errorf(x.pos(), msg, x)
  1493  	x.mode = invalid
  1494  }
  1495  
  1496  // exprOrType typechecks expression or type e and initializes x with the expression value or type.
  1497  // If an error occurred, x.mode is set to invalid.
  1498  //
  1499  func (check *Checker) exprOrType(x *operand, e ast.Expr) {
  1500  	check.rawExpr(x, e, nil)
  1501  	check.singleValue(x)
  1502  	if x.mode == novalue {
  1503  		check.errorf(x.pos(), "%s used as value or type", x)
  1504  		x.mode = invalid
  1505  	}
  1506  }