github.com/daethereum/go-dae@v2.2.3+incompatible/trie/proof.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import (
    20  	"bytes"
    21  	"errors"
    22  	"fmt"
    23  
    24  	"github.com/daethereum/go-dae/common"
    25  	"github.com/daethereum/go-dae/ethdb"
    26  	"github.com/daethereum/go-dae/log"
    27  )
    28  
    29  // Prove constructs a merkle proof for key. The result contains all encoded nodes
    30  // on the path to the value at key. The value itself is also included in the last
    31  // node and can be retrieved by verifying the proof.
    32  //
    33  // If the trie does not contain a value for key, the returned proof contains all
    34  // nodes of the longest existing prefix of the key (at least the root node), ending
    35  // with the node that proves the absence of the key.
    36  func (t *Trie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) error {
    37  	// Collect all nodes on the path to key.
    38  	key = keybytesToHex(key)
    39  	var nodes []node
    40  	tn := t.root
    41  	for len(key) > 0 && tn != nil {
    42  		switch n := tn.(type) {
    43  		case *shortNode:
    44  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
    45  				// The trie doesn't contain the key.
    46  				tn = nil
    47  			} else {
    48  				tn = n.Val
    49  				key = key[len(n.Key):]
    50  			}
    51  			nodes = append(nodes, n)
    52  		case *fullNode:
    53  			tn = n.Children[key[0]]
    54  			key = key[1:]
    55  			nodes = append(nodes, n)
    56  		case hashNode:
    57  			var err error
    58  			tn, err = t.resolveHash(n, nil)
    59  			if err != nil {
    60  				log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
    61  				return err
    62  			}
    63  		default:
    64  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
    65  		}
    66  	}
    67  	hasher := newHasher(false)
    68  	defer returnHasherToPool(hasher)
    69  
    70  	for i, n := range nodes {
    71  		if fromLevel > 0 {
    72  			fromLevel--
    73  			continue
    74  		}
    75  		var hn node
    76  		n, hn = hasher.proofHash(n)
    77  		if hash, ok := hn.(hashNode); ok || i == 0 {
    78  			// If the node's database encoding is a hash (or is the
    79  			// root node), it becomes a proof element.
    80  			enc := nodeToBytes(n)
    81  			if !ok {
    82  				hash = hasher.hashData(enc)
    83  			}
    84  			proofDb.Put(hash, enc)
    85  		}
    86  	}
    87  	return nil
    88  }
    89  
    90  // Prove constructs a merkle proof for key. The result contains all encoded nodes
    91  // on the path to the value at key. The value itself is also included in the last
    92  // node and can be retrieved by verifying the proof.
    93  //
    94  // If the trie does not contain a value for key, the returned proof contains all
    95  // nodes of the longest existing prefix of the key (at least the root node), ending
    96  // with the node that proves the absence of the key.
    97  func (t *SecureTrie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) error {
    98  	return t.trie.Prove(key, fromLevel, proofDb)
    99  }
   100  
   101  // VerifyProof checks merkle proofs. The given proof must contain the value for
   102  // key in a trie with the given root hash. VerifyProof returns an error if the
   103  // proof contains invalid trie nodes or the wrong value.
   104  func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader) (value []byte, err error) {
   105  	key = keybytesToHex(key)
   106  	wantHash := rootHash
   107  	for i := 0; ; i++ {
   108  		buf, _ := proofDb.Get(wantHash[:])
   109  		if buf == nil {
   110  			return nil, fmt.Errorf("proof node %d (hash %064x) missing", i, wantHash)
   111  		}
   112  		n, err := decodeNode(wantHash[:], buf)
   113  		if err != nil {
   114  			return nil, fmt.Errorf("bad proof node %d: %v", i, err)
   115  		}
   116  		keyrest, cld := get(n, key, true)
   117  		switch cld := cld.(type) {
   118  		case nil:
   119  			// The trie doesn't contain the key.
   120  			return nil, nil
   121  		case hashNode:
   122  			key = keyrest
   123  			copy(wantHash[:], cld)
   124  		case valueNode:
   125  			return cld, nil
   126  		}
   127  	}
   128  }
   129  
   130  // proofToPath converts a merkle proof to trie node path. The main purpose of
   131  // this function is recovering a node path from the merkle proof stream. All
   132  // necessary nodes will be resolved and leave the remaining as hashnode.
   133  //
   134  // The given edge proof is allowed to be an existent or non-existent proof.
   135  func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, []byte, error) {
   136  	// resolveNode retrieves and resolves trie node from merkle proof stream
   137  	resolveNode := func(hash common.Hash) (node, error) {
   138  		buf, _ := proofDb.Get(hash[:])
   139  		if buf == nil {
   140  			return nil, fmt.Errorf("proof node (hash %064x) missing", hash)
   141  		}
   142  		n, err := decodeNode(hash[:], buf)
   143  		if err != nil {
   144  			return nil, fmt.Errorf("bad proof node %v", err)
   145  		}
   146  		return n, err
   147  	}
   148  	// If the root node is empty, resolve it first.
   149  	// Root node must be included in the proof.
   150  	if root == nil {
   151  		n, err := resolveNode(rootHash)
   152  		if err != nil {
   153  			return nil, nil, err
   154  		}
   155  		root = n
   156  	}
   157  	var (
   158  		err           error
   159  		child, parent node
   160  		keyrest       []byte
   161  		valnode       []byte
   162  	)
   163  	key, parent = keybytesToHex(key), root
   164  	for {
   165  		keyrest, child = get(parent, key, false)
   166  		switch cld := child.(type) {
   167  		case nil:
   168  			// The trie doesn't contain the key. It's possible
   169  			// the proof is a non-existing proof, but at least
   170  			// we can prove all resolved nodes are correct, it's
   171  			// enough for us to prove range.
   172  			if allowNonExistent {
   173  				return root, nil, nil
   174  			}
   175  			return nil, nil, errors.New("the node is not contained in trie")
   176  		case *shortNode:
   177  			key, parent = keyrest, child // Already resolved
   178  			continue
   179  		case *fullNode:
   180  			key, parent = keyrest, child // Already resolved
   181  			continue
   182  		case hashNode:
   183  			child, err = resolveNode(common.BytesToHash(cld))
   184  			if err != nil {
   185  				return nil, nil, err
   186  			}
   187  		case valueNode:
   188  			valnode = cld
   189  		}
   190  		// Link the parent and child.
   191  		switch pnode := parent.(type) {
   192  		case *shortNode:
   193  			pnode.Val = child
   194  		case *fullNode:
   195  			pnode.Children[key[0]] = child
   196  		default:
   197  			panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode))
   198  		}
   199  		if len(valnode) > 0 {
   200  			return root, valnode, nil // The whole path is resolved
   201  		}
   202  		key, parent = keyrest, child
   203  	}
   204  }
   205  
   206  // unsetInternal removes all internal node references(hashnode, embedded node).
   207  // It should be called after a trie is constructed with two edge paths. Also
   208  // the given boundary keys must be the one used to construct the edge paths.
   209  //
   210  // It's the key step for range proof. All visited nodes should be marked dirty
   211  // since the node content might be modified. Besides it can happen that some
   212  // fullnodes only have one child which is disallowed. But if the proof is valid,
   213  // the missing children will be filled, otherwise it will be thrown anyway.
   214  //
   215  // Note we have the assumption here the given boundary keys are different
   216  // and right is larger than left.
   217  func unsetInternal(n node, left []byte, right []byte) (bool, error) {
   218  	left, right = keybytesToHex(left), keybytesToHex(right)
   219  
   220  	// Step down to the fork point. There are two scenarios can happen:
   221  	// - the fork point is a shortnode: either the key of left proof or
   222  	//   right proof doesn't match with shortnode's key.
   223  	// - the fork point is a fullnode: both two edge proofs are allowed
   224  	//   to point to a non-existent key.
   225  	var (
   226  		pos    = 0
   227  		parent node
   228  
   229  		// fork indicator, 0 means no fork, -1 means proof is less, 1 means proof is greater
   230  		shortForkLeft, shortForkRight int
   231  	)
   232  findFork:
   233  	for {
   234  		switch rn := (n).(type) {
   235  		case *shortNode:
   236  			rn.flags = nodeFlag{dirty: true}
   237  
   238  			// If either the key of left proof or right proof doesn't match with
   239  			// shortnode, stop here and the forkpoint is the shortnode.
   240  			if len(left)-pos < len(rn.Key) {
   241  				shortForkLeft = bytes.Compare(left[pos:], rn.Key)
   242  			} else {
   243  				shortForkLeft = bytes.Compare(left[pos:pos+len(rn.Key)], rn.Key)
   244  			}
   245  			if len(right)-pos < len(rn.Key) {
   246  				shortForkRight = bytes.Compare(right[pos:], rn.Key)
   247  			} else {
   248  				shortForkRight = bytes.Compare(right[pos:pos+len(rn.Key)], rn.Key)
   249  			}
   250  			if shortForkLeft != 0 || shortForkRight != 0 {
   251  				break findFork
   252  			}
   253  			parent = n
   254  			n, pos = rn.Val, pos+len(rn.Key)
   255  		case *fullNode:
   256  			rn.flags = nodeFlag{dirty: true}
   257  
   258  			// If either the node pointed by left proof or right proof is nil,
   259  			// stop here and the forkpoint is the fullnode.
   260  			leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]]
   261  			if leftnode == nil || rightnode == nil || leftnode != rightnode {
   262  				break findFork
   263  			}
   264  			parent = n
   265  			n, pos = rn.Children[left[pos]], pos+1
   266  		default:
   267  			panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   268  		}
   269  	}
   270  	switch rn := n.(type) {
   271  	case *shortNode:
   272  		// There can have these five scenarios:
   273  		// - both proofs are less than the trie path => no valid range
   274  		// - both proofs are greater than the trie path => no valid range
   275  		// - left proof is less and right proof is greater => valid range, unset the shortnode entirely
   276  		// - left proof points to the shortnode, but right proof is greater
   277  		// - right proof points to the shortnode, but left proof is less
   278  		if shortForkLeft == -1 && shortForkRight == -1 {
   279  			return false, errors.New("empty range")
   280  		}
   281  		if shortForkLeft == 1 && shortForkRight == 1 {
   282  			return false, errors.New("empty range")
   283  		}
   284  		if shortForkLeft != 0 && shortForkRight != 0 {
   285  			// The fork point is root node, unset the entire trie
   286  			if parent == nil {
   287  				return true, nil
   288  			}
   289  			parent.(*fullNode).Children[left[pos-1]] = nil
   290  			return false, nil
   291  		}
   292  		// Only one proof points to non-existent key.
   293  		if shortForkRight != 0 {
   294  			if _, ok := rn.Val.(valueNode); ok {
   295  				// The fork point is root node, unset the entire trie
   296  				if parent == nil {
   297  					return true, nil
   298  				}
   299  				parent.(*fullNode).Children[left[pos-1]] = nil
   300  				return false, nil
   301  			}
   302  			return false, unset(rn, rn.Val, left[pos:], len(rn.Key), false)
   303  		}
   304  		if shortForkLeft != 0 {
   305  			if _, ok := rn.Val.(valueNode); ok {
   306  				// The fork point is root node, unset the entire trie
   307  				if parent == nil {
   308  					return true, nil
   309  				}
   310  				parent.(*fullNode).Children[right[pos-1]] = nil
   311  				return false, nil
   312  			}
   313  			return false, unset(rn, rn.Val, right[pos:], len(rn.Key), true)
   314  		}
   315  		return false, nil
   316  	case *fullNode:
   317  		// unset all internal nodes in the forkpoint
   318  		for i := left[pos] + 1; i < right[pos]; i++ {
   319  			rn.Children[i] = nil
   320  		}
   321  		if err := unset(rn, rn.Children[left[pos]], left[pos:], 1, false); err != nil {
   322  			return false, err
   323  		}
   324  		if err := unset(rn, rn.Children[right[pos]], right[pos:], 1, true); err != nil {
   325  			return false, err
   326  		}
   327  		return false, nil
   328  	default:
   329  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   330  	}
   331  }
   332  
   333  // unset removes all internal node references either the left most or right most.
   334  // It can meet these scenarios:
   335  //
   336  // - The given path is existent in the trie, unset the associated nodes with the
   337  //   specific direction
   338  // - The given path is non-existent in the trie
   339  //   - the fork point is a fullnode, the corresponding child pointed by path
   340  //     is nil, return
   341  //   - the fork point is a shortnode, the shortnode is included in the range,
   342  //     keep the entire branch and return.
   343  //   - the fork point is a shortnode, the shortnode is excluded in the range,
   344  //     unset the entire branch.
   345  func unset(parent node, child node, key []byte, pos int, removeLeft bool) error {
   346  	switch cld := child.(type) {
   347  	case *fullNode:
   348  		if removeLeft {
   349  			for i := 0; i < int(key[pos]); i++ {
   350  				cld.Children[i] = nil
   351  			}
   352  			cld.flags = nodeFlag{dirty: true}
   353  		} else {
   354  			for i := key[pos] + 1; i < 16; i++ {
   355  				cld.Children[i] = nil
   356  			}
   357  			cld.flags = nodeFlag{dirty: true}
   358  		}
   359  		return unset(cld, cld.Children[key[pos]], key, pos+1, removeLeft)
   360  	case *shortNode:
   361  		if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) {
   362  			// Find the fork point, it's an non-existent branch.
   363  			if removeLeft {
   364  				if bytes.Compare(cld.Key, key[pos:]) < 0 {
   365  					// The key of fork shortnode is less than the path
   366  					// (it belongs to the range), unset the entrie
   367  					// branch. The parent must be a fullnode.
   368  					fn := parent.(*fullNode)
   369  					fn.Children[key[pos-1]] = nil
   370  				}
   371  				//else {
   372  				// The key of fork shortnode is greater than the
   373  				// path(it doesn't belong to the range), keep
   374  				// it with the cached hash available.
   375  				//}
   376  			} else {
   377  				if bytes.Compare(cld.Key, key[pos:]) > 0 {
   378  					// The key of fork shortnode is greater than the
   379  					// path(it belongs to the range), unset the entrie
   380  					// branch. The parent must be a fullnode.
   381  					fn := parent.(*fullNode)
   382  					fn.Children[key[pos-1]] = nil
   383  				}
   384  				//else {
   385  				// The key of fork shortnode is less than the
   386  				// path(it doesn't belong to the range), keep
   387  				// it with the cached hash available.
   388  				//}
   389  			}
   390  			return nil
   391  		}
   392  		if _, ok := cld.Val.(valueNode); ok {
   393  			fn := parent.(*fullNode)
   394  			fn.Children[key[pos-1]] = nil
   395  			return nil
   396  		}
   397  		cld.flags = nodeFlag{dirty: true}
   398  		return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft)
   399  	case nil:
   400  		// If the node is nil, then it's a child of the fork point
   401  		// fullnode(it's a non-existent branch).
   402  		return nil
   403  	default:
   404  		panic("it shouldn't happen") // hashNode, valueNode
   405  	}
   406  }
   407  
   408  // hasRightElement returns the indicator whether there exists more elements
   409  // on the right side of the given path. The given path can point to an existent
   410  // key or a non-existent one. This function has the assumption that the whole
   411  // path should already be resolved.
   412  func hasRightElement(node node, key []byte) bool {
   413  	pos, key := 0, keybytesToHex(key)
   414  	for node != nil {
   415  		switch rn := node.(type) {
   416  		case *fullNode:
   417  			for i := key[pos] + 1; i < 16; i++ {
   418  				if rn.Children[i] != nil {
   419  					return true
   420  				}
   421  			}
   422  			node, pos = rn.Children[key[pos]], pos+1
   423  		case *shortNode:
   424  			if len(key)-pos < len(rn.Key) || !bytes.Equal(rn.Key, key[pos:pos+len(rn.Key)]) {
   425  				return bytes.Compare(rn.Key, key[pos:]) > 0
   426  			}
   427  			node, pos = rn.Val, pos+len(rn.Key)
   428  		case valueNode:
   429  			return false // We have resolved the whole path
   430  		default:
   431  			panic(fmt.Sprintf("%T: invalid node: %v", node, node)) // hashnode
   432  		}
   433  	}
   434  	return false
   435  }
   436  
   437  // VerifyRangeProof checks whether the given leaf nodes and edge proof
   438  // can prove the given trie leaves range is matched with the specific root.
   439  // Besides, the range should be consecutive (no gap inside) and monotonic
   440  // increasing.
   441  //
   442  // Note the given proof actually contains two edge proofs. Both of them can
   443  // be non-existent proofs. For example the first proof is for a non-existent
   444  // key 0x03, the last proof is for a non-existent key 0x10. The given batch
   445  // leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove the given
   446  // batch is valid.
   447  //
   448  // The firstKey is paired with firstProof, not necessarily the same as keys[0]
   449  // (unless firstProof is an existent proof). Similarly, lastKey and lastProof
   450  // are paired.
   451  //
   452  // Expect the normal case, this function can also be used to verify the following
   453  // range proofs:
   454  //
   455  // - All elements proof. In this case the proof can be nil, but the range should
   456  //   be all the leaves in the trie.
   457  //
   458  // - One element proof. In this case no matter the edge proof is a non-existent
   459  //   proof or not, we can always verify the correctness of the proof.
   460  //
   461  // - Zero element proof. In this case a single non-existent proof is enough to prove.
   462  //   Besides, if there are still some other leaves available on the right side, then
   463  //   an error will be returned.
   464  //
   465  // Except returning the error to indicate the proof is valid or not, the function will
   466  // also return a flag to indicate whether there exists more accounts/slots in the trie.
   467  //
   468  // Note: This method does not verify that the proof is of minimal form. If the input
   469  // proofs are 'bloated' with neighbour leaves or random data, aside from the 'useful'
   470  // data, then the proof will still be accepted.
   471  func VerifyRangeProof(rootHash common.Hash, firstKey []byte, lastKey []byte, keys [][]byte, values [][]byte, proof ethdb.KeyValueReader) (bool, error) {
   472  	if len(keys) != len(values) {
   473  		return false, fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values))
   474  	}
   475  	// Ensure the received batch is monotonic increasing and contains no deletions
   476  	for i := 0; i < len(keys)-1; i++ {
   477  		if bytes.Compare(keys[i], keys[i+1]) >= 0 {
   478  			return false, errors.New("range is not monotonically increasing")
   479  		}
   480  	}
   481  	for _, value := range values {
   482  		if len(value) == 0 {
   483  			return false, errors.New("range contains deletion")
   484  		}
   485  	}
   486  	// Special case, there is no edge proof at all. The given range is expected
   487  	// to be the whole leaf-set in the trie.
   488  	if proof == nil {
   489  		tr := NewStackTrie(nil)
   490  		for index, key := range keys {
   491  			tr.TryUpdate(key, values[index])
   492  		}
   493  		if have, want := tr.Hash(), rootHash; have != want {
   494  			return false, fmt.Errorf("invalid proof, want hash %x, got %x", want, have)
   495  		}
   496  		return false, nil // No more elements
   497  	}
   498  	// Special case, there is a provided edge proof but zero key/value
   499  	// pairs, ensure there are no more accounts / slots in the trie.
   500  	if len(keys) == 0 {
   501  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, true)
   502  		if err != nil {
   503  			return false, err
   504  		}
   505  		if val != nil || hasRightElement(root, firstKey) {
   506  			return false, errors.New("more entries available")
   507  		}
   508  		return false, nil
   509  	}
   510  	// Special case, there is only one element and two edge keys are same.
   511  	// In this case, we can't construct two edge paths. So handle it here.
   512  	if len(keys) == 1 && bytes.Equal(firstKey, lastKey) {
   513  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, false)
   514  		if err != nil {
   515  			return false, err
   516  		}
   517  		if !bytes.Equal(firstKey, keys[0]) {
   518  			return false, errors.New("correct proof but invalid key")
   519  		}
   520  		if !bytes.Equal(val, values[0]) {
   521  			return false, errors.New("correct proof but invalid data")
   522  		}
   523  		return hasRightElement(root, firstKey), nil
   524  	}
   525  	// Ok, in all other cases, we require two edge paths available.
   526  	// First check the validity of edge keys.
   527  	if bytes.Compare(firstKey, lastKey) >= 0 {
   528  		return false, errors.New("invalid edge keys")
   529  	}
   530  	// todo(rjl493456442) different length edge keys should be supported
   531  	if len(firstKey) != len(lastKey) {
   532  		return false, errors.New("inconsistent edge keys")
   533  	}
   534  	// Convert the edge proofs to edge trie paths. Then we can
   535  	// have the same tree architecture with the original one.
   536  	// For the first edge proof, non-existent proof is allowed.
   537  	root, _, err := proofToPath(rootHash, nil, firstKey, proof, true)
   538  	if err != nil {
   539  		return false, err
   540  	}
   541  	// Pass the root node here, the second path will be merged
   542  	// with the first one. For the last edge proof, non-existent
   543  	// proof is also allowed.
   544  	root, _, err = proofToPath(rootHash, root, lastKey, proof, true)
   545  	if err != nil {
   546  		return false, err
   547  	}
   548  	// Remove all internal references. All the removed parts should
   549  	// be re-filled(or re-constructed) by the given leaves range.
   550  	empty, err := unsetInternal(root, firstKey, lastKey)
   551  	if err != nil {
   552  		return false, err
   553  	}
   554  	// Rebuild the trie with the leaf stream, the shape of trie
   555  	// should be same with the original one.
   556  	tr := newWithRootNode(root)
   557  	if empty {
   558  		tr.root = nil
   559  	}
   560  	for index, key := range keys {
   561  		tr.TryUpdate(key, values[index])
   562  	}
   563  	if tr.Hash() != rootHash {
   564  		return false, fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, tr.Hash())
   565  	}
   566  	return hasRightElement(tr.root, keys[len(keys)-1]), nil
   567  }
   568  
   569  // get returns the child of the given node. Return nil if the
   570  // node with specified key doesn't exist at all.
   571  //
   572  // There is an additional flag `skipResolved`. If it's set then
   573  // all resolved nodes won't be returned.
   574  func get(tn node, key []byte, skipResolved bool) ([]byte, node) {
   575  	for {
   576  		switch n := tn.(type) {
   577  		case *shortNode:
   578  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
   579  				return nil, nil
   580  			}
   581  			tn = n.Val
   582  			key = key[len(n.Key):]
   583  			if !skipResolved {
   584  				return key, tn
   585  			}
   586  		case *fullNode:
   587  			tn = n.Children[key[0]]
   588  			key = key[1:]
   589  			if !skipResolved {
   590  				return key, tn
   591  			}
   592  		case hashNode:
   593  			return key, n
   594  		case nil:
   595  			return key, nil
   596  		case valueNode:
   597  			return nil, n
   598  		default:
   599  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
   600  		}
   601  	}
   602  }