github.com/dannin/go@v0.0.0-20161031215817-d35dfd405eaa/src/cmd/compile/internal/gc/ssa.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"bytes"
     9  	"fmt"
    10  	"html"
    11  	"os"
    12  
    13  	"cmd/compile/internal/ssa"
    14  	"cmd/internal/obj"
    15  	"cmd/internal/sys"
    16  )
    17  
    18  var ssaConfig *ssa.Config
    19  var ssaExp ssaExport
    20  
    21  func initssa() *ssa.Config {
    22  	if ssaConfig == nil {
    23  		ssaConfig = ssa.NewConfig(Thearch.LinkArch.Name, &ssaExp, Ctxt, Debug['N'] == 0)
    24  		if Thearch.LinkArch.Name == "386" {
    25  			ssaConfig.Set387(Thearch.Use387)
    26  		}
    27  	}
    28  	ssaConfig.HTML = nil
    29  	return ssaConfig
    30  }
    31  
    32  // buildssa builds an SSA function.
    33  func buildssa(fn *Node) *ssa.Func {
    34  	name := fn.Func.Nname.Sym.Name
    35  	printssa := name == os.Getenv("GOSSAFUNC")
    36  	if printssa {
    37  		fmt.Println("generating SSA for", name)
    38  		dumplist("buildssa-enter", fn.Func.Enter)
    39  		dumplist("buildssa-body", fn.Nbody)
    40  		dumplist("buildssa-exit", fn.Func.Exit)
    41  	}
    42  
    43  	var s state
    44  	s.pushLine(fn.Lineno)
    45  	defer s.popLine()
    46  
    47  	if fn.Func.Pragma&CgoUnsafeArgs != 0 {
    48  		s.cgoUnsafeArgs = true
    49  	}
    50  	if fn.Func.Pragma&Nowritebarrier != 0 {
    51  		s.noWB = true
    52  	}
    53  	defer func() {
    54  		if s.WBLineno != 0 {
    55  			fn.Func.WBLineno = s.WBLineno
    56  		}
    57  	}()
    58  	// TODO(khr): build config just once at the start of the compiler binary
    59  
    60  	ssaExp.log = printssa
    61  
    62  	s.config = initssa()
    63  	s.f = s.config.NewFunc()
    64  	s.f.Name = name
    65  	s.exitCode = fn.Func.Exit
    66  	s.panics = map[funcLine]*ssa.Block{}
    67  	s.config.DebugTest = s.config.DebugHashMatch("GOSSAHASH", name)
    68  
    69  	if name == os.Getenv("GOSSAFUNC") {
    70  		// TODO: tempfile? it is handy to have the location
    71  		// of this file be stable, so you can just reload in the browser.
    72  		s.config.HTML = ssa.NewHTMLWriter("ssa.html", s.config, name)
    73  		// TODO: generate and print a mapping from nodes to values and blocks
    74  	}
    75  
    76  	// Allocate starting block
    77  	s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
    78  
    79  	// Allocate starting values
    80  	s.labels = map[string]*ssaLabel{}
    81  	s.labeledNodes = map[*Node]*ssaLabel{}
    82  	s.fwdVars = map[*Node]*ssa.Value{}
    83  	s.startmem = s.entryNewValue0(ssa.OpInitMem, ssa.TypeMem)
    84  	s.sp = s.entryNewValue0(ssa.OpSP, Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
    85  	s.sb = s.entryNewValue0(ssa.OpSB, Types[TUINTPTR])
    86  
    87  	s.startBlock(s.f.Entry)
    88  	s.vars[&memVar] = s.startmem
    89  
    90  	s.varsyms = map[*Node]interface{}{}
    91  
    92  	// Generate addresses of local declarations
    93  	s.decladdrs = map[*Node]*ssa.Value{}
    94  	for _, n := range fn.Func.Dcl {
    95  		switch n.Class {
    96  		case PPARAM, PPARAMOUT:
    97  			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
    98  			s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, ptrto(n.Type), aux, s.sp)
    99  			if n.Class == PPARAMOUT && s.canSSA(n) {
   100  				// Save ssa-able PPARAMOUT variables so we can
   101  				// store them back to the stack at the end of
   102  				// the function.
   103  				s.returns = append(s.returns, n)
   104  			}
   105  		case PAUTO:
   106  			// processed at each use, to prevent Addr coming
   107  			// before the decl.
   108  		case PAUTOHEAP:
   109  			// moved to heap - already handled by frontend
   110  		case PFUNC:
   111  			// local function - already handled by frontend
   112  		default:
   113  			s.Fatalf("local variable with class %s unimplemented", classnames[n.Class])
   114  		}
   115  	}
   116  
   117  	// Populate arguments.
   118  	for _, n := range fn.Func.Dcl {
   119  		if n.Class != PPARAM {
   120  			continue
   121  		}
   122  		var v *ssa.Value
   123  		if s.canSSA(n) {
   124  			v = s.newValue0A(ssa.OpArg, n.Type, n)
   125  		} else {
   126  			// Not SSAable. Load it.
   127  			v = s.newValue2(ssa.OpLoad, n.Type, s.decladdrs[n], s.startmem)
   128  		}
   129  		s.vars[n] = v
   130  	}
   131  
   132  	// Convert the AST-based IR to the SSA-based IR
   133  	s.stmtList(fn.Func.Enter)
   134  	s.stmtList(fn.Nbody)
   135  
   136  	// fallthrough to exit
   137  	if s.curBlock != nil {
   138  		s.pushLine(fn.Func.Endlineno)
   139  		s.exit()
   140  		s.popLine()
   141  	}
   142  
   143  	// Check that we used all labels
   144  	for name, lab := range s.labels {
   145  		if !lab.used() && !lab.reported && !lab.defNode.Used {
   146  			yyerrorl(lab.defNode.Lineno, "label %v defined and not used", name)
   147  			lab.reported = true
   148  		}
   149  		if lab.used() && !lab.defined() && !lab.reported {
   150  			yyerrorl(lab.useNode.Lineno, "label %v not defined", name)
   151  			lab.reported = true
   152  		}
   153  	}
   154  
   155  	// Check any forward gotos. Non-forward gotos have already been checked.
   156  	for _, n := range s.fwdGotos {
   157  		lab := s.labels[n.Left.Sym.Name]
   158  		// If the label is undefined, we have already have printed an error.
   159  		if lab.defined() {
   160  			s.checkgoto(n, lab.defNode)
   161  		}
   162  	}
   163  
   164  	if nerrors > 0 {
   165  		s.f.Free()
   166  		return nil
   167  	}
   168  
   169  	s.insertPhis()
   170  
   171  	// Don't carry reference this around longer than necessary
   172  	s.exitCode = Nodes{}
   173  
   174  	// Main call to ssa package to compile function
   175  	ssa.Compile(s.f)
   176  
   177  	return s.f
   178  }
   179  
   180  type state struct {
   181  	// configuration (arch) information
   182  	config *ssa.Config
   183  
   184  	// function we're building
   185  	f *ssa.Func
   186  
   187  	// labels and labeled control flow nodes (OFOR, OSWITCH, OSELECT) in f
   188  	labels       map[string]*ssaLabel
   189  	labeledNodes map[*Node]*ssaLabel
   190  
   191  	// gotos that jump forward; required for deferred checkgoto calls
   192  	fwdGotos []*Node
   193  	// Code that must precede any return
   194  	// (e.g., copying value of heap-escaped paramout back to true paramout)
   195  	exitCode Nodes
   196  
   197  	// unlabeled break and continue statement tracking
   198  	breakTo    *ssa.Block // current target for plain break statement
   199  	continueTo *ssa.Block // current target for plain continue statement
   200  
   201  	// current location where we're interpreting the AST
   202  	curBlock *ssa.Block
   203  
   204  	// variable assignments in the current block (map from variable symbol to ssa value)
   205  	// *Node is the unique identifier (an ONAME Node) for the variable.
   206  	// TODO: keep a single varnum map, then make all of these maps slices instead?
   207  	vars map[*Node]*ssa.Value
   208  
   209  	// fwdVars are variables that are used before they are defined in the current block.
   210  	// This map exists just to coalesce multiple references into a single FwdRef op.
   211  	// *Node is the unique identifier (an ONAME Node) for the variable.
   212  	fwdVars map[*Node]*ssa.Value
   213  
   214  	// all defined variables at the end of each block. Indexed by block ID.
   215  	defvars []map[*Node]*ssa.Value
   216  
   217  	// addresses of PPARAM and PPARAMOUT variables.
   218  	decladdrs map[*Node]*ssa.Value
   219  
   220  	// symbols for PEXTERN, PAUTO and PPARAMOUT variables so they can be reused.
   221  	varsyms map[*Node]interface{}
   222  
   223  	// starting values. Memory, stack pointer, and globals pointer
   224  	startmem *ssa.Value
   225  	sp       *ssa.Value
   226  	sb       *ssa.Value
   227  
   228  	// line number stack. The current line number is top of stack
   229  	line []int32
   230  
   231  	// list of panic calls by function name and line number.
   232  	// Used to deduplicate panic calls.
   233  	panics map[funcLine]*ssa.Block
   234  
   235  	// list of PPARAMOUT (return) variables.
   236  	returns []*Node
   237  
   238  	// A dummy value used during phi construction.
   239  	placeholder *ssa.Value
   240  
   241  	cgoUnsafeArgs bool
   242  	noWB          bool
   243  	WBLineno      int32 // line number of first write barrier. 0=no write barriers
   244  }
   245  
   246  type funcLine struct {
   247  	f    *Node
   248  	line int32
   249  }
   250  
   251  type ssaLabel struct {
   252  	target         *ssa.Block // block identified by this label
   253  	breakTarget    *ssa.Block // block to break to in control flow node identified by this label
   254  	continueTarget *ssa.Block // block to continue to in control flow node identified by this label
   255  	defNode        *Node      // label definition Node (OLABEL)
   256  	// Label use Node (OGOTO, OBREAK, OCONTINUE).
   257  	// Used only for error detection and reporting.
   258  	// There might be multiple uses, but we only need to track one.
   259  	useNode  *Node
   260  	reported bool // reported indicates whether an error has already been reported for this label
   261  }
   262  
   263  // defined reports whether the label has a definition (OLABEL node).
   264  func (l *ssaLabel) defined() bool { return l.defNode != nil }
   265  
   266  // used reports whether the label has a use (OGOTO, OBREAK, or OCONTINUE node).
   267  func (l *ssaLabel) used() bool { return l.useNode != nil }
   268  
   269  // label returns the label associated with sym, creating it if necessary.
   270  func (s *state) label(sym *Sym) *ssaLabel {
   271  	lab := s.labels[sym.Name]
   272  	if lab == nil {
   273  		lab = new(ssaLabel)
   274  		s.labels[sym.Name] = lab
   275  	}
   276  	return lab
   277  }
   278  
   279  func (s *state) Logf(msg string, args ...interface{})              { s.config.Logf(msg, args...) }
   280  func (s *state) Log() bool                                         { return s.config.Log() }
   281  func (s *state) Fatalf(msg string, args ...interface{})            { s.config.Fatalf(s.peekLine(), msg, args...) }
   282  func (s *state) Warnl(line int32, msg string, args ...interface{}) { s.config.Warnl(line, msg, args...) }
   283  func (s *state) Debug_checknil() bool                              { return s.config.Debug_checknil() }
   284  
   285  var (
   286  	// dummy node for the memory variable
   287  	memVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "mem"}}
   288  
   289  	// dummy nodes for temporary variables
   290  	ptrVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ptr"}}
   291  	lenVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "len"}}
   292  	newlenVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "newlen"}}
   293  	capVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "cap"}}
   294  	typVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "typ"}}
   295  	idataVar  = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "idata"}}
   296  	okVar     = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ok"}}
   297  )
   298  
   299  // startBlock sets the current block we're generating code in to b.
   300  func (s *state) startBlock(b *ssa.Block) {
   301  	if s.curBlock != nil {
   302  		s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
   303  	}
   304  	s.curBlock = b
   305  	s.vars = map[*Node]*ssa.Value{}
   306  	for n := range s.fwdVars {
   307  		delete(s.fwdVars, n)
   308  	}
   309  }
   310  
   311  // endBlock marks the end of generating code for the current block.
   312  // Returns the (former) current block. Returns nil if there is no current
   313  // block, i.e. if no code flows to the current execution point.
   314  func (s *state) endBlock() *ssa.Block {
   315  	b := s.curBlock
   316  	if b == nil {
   317  		return nil
   318  	}
   319  	for len(s.defvars) <= int(b.ID) {
   320  		s.defvars = append(s.defvars, nil)
   321  	}
   322  	s.defvars[b.ID] = s.vars
   323  	s.curBlock = nil
   324  	s.vars = nil
   325  	b.Line = s.peekLine()
   326  	return b
   327  }
   328  
   329  // pushLine pushes a line number on the line number stack.
   330  func (s *state) pushLine(line int32) {
   331  	if line == 0 {
   332  		// the frontend may emit node with line number missing,
   333  		// use the parent line number in this case.
   334  		line = s.peekLine()
   335  		if Debug['K'] != 0 {
   336  			Warn("buildssa: line 0")
   337  		}
   338  	}
   339  	s.line = append(s.line, line)
   340  }
   341  
   342  // popLine pops the top of the line number stack.
   343  func (s *state) popLine() {
   344  	s.line = s.line[:len(s.line)-1]
   345  }
   346  
   347  // peekLine peek the top of the line number stack.
   348  func (s *state) peekLine() int32 {
   349  	return s.line[len(s.line)-1]
   350  }
   351  
   352  func (s *state) Error(msg string, args ...interface{}) {
   353  	yyerrorl(s.peekLine(), msg, args...)
   354  }
   355  
   356  // newValue0 adds a new value with no arguments to the current block.
   357  func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value {
   358  	return s.curBlock.NewValue0(s.peekLine(), op, t)
   359  }
   360  
   361  // newValue0A adds a new value with no arguments and an aux value to the current block.
   362  func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
   363  	return s.curBlock.NewValue0A(s.peekLine(), op, t, aux)
   364  }
   365  
   366  // newValue0I adds a new value with no arguments and an auxint value to the current block.
   367  func (s *state) newValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
   368  	return s.curBlock.NewValue0I(s.peekLine(), op, t, auxint)
   369  }
   370  
   371  // newValue1 adds a new value with one argument to the current block.
   372  func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
   373  	return s.curBlock.NewValue1(s.peekLine(), op, t, arg)
   374  }
   375  
   376  // newValue1A adds a new value with one argument and an aux value to the current block.
   377  func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   378  	return s.curBlock.NewValue1A(s.peekLine(), op, t, aux, arg)
   379  }
   380  
   381  // newValue1I adds a new value with one argument and an auxint value to the current block.
   382  func (s *state) newValue1I(op ssa.Op, t ssa.Type, aux int64, arg *ssa.Value) *ssa.Value {
   383  	return s.curBlock.NewValue1I(s.peekLine(), op, t, aux, arg)
   384  }
   385  
   386  // newValue2 adds a new value with two arguments to the current block.
   387  func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   388  	return s.curBlock.NewValue2(s.peekLine(), op, t, arg0, arg1)
   389  }
   390  
   391  // newValue2I adds a new value with two arguments and an auxint value to the current block.
   392  func (s *state) newValue2I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
   393  	return s.curBlock.NewValue2I(s.peekLine(), op, t, aux, arg0, arg1)
   394  }
   395  
   396  // newValue3 adds a new value with three arguments to the current block.
   397  func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   398  	return s.curBlock.NewValue3(s.peekLine(), op, t, arg0, arg1, arg2)
   399  }
   400  
   401  // newValue3I adds a new value with three arguments and an auxint value to the current block.
   402  func (s *state) newValue3I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   403  	return s.curBlock.NewValue3I(s.peekLine(), op, t, aux, arg0, arg1, arg2)
   404  }
   405  
   406  // newValue4 adds a new value with four arguments to the current block.
   407  func (s *state) newValue4(op ssa.Op, t ssa.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value {
   408  	return s.curBlock.NewValue4(s.peekLine(), op, t, arg0, arg1, arg2, arg3)
   409  }
   410  
   411  // entryNewValue0 adds a new value with no arguments to the entry block.
   412  func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value {
   413  	return s.f.Entry.NewValue0(s.peekLine(), op, t)
   414  }
   415  
   416  // entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
   417  func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
   418  	return s.f.Entry.NewValue0A(s.peekLine(), op, t, aux)
   419  }
   420  
   421  // entryNewValue0I adds a new value with no arguments and an auxint value to the entry block.
   422  func (s *state) entryNewValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
   423  	return s.f.Entry.NewValue0I(s.peekLine(), op, t, auxint)
   424  }
   425  
   426  // entryNewValue1 adds a new value with one argument to the entry block.
   427  func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
   428  	return s.f.Entry.NewValue1(s.peekLine(), op, t, arg)
   429  }
   430  
   431  // entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
   432  func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value {
   433  	return s.f.Entry.NewValue1I(s.peekLine(), op, t, auxint, arg)
   434  }
   435  
   436  // entryNewValue1A adds a new value with one argument and an aux value to the entry block.
   437  func (s *state) entryNewValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   438  	return s.f.Entry.NewValue1A(s.peekLine(), op, t, aux, arg)
   439  }
   440  
   441  // entryNewValue2 adds a new value with two arguments to the entry block.
   442  func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   443  	return s.f.Entry.NewValue2(s.peekLine(), op, t, arg0, arg1)
   444  }
   445  
   446  // const* routines add a new const value to the entry block.
   447  func (s *state) constSlice(t ssa.Type) *ssa.Value       { return s.f.ConstSlice(s.peekLine(), t) }
   448  func (s *state) constInterface(t ssa.Type) *ssa.Value   { return s.f.ConstInterface(s.peekLine(), t) }
   449  func (s *state) constNil(t ssa.Type) *ssa.Value         { return s.f.ConstNil(s.peekLine(), t) }
   450  func (s *state) constEmptyString(t ssa.Type) *ssa.Value { return s.f.ConstEmptyString(s.peekLine(), t) }
   451  func (s *state) constBool(c bool) *ssa.Value {
   452  	return s.f.ConstBool(s.peekLine(), Types[TBOOL], c)
   453  }
   454  func (s *state) constInt8(t ssa.Type, c int8) *ssa.Value {
   455  	return s.f.ConstInt8(s.peekLine(), t, c)
   456  }
   457  func (s *state) constInt16(t ssa.Type, c int16) *ssa.Value {
   458  	return s.f.ConstInt16(s.peekLine(), t, c)
   459  }
   460  func (s *state) constInt32(t ssa.Type, c int32) *ssa.Value {
   461  	return s.f.ConstInt32(s.peekLine(), t, c)
   462  }
   463  func (s *state) constInt64(t ssa.Type, c int64) *ssa.Value {
   464  	return s.f.ConstInt64(s.peekLine(), t, c)
   465  }
   466  func (s *state) constFloat32(t ssa.Type, c float64) *ssa.Value {
   467  	return s.f.ConstFloat32(s.peekLine(), t, c)
   468  }
   469  func (s *state) constFloat64(t ssa.Type, c float64) *ssa.Value {
   470  	return s.f.ConstFloat64(s.peekLine(), t, c)
   471  }
   472  func (s *state) constInt(t ssa.Type, c int64) *ssa.Value {
   473  	if s.config.IntSize == 8 {
   474  		return s.constInt64(t, c)
   475  	}
   476  	if int64(int32(c)) != c {
   477  		s.Fatalf("integer constant too big %d", c)
   478  	}
   479  	return s.constInt32(t, int32(c))
   480  }
   481  
   482  // stmtList converts the statement list n to SSA and adds it to s.
   483  func (s *state) stmtList(l Nodes) {
   484  	for _, n := range l.Slice() {
   485  		s.stmt(n)
   486  	}
   487  }
   488  
   489  // stmt converts the statement n to SSA and adds it to s.
   490  func (s *state) stmt(n *Node) {
   491  	s.pushLine(n.Lineno)
   492  	defer s.popLine()
   493  
   494  	// If s.curBlock is nil, then we're about to generate dead code.
   495  	// We can't just short-circuit here, though,
   496  	// because we check labels and gotos as part of SSA generation.
   497  	// Provide a block for the dead code so that we don't have
   498  	// to add special cases everywhere else.
   499  	if s.curBlock == nil {
   500  		dead := s.f.NewBlock(ssa.BlockPlain)
   501  		s.startBlock(dead)
   502  	}
   503  
   504  	s.stmtList(n.Ninit)
   505  	switch n.Op {
   506  
   507  	case OBLOCK:
   508  		s.stmtList(n.List)
   509  
   510  	// No-ops
   511  	case OEMPTY, ODCLCONST, ODCLTYPE, OFALL:
   512  
   513  	// Expression statements
   514  	case OCALLFUNC:
   515  		if isIntrinsicCall(n) {
   516  			s.intrinsicCall(n)
   517  			return
   518  		}
   519  		fallthrough
   520  
   521  	case OCALLMETH, OCALLINTER:
   522  		s.call(n, callNormal)
   523  		if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class == PFUNC {
   524  			if fn := n.Left.Sym.Name; compiling_runtime && fn == "throw" ||
   525  				n.Left.Sym.Pkg == Runtimepkg && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "selectgo" || fn == "block") {
   526  				m := s.mem()
   527  				b := s.endBlock()
   528  				b.Kind = ssa.BlockExit
   529  				b.SetControl(m)
   530  				// TODO: never rewrite OPANIC to OCALLFUNC in the
   531  				// first place. Need to wait until all backends
   532  				// go through SSA.
   533  			}
   534  		}
   535  	case ODEFER:
   536  		s.call(n.Left, callDefer)
   537  	case OPROC:
   538  		s.call(n.Left, callGo)
   539  
   540  	case OAS2DOTTYPE:
   541  		res, resok := s.dottype(n.Rlist.First(), true)
   542  		s.assign(n.List.First(), res, needwritebarrier(n.List.First(), n.Rlist.First()), false, n.Lineno, 0, false)
   543  		s.assign(n.List.Second(), resok, false, false, n.Lineno, 0, false)
   544  		return
   545  
   546  	case OAS2FUNC:
   547  		// We come here only when it is an intrinsic call returning two values.
   548  		if !isIntrinsicCall(n.Rlist.First()) {
   549  			s.Fatalf("non-intrinsic AS2FUNC not expanded %v", n.Rlist.First())
   550  		}
   551  		v := s.intrinsicCall(n.Rlist.First())
   552  		v1 := s.newValue1(ssa.OpSelect0, n.List.First().Type, v)
   553  		v2 := s.newValue1(ssa.OpSelect1, n.List.Second().Type, v)
   554  		// Make a fake node to mimic loading return value, ONLY for write barrier test.
   555  		// This is future-proofing against non-scalar 2-result intrinsics.
   556  		// Currently we only have scalar ones, which result in no write barrier.
   557  		fakeret := &Node{Op: OINDREGSP}
   558  		s.assign(n.List.First(), v1, needwritebarrier(n.List.First(), fakeret), false, n.Lineno, 0, false)
   559  		s.assign(n.List.Second(), v2, needwritebarrier(n.List.Second(), fakeret), false, n.Lineno, 0, false)
   560  		return
   561  
   562  	case ODCL:
   563  		if n.Left.Class == PAUTOHEAP {
   564  			Fatalf("DCL %v", n)
   565  		}
   566  
   567  	case OLABEL:
   568  		sym := n.Left.Sym
   569  
   570  		if isblanksym(sym) {
   571  			// Empty identifier is valid but useless.
   572  			// See issues 11589, 11593.
   573  			return
   574  		}
   575  
   576  		lab := s.label(sym)
   577  
   578  		// Associate label with its control flow node, if any
   579  		if ctl := n.Name.Defn; ctl != nil {
   580  			switch ctl.Op {
   581  			case OFOR, OSWITCH, OSELECT:
   582  				s.labeledNodes[ctl] = lab
   583  			}
   584  		}
   585  
   586  		if !lab.defined() {
   587  			lab.defNode = n
   588  		} else {
   589  			s.Error("label %v already defined at %v", sym, linestr(lab.defNode.Lineno))
   590  			lab.reported = true
   591  		}
   592  		// The label might already have a target block via a goto.
   593  		if lab.target == nil {
   594  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   595  		}
   596  
   597  		// go to that label (we pretend "label:" is preceded by "goto label")
   598  		b := s.endBlock()
   599  		b.AddEdgeTo(lab.target)
   600  		s.startBlock(lab.target)
   601  
   602  	case OGOTO:
   603  		sym := n.Left.Sym
   604  
   605  		lab := s.label(sym)
   606  		if lab.target == nil {
   607  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   608  		}
   609  		if !lab.used() {
   610  			lab.useNode = n
   611  		}
   612  
   613  		if lab.defined() {
   614  			s.checkgoto(n, lab.defNode)
   615  		} else {
   616  			s.fwdGotos = append(s.fwdGotos, n)
   617  		}
   618  
   619  		b := s.endBlock()
   620  		b.AddEdgeTo(lab.target)
   621  
   622  	case OAS, OASWB:
   623  		// Check whether we can generate static data rather than code.
   624  		// If so, ignore n and defer data generation until codegen.
   625  		// Failure to do this causes writes to readonly symbols.
   626  		if gen_as_init(n, true) {
   627  			var data []*Node
   628  			if s.f.StaticData != nil {
   629  				data = s.f.StaticData.([]*Node)
   630  			}
   631  			s.f.StaticData = append(data, n)
   632  			return
   633  		}
   634  
   635  		if n.Left == n.Right && n.Left.Op == ONAME {
   636  			// An x=x assignment. No point in doing anything
   637  			// here. In addition, skipping this assignment
   638  			// prevents generating:
   639  			//   VARDEF x
   640  			//   COPY x -> x
   641  			// which is bad because x is incorrectly considered
   642  			// dead before the vardef. See issue #14904.
   643  			return
   644  		}
   645  
   646  		var t *Type
   647  		if n.Right != nil {
   648  			t = n.Right.Type
   649  		} else {
   650  			t = n.Left.Type
   651  		}
   652  
   653  		// Evaluate RHS.
   654  		rhs := n.Right
   655  		if rhs != nil {
   656  			switch rhs.Op {
   657  			case OSTRUCTLIT, OARRAYLIT, OSLICELIT:
   658  				// All literals with nonzero fields have already been
   659  				// rewritten during walk. Any that remain are just T{}
   660  				// or equivalents. Use the zero value.
   661  				if !iszero(rhs) {
   662  					Fatalf("literal with nonzero value in SSA: %v", rhs)
   663  				}
   664  				rhs = nil
   665  			case OAPPEND:
   666  				// If we're writing the result of an append back to the same slice,
   667  				// handle it specially to avoid write barriers on the fast (non-growth) path.
   668  				// If the slice can be SSA'd, it'll be on the stack,
   669  				// so there will be no write barriers,
   670  				// so there's no need to attempt to prevent them.
   671  				if samesafeexpr(n.Left, rhs.List.First()) {
   672  					if !s.canSSA(n.Left) {
   673  						if Debug_append > 0 {
   674  							Warnl(n.Lineno, "append: len-only update")
   675  						}
   676  						s.append(rhs, true)
   677  						return
   678  					} else {
   679  						if Debug_append > 0 { // replicating old diagnostic message
   680  							Warnl(n.Lineno, "append: len-only update (in local slice)")
   681  						}
   682  					}
   683  				}
   684  			}
   685  		}
   686  		var r *ssa.Value
   687  		var isVolatile bool
   688  		needwb := n.Op == OASWB
   689  		deref := !canSSAType(t)
   690  		if deref {
   691  			if rhs == nil {
   692  				r = nil // Signal assign to use OpZero.
   693  			} else {
   694  				r, isVolatile = s.addr(rhs, false)
   695  			}
   696  		} else {
   697  			if rhs == nil {
   698  				r = s.zeroVal(t)
   699  			} else {
   700  				r = s.expr(rhs)
   701  			}
   702  		}
   703  		if rhs != nil && rhs.Op == OAPPEND && needwritebarrier(n.Left, rhs) {
   704  			// The frontend gets rid of the write barrier to enable the special OAPPEND
   705  			// handling above, but since this is not a special case, we need it.
   706  			// TODO: just add a ptr graying to the end of growslice?
   707  			// TODO: check whether we need to provide special handling and a write barrier
   708  			// for ODOTTYPE and ORECV also.
   709  			// They get similar wb-removal treatment in walk.go:OAS.
   710  			needwb = true
   711  		}
   712  
   713  		var skip skipMask
   714  		if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) {
   715  			// We're assigning a slicing operation back to its source.
   716  			// Don't write back fields we aren't changing. See issue #14855.
   717  			i, j, k := rhs.SliceBounds()
   718  			if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) {
   719  				// [0:...] is the same as [:...]
   720  				i = nil
   721  			}
   722  			// TODO: detect defaults for len/cap also.
   723  			// Currently doesn't really work because (*p)[:len(*p)] appears here as:
   724  			//    tmp = len(*p)
   725  			//    (*p)[:tmp]
   726  			//if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) {
   727  			//      j = nil
   728  			//}
   729  			//if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) {
   730  			//      k = nil
   731  			//}
   732  			if i == nil {
   733  				skip |= skipPtr
   734  				if j == nil {
   735  					skip |= skipLen
   736  				}
   737  				if k == nil {
   738  					skip |= skipCap
   739  				}
   740  			}
   741  		}
   742  
   743  		s.assign(n.Left, r, needwb, deref, n.Lineno, skip, isVolatile)
   744  
   745  	case OIF:
   746  		bThen := s.f.NewBlock(ssa.BlockPlain)
   747  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   748  		var bElse *ssa.Block
   749  		if n.Rlist.Len() != 0 {
   750  			bElse = s.f.NewBlock(ssa.BlockPlain)
   751  			s.condBranch(n.Left, bThen, bElse, n.Likely)
   752  		} else {
   753  			s.condBranch(n.Left, bThen, bEnd, n.Likely)
   754  		}
   755  
   756  		s.startBlock(bThen)
   757  		s.stmtList(n.Nbody)
   758  		if b := s.endBlock(); b != nil {
   759  			b.AddEdgeTo(bEnd)
   760  		}
   761  
   762  		if n.Rlist.Len() != 0 {
   763  			s.startBlock(bElse)
   764  			s.stmtList(n.Rlist)
   765  			if b := s.endBlock(); b != nil {
   766  				b.AddEdgeTo(bEnd)
   767  			}
   768  		}
   769  		s.startBlock(bEnd)
   770  
   771  	case ORETURN:
   772  		s.stmtList(n.List)
   773  		s.exit()
   774  	case ORETJMP:
   775  		s.stmtList(n.List)
   776  		b := s.exit()
   777  		b.Kind = ssa.BlockRetJmp // override BlockRet
   778  		b.Aux = n.Left.Sym
   779  
   780  	case OCONTINUE, OBREAK:
   781  		var op string
   782  		var to *ssa.Block
   783  		switch n.Op {
   784  		case OCONTINUE:
   785  			op = "continue"
   786  			to = s.continueTo
   787  		case OBREAK:
   788  			op = "break"
   789  			to = s.breakTo
   790  		}
   791  		if n.Left == nil {
   792  			// plain break/continue
   793  			if to == nil {
   794  				s.Error("%s is not in a loop", op)
   795  				return
   796  			}
   797  			// nothing to do; "to" is already the correct target
   798  		} else {
   799  			// labeled break/continue; look up the target
   800  			sym := n.Left.Sym
   801  			lab := s.label(sym)
   802  			if !lab.used() {
   803  				lab.useNode = n.Left
   804  			}
   805  			if !lab.defined() {
   806  				s.Error("%s label not defined: %v", op, sym)
   807  				lab.reported = true
   808  				return
   809  			}
   810  			switch n.Op {
   811  			case OCONTINUE:
   812  				to = lab.continueTarget
   813  			case OBREAK:
   814  				to = lab.breakTarget
   815  			}
   816  			if to == nil {
   817  				// Valid label but not usable with a break/continue here, e.g.:
   818  				// for {
   819  				// 	continue abc
   820  				// }
   821  				// abc:
   822  				// for {}
   823  				s.Error("invalid %s label %v", op, sym)
   824  				lab.reported = true
   825  				return
   826  			}
   827  		}
   828  
   829  		b := s.endBlock()
   830  		b.AddEdgeTo(to)
   831  
   832  	case OFOR:
   833  		// OFOR: for Ninit; Left; Right { Nbody }
   834  		bCond := s.f.NewBlock(ssa.BlockPlain)
   835  		bBody := s.f.NewBlock(ssa.BlockPlain)
   836  		bIncr := s.f.NewBlock(ssa.BlockPlain)
   837  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   838  
   839  		// first, jump to condition test
   840  		b := s.endBlock()
   841  		b.AddEdgeTo(bCond)
   842  
   843  		// generate code to test condition
   844  		s.startBlock(bCond)
   845  		if n.Left != nil {
   846  			s.condBranch(n.Left, bBody, bEnd, 1)
   847  		} else {
   848  			b := s.endBlock()
   849  			b.Kind = ssa.BlockPlain
   850  			b.AddEdgeTo(bBody)
   851  		}
   852  
   853  		// set up for continue/break in body
   854  		prevContinue := s.continueTo
   855  		prevBreak := s.breakTo
   856  		s.continueTo = bIncr
   857  		s.breakTo = bEnd
   858  		lab := s.labeledNodes[n]
   859  		if lab != nil {
   860  			// labeled for loop
   861  			lab.continueTarget = bIncr
   862  			lab.breakTarget = bEnd
   863  		}
   864  
   865  		// generate body
   866  		s.startBlock(bBody)
   867  		s.stmtList(n.Nbody)
   868  
   869  		// tear down continue/break
   870  		s.continueTo = prevContinue
   871  		s.breakTo = prevBreak
   872  		if lab != nil {
   873  			lab.continueTarget = nil
   874  			lab.breakTarget = nil
   875  		}
   876  
   877  		// done with body, goto incr
   878  		if b := s.endBlock(); b != nil {
   879  			b.AddEdgeTo(bIncr)
   880  		}
   881  
   882  		// generate incr
   883  		s.startBlock(bIncr)
   884  		if n.Right != nil {
   885  			s.stmt(n.Right)
   886  		}
   887  		if b := s.endBlock(); b != nil {
   888  			b.AddEdgeTo(bCond)
   889  		}
   890  		s.startBlock(bEnd)
   891  
   892  	case OSWITCH, OSELECT:
   893  		// These have been mostly rewritten by the front end into their Nbody fields.
   894  		// Our main task is to correctly hook up any break statements.
   895  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   896  
   897  		prevBreak := s.breakTo
   898  		s.breakTo = bEnd
   899  		lab := s.labeledNodes[n]
   900  		if lab != nil {
   901  			// labeled
   902  			lab.breakTarget = bEnd
   903  		}
   904  
   905  		// generate body code
   906  		s.stmtList(n.Nbody)
   907  
   908  		s.breakTo = prevBreak
   909  		if lab != nil {
   910  			lab.breakTarget = nil
   911  		}
   912  
   913  		// OSWITCH never falls through (s.curBlock == nil here).
   914  		// OSELECT does not fall through if we're calling selectgo.
   915  		// OSELECT does fall through if we're calling selectnb{send,recv}[2].
   916  		// In those latter cases, go to the code after the select.
   917  		if b := s.endBlock(); b != nil {
   918  			b.AddEdgeTo(bEnd)
   919  		}
   920  		s.startBlock(bEnd)
   921  
   922  	case OVARKILL:
   923  		// Insert a varkill op to record that a variable is no longer live.
   924  		// We only care about liveness info at call sites, so putting the
   925  		// varkill in the store chain is enough to keep it correctly ordered
   926  		// with respect to call ops.
   927  		if !s.canSSA(n.Left) {
   928  			s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, n.Left, s.mem())
   929  		}
   930  
   931  	case OVARLIVE:
   932  		// Insert a varlive op to record that a variable is still live.
   933  		if !n.Left.Addrtaken {
   934  			s.Fatalf("VARLIVE variable %v must have Addrtaken set", n.Left)
   935  		}
   936  		s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, ssa.TypeMem, n.Left, s.mem())
   937  
   938  	case OCHECKNIL:
   939  		p := s.expr(n.Left)
   940  		s.nilCheck(p)
   941  
   942  	case OSQRT:
   943  		s.expr(n.Left)
   944  
   945  	default:
   946  		s.Fatalf("unhandled stmt %v", n.Op)
   947  	}
   948  }
   949  
   950  // exit processes any code that needs to be generated just before returning.
   951  // It returns a BlockRet block that ends the control flow. Its control value
   952  // will be set to the final memory state.
   953  func (s *state) exit() *ssa.Block {
   954  	if hasdefer {
   955  		s.rtcall(Deferreturn, true, nil)
   956  	}
   957  
   958  	// Run exit code. Typically, this code copies heap-allocated PPARAMOUT
   959  	// variables back to the stack.
   960  	s.stmtList(s.exitCode)
   961  
   962  	// Store SSAable PPARAMOUT variables back to stack locations.
   963  	for _, n := range s.returns {
   964  		addr := s.decladdrs[n]
   965  		val := s.variable(n, n.Type)
   966  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, n, s.mem())
   967  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, n.Type.Size(), addr, val, s.mem())
   968  		// TODO: if val is ever spilled, we'd like to use the
   969  		// PPARAMOUT slot for spilling it. That won't happen
   970  		// currently.
   971  	}
   972  
   973  	// Do actual return.
   974  	m := s.mem()
   975  	b := s.endBlock()
   976  	b.Kind = ssa.BlockRet
   977  	b.SetControl(m)
   978  	return b
   979  }
   980  
   981  type opAndType struct {
   982  	op    Op
   983  	etype EType
   984  }
   985  
   986  var opToSSA = map[opAndType]ssa.Op{
   987  	opAndType{OADD, TINT8}:    ssa.OpAdd8,
   988  	opAndType{OADD, TUINT8}:   ssa.OpAdd8,
   989  	opAndType{OADD, TINT16}:   ssa.OpAdd16,
   990  	opAndType{OADD, TUINT16}:  ssa.OpAdd16,
   991  	opAndType{OADD, TINT32}:   ssa.OpAdd32,
   992  	opAndType{OADD, TUINT32}:  ssa.OpAdd32,
   993  	opAndType{OADD, TPTR32}:   ssa.OpAdd32,
   994  	opAndType{OADD, TINT64}:   ssa.OpAdd64,
   995  	opAndType{OADD, TUINT64}:  ssa.OpAdd64,
   996  	opAndType{OADD, TPTR64}:   ssa.OpAdd64,
   997  	opAndType{OADD, TFLOAT32}: ssa.OpAdd32F,
   998  	opAndType{OADD, TFLOAT64}: ssa.OpAdd64F,
   999  
  1000  	opAndType{OSUB, TINT8}:    ssa.OpSub8,
  1001  	opAndType{OSUB, TUINT8}:   ssa.OpSub8,
  1002  	opAndType{OSUB, TINT16}:   ssa.OpSub16,
  1003  	opAndType{OSUB, TUINT16}:  ssa.OpSub16,
  1004  	opAndType{OSUB, TINT32}:   ssa.OpSub32,
  1005  	opAndType{OSUB, TUINT32}:  ssa.OpSub32,
  1006  	opAndType{OSUB, TINT64}:   ssa.OpSub64,
  1007  	opAndType{OSUB, TUINT64}:  ssa.OpSub64,
  1008  	opAndType{OSUB, TFLOAT32}: ssa.OpSub32F,
  1009  	opAndType{OSUB, TFLOAT64}: ssa.OpSub64F,
  1010  
  1011  	opAndType{ONOT, TBOOL}: ssa.OpNot,
  1012  
  1013  	opAndType{OMINUS, TINT8}:    ssa.OpNeg8,
  1014  	opAndType{OMINUS, TUINT8}:   ssa.OpNeg8,
  1015  	opAndType{OMINUS, TINT16}:   ssa.OpNeg16,
  1016  	opAndType{OMINUS, TUINT16}:  ssa.OpNeg16,
  1017  	opAndType{OMINUS, TINT32}:   ssa.OpNeg32,
  1018  	opAndType{OMINUS, TUINT32}:  ssa.OpNeg32,
  1019  	opAndType{OMINUS, TINT64}:   ssa.OpNeg64,
  1020  	opAndType{OMINUS, TUINT64}:  ssa.OpNeg64,
  1021  	opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F,
  1022  	opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F,
  1023  
  1024  	opAndType{OCOM, TINT8}:   ssa.OpCom8,
  1025  	opAndType{OCOM, TUINT8}:  ssa.OpCom8,
  1026  	opAndType{OCOM, TINT16}:  ssa.OpCom16,
  1027  	opAndType{OCOM, TUINT16}: ssa.OpCom16,
  1028  	opAndType{OCOM, TINT32}:  ssa.OpCom32,
  1029  	opAndType{OCOM, TUINT32}: ssa.OpCom32,
  1030  	opAndType{OCOM, TINT64}:  ssa.OpCom64,
  1031  	opAndType{OCOM, TUINT64}: ssa.OpCom64,
  1032  
  1033  	opAndType{OIMAG, TCOMPLEX64}:  ssa.OpComplexImag,
  1034  	opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag,
  1035  	opAndType{OREAL, TCOMPLEX64}:  ssa.OpComplexReal,
  1036  	opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal,
  1037  
  1038  	opAndType{OMUL, TINT8}:    ssa.OpMul8,
  1039  	opAndType{OMUL, TUINT8}:   ssa.OpMul8,
  1040  	opAndType{OMUL, TINT16}:   ssa.OpMul16,
  1041  	opAndType{OMUL, TUINT16}:  ssa.OpMul16,
  1042  	opAndType{OMUL, TINT32}:   ssa.OpMul32,
  1043  	opAndType{OMUL, TUINT32}:  ssa.OpMul32,
  1044  	opAndType{OMUL, TINT64}:   ssa.OpMul64,
  1045  	opAndType{OMUL, TUINT64}:  ssa.OpMul64,
  1046  	opAndType{OMUL, TFLOAT32}: ssa.OpMul32F,
  1047  	opAndType{OMUL, TFLOAT64}: ssa.OpMul64F,
  1048  
  1049  	opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F,
  1050  	opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F,
  1051  
  1052  	opAndType{OHMUL, TINT8}:   ssa.OpHmul8,
  1053  	opAndType{OHMUL, TUINT8}:  ssa.OpHmul8u,
  1054  	opAndType{OHMUL, TINT16}:  ssa.OpHmul16,
  1055  	opAndType{OHMUL, TUINT16}: ssa.OpHmul16u,
  1056  	opAndType{OHMUL, TINT32}:  ssa.OpHmul32,
  1057  	opAndType{OHMUL, TUINT32}: ssa.OpHmul32u,
  1058  
  1059  	opAndType{ODIV, TINT8}:   ssa.OpDiv8,
  1060  	opAndType{ODIV, TUINT8}:  ssa.OpDiv8u,
  1061  	opAndType{ODIV, TINT16}:  ssa.OpDiv16,
  1062  	opAndType{ODIV, TUINT16}: ssa.OpDiv16u,
  1063  	opAndType{ODIV, TINT32}:  ssa.OpDiv32,
  1064  	opAndType{ODIV, TUINT32}: ssa.OpDiv32u,
  1065  	opAndType{ODIV, TINT64}:  ssa.OpDiv64,
  1066  	opAndType{ODIV, TUINT64}: ssa.OpDiv64u,
  1067  
  1068  	opAndType{OMOD, TINT8}:   ssa.OpMod8,
  1069  	opAndType{OMOD, TUINT8}:  ssa.OpMod8u,
  1070  	opAndType{OMOD, TINT16}:  ssa.OpMod16,
  1071  	opAndType{OMOD, TUINT16}: ssa.OpMod16u,
  1072  	opAndType{OMOD, TINT32}:  ssa.OpMod32,
  1073  	opAndType{OMOD, TUINT32}: ssa.OpMod32u,
  1074  	opAndType{OMOD, TINT64}:  ssa.OpMod64,
  1075  	opAndType{OMOD, TUINT64}: ssa.OpMod64u,
  1076  
  1077  	opAndType{OAND, TINT8}:   ssa.OpAnd8,
  1078  	opAndType{OAND, TUINT8}:  ssa.OpAnd8,
  1079  	opAndType{OAND, TINT16}:  ssa.OpAnd16,
  1080  	opAndType{OAND, TUINT16}: ssa.OpAnd16,
  1081  	opAndType{OAND, TINT32}:  ssa.OpAnd32,
  1082  	opAndType{OAND, TUINT32}: ssa.OpAnd32,
  1083  	opAndType{OAND, TINT64}:  ssa.OpAnd64,
  1084  	opAndType{OAND, TUINT64}: ssa.OpAnd64,
  1085  
  1086  	opAndType{OOR, TINT8}:   ssa.OpOr8,
  1087  	opAndType{OOR, TUINT8}:  ssa.OpOr8,
  1088  	opAndType{OOR, TINT16}:  ssa.OpOr16,
  1089  	opAndType{OOR, TUINT16}: ssa.OpOr16,
  1090  	opAndType{OOR, TINT32}:  ssa.OpOr32,
  1091  	opAndType{OOR, TUINT32}: ssa.OpOr32,
  1092  	opAndType{OOR, TINT64}:  ssa.OpOr64,
  1093  	opAndType{OOR, TUINT64}: ssa.OpOr64,
  1094  
  1095  	opAndType{OXOR, TINT8}:   ssa.OpXor8,
  1096  	opAndType{OXOR, TUINT8}:  ssa.OpXor8,
  1097  	opAndType{OXOR, TINT16}:  ssa.OpXor16,
  1098  	opAndType{OXOR, TUINT16}: ssa.OpXor16,
  1099  	opAndType{OXOR, TINT32}:  ssa.OpXor32,
  1100  	opAndType{OXOR, TUINT32}: ssa.OpXor32,
  1101  	opAndType{OXOR, TINT64}:  ssa.OpXor64,
  1102  	opAndType{OXOR, TUINT64}: ssa.OpXor64,
  1103  
  1104  	opAndType{OEQ, TBOOL}:      ssa.OpEqB,
  1105  	opAndType{OEQ, TINT8}:      ssa.OpEq8,
  1106  	opAndType{OEQ, TUINT8}:     ssa.OpEq8,
  1107  	opAndType{OEQ, TINT16}:     ssa.OpEq16,
  1108  	opAndType{OEQ, TUINT16}:    ssa.OpEq16,
  1109  	opAndType{OEQ, TINT32}:     ssa.OpEq32,
  1110  	opAndType{OEQ, TUINT32}:    ssa.OpEq32,
  1111  	opAndType{OEQ, TINT64}:     ssa.OpEq64,
  1112  	opAndType{OEQ, TUINT64}:    ssa.OpEq64,
  1113  	opAndType{OEQ, TINTER}:     ssa.OpEqInter,
  1114  	opAndType{OEQ, TSLICE}:     ssa.OpEqSlice,
  1115  	opAndType{OEQ, TFUNC}:      ssa.OpEqPtr,
  1116  	opAndType{OEQ, TMAP}:       ssa.OpEqPtr,
  1117  	opAndType{OEQ, TCHAN}:      ssa.OpEqPtr,
  1118  	opAndType{OEQ, TPTR32}:     ssa.OpEqPtr,
  1119  	opAndType{OEQ, TPTR64}:     ssa.OpEqPtr,
  1120  	opAndType{OEQ, TUINTPTR}:   ssa.OpEqPtr,
  1121  	opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr,
  1122  	opAndType{OEQ, TFLOAT64}:   ssa.OpEq64F,
  1123  	opAndType{OEQ, TFLOAT32}:   ssa.OpEq32F,
  1124  
  1125  	opAndType{ONE, TBOOL}:      ssa.OpNeqB,
  1126  	opAndType{ONE, TINT8}:      ssa.OpNeq8,
  1127  	opAndType{ONE, TUINT8}:     ssa.OpNeq8,
  1128  	opAndType{ONE, TINT16}:     ssa.OpNeq16,
  1129  	opAndType{ONE, TUINT16}:    ssa.OpNeq16,
  1130  	opAndType{ONE, TINT32}:     ssa.OpNeq32,
  1131  	opAndType{ONE, TUINT32}:    ssa.OpNeq32,
  1132  	opAndType{ONE, TINT64}:     ssa.OpNeq64,
  1133  	opAndType{ONE, TUINT64}:    ssa.OpNeq64,
  1134  	opAndType{ONE, TINTER}:     ssa.OpNeqInter,
  1135  	opAndType{ONE, TSLICE}:     ssa.OpNeqSlice,
  1136  	opAndType{ONE, TFUNC}:      ssa.OpNeqPtr,
  1137  	opAndType{ONE, TMAP}:       ssa.OpNeqPtr,
  1138  	opAndType{ONE, TCHAN}:      ssa.OpNeqPtr,
  1139  	opAndType{ONE, TPTR32}:     ssa.OpNeqPtr,
  1140  	opAndType{ONE, TPTR64}:     ssa.OpNeqPtr,
  1141  	opAndType{ONE, TUINTPTR}:   ssa.OpNeqPtr,
  1142  	opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr,
  1143  	opAndType{ONE, TFLOAT64}:   ssa.OpNeq64F,
  1144  	opAndType{ONE, TFLOAT32}:   ssa.OpNeq32F,
  1145  
  1146  	opAndType{OLT, TINT8}:    ssa.OpLess8,
  1147  	opAndType{OLT, TUINT8}:   ssa.OpLess8U,
  1148  	opAndType{OLT, TINT16}:   ssa.OpLess16,
  1149  	opAndType{OLT, TUINT16}:  ssa.OpLess16U,
  1150  	opAndType{OLT, TINT32}:   ssa.OpLess32,
  1151  	opAndType{OLT, TUINT32}:  ssa.OpLess32U,
  1152  	opAndType{OLT, TINT64}:   ssa.OpLess64,
  1153  	opAndType{OLT, TUINT64}:  ssa.OpLess64U,
  1154  	opAndType{OLT, TFLOAT64}: ssa.OpLess64F,
  1155  	opAndType{OLT, TFLOAT32}: ssa.OpLess32F,
  1156  
  1157  	opAndType{OGT, TINT8}:    ssa.OpGreater8,
  1158  	opAndType{OGT, TUINT8}:   ssa.OpGreater8U,
  1159  	opAndType{OGT, TINT16}:   ssa.OpGreater16,
  1160  	opAndType{OGT, TUINT16}:  ssa.OpGreater16U,
  1161  	opAndType{OGT, TINT32}:   ssa.OpGreater32,
  1162  	opAndType{OGT, TUINT32}:  ssa.OpGreater32U,
  1163  	opAndType{OGT, TINT64}:   ssa.OpGreater64,
  1164  	opAndType{OGT, TUINT64}:  ssa.OpGreater64U,
  1165  	opAndType{OGT, TFLOAT64}: ssa.OpGreater64F,
  1166  	opAndType{OGT, TFLOAT32}: ssa.OpGreater32F,
  1167  
  1168  	opAndType{OLE, TINT8}:    ssa.OpLeq8,
  1169  	opAndType{OLE, TUINT8}:   ssa.OpLeq8U,
  1170  	opAndType{OLE, TINT16}:   ssa.OpLeq16,
  1171  	opAndType{OLE, TUINT16}:  ssa.OpLeq16U,
  1172  	opAndType{OLE, TINT32}:   ssa.OpLeq32,
  1173  	opAndType{OLE, TUINT32}:  ssa.OpLeq32U,
  1174  	opAndType{OLE, TINT64}:   ssa.OpLeq64,
  1175  	opAndType{OLE, TUINT64}:  ssa.OpLeq64U,
  1176  	opAndType{OLE, TFLOAT64}: ssa.OpLeq64F,
  1177  	opAndType{OLE, TFLOAT32}: ssa.OpLeq32F,
  1178  
  1179  	opAndType{OGE, TINT8}:    ssa.OpGeq8,
  1180  	opAndType{OGE, TUINT8}:   ssa.OpGeq8U,
  1181  	opAndType{OGE, TINT16}:   ssa.OpGeq16,
  1182  	opAndType{OGE, TUINT16}:  ssa.OpGeq16U,
  1183  	opAndType{OGE, TINT32}:   ssa.OpGeq32,
  1184  	opAndType{OGE, TUINT32}:  ssa.OpGeq32U,
  1185  	opAndType{OGE, TINT64}:   ssa.OpGeq64,
  1186  	opAndType{OGE, TUINT64}:  ssa.OpGeq64U,
  1187  	opAndType{OGE, TFLOAT64}: ssa.OpGeq64F,
  1188  	opAndType{OGE, TFLOAT32}: ssa.OpGeq32F,
  1189  
  1190  	opAndType{OLROT, TUINT8}:  ssa.OpLrot8,
  1191  	opAndType{OLROT, TUINT16}: ssa.OpLrot16,
  1192  	opAndType{OLROT, TUINT32}: ssa.OpLrot32,
  1193  	opAndType{OLROT, TUINT64}: ssa.OpLrot64,
  1194  
  1195  	opAndType{OSQRT, TFLOAT64}: ssa.OpSqrt,
  1196  }
  1197  
  1198  func (s *state) concreteEtype(t *Type) EType {
  1199  	e := t.Etype
  1200  	switch e {
  1201  	default:
  1202  		return e
  1203  	case TINT:
  1204  		if s.config.IntSize == 8 {
  1205  			return TINT64
  1206  		}
  1207  		return TINT32
  1208  	case TUINT:
  1209  		if s.config.IntSize == 8 {
  1210  			return TUINT64
  1211  		}
  1212  		return TUINT32
  1213  	case TUINTPTR:
  1214  		if s.config.PtrSize == 8 {
  1215  			return TUINT64
  1216  		}
  1217  		return TUINT32
  1218  	}
  1219  }
  1220  
  1221  func (s *state) ssaOp(op Op, t *Type) ssa.Op {
  1222  	etype := s.concreteEtype(t)
  1223  	x, ok := opToSSA[opAndType{op, etype}]
  1224  	if !ok {
  1225  		s.Fatalf("unhandled binary op %v %s", op, etype)
  1226  	}
  1227  	return x
  1228  }
  1229  
  1230  func floatForComplex(t *Type) *Type {
  1231  	if t.Size() == 8 {
  1232  		return Types[TFLOAT32]
  1233  	} else {
  1234  		return Types[TFLOAT64]
  1235  	}
  1236  }
  1237  
  1238  type opAndTwoTypes struct {
  1239  	op     Op
  1240  	etype1 EType
  1241  	etype2 EType
  1242  }
  1243  
  1244  type twoTypes struct {
  1245  	etype1 EType
  1246  	etype2 EType
  1247  }
  1248  
  1249  type twoOpsAndType struct {
  1250  	op1              ssa.Op
  1251  	op2              ssa.Op
  1252  	intermediateType EType
  1253  }
  1254  
  1255  var fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1256  
  1257  	twoTypes{TINT8, TFLOAT32}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32},
  1258  	twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32},
  1259  	twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32},
  1260  	twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64},
  1261  
  1262  	twoTypes{TINT8, TFLOAT64}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32},
  1263  	twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32},
  1264  	twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32},
  1265  	twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64},
  1266  
  1267  	twoTypes{TFLOAT32, TINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1268  	twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1269  	twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32},
  1270  	twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64},
  1271  
  1272  	twoTypes{TFLOAT64, TINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1273  	twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1274  	twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32},
  1275  	twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64},
  1276  	// unsigned
  1277  	twoTypes{TUINT8, TFLOAT32}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32},
  1278  	twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32},
  1279  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned
  1280  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto32F, branchy code expansion instead
  1281  
  1282  	twoTypes{TUINT8, TFLOAT64}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32},
  1283  	twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32},
  1284  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned
  1285  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto64F, branchy code expansion instead
  1286  
  1287  	twoTypes{TFLOAT32, TUINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1288  	twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1289  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1290  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt32Fto64U, branchy code expansion instead
  1291  
  1292  	twoTypes{TFLOAT64, TUINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1293  	twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1294  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1295  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt64Fto64U, branchy code expansion instead
  1296  
  1297  	// float
  1298  	twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32},
  1299  	twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT64},
  1300  	twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT32},
  1301  	twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64},
  1302  }
  1303  
  1304  // this map is used only for 32-bit arch, and only includes the difference
  1305  // on 32-bit arch, don't use int64<->float conversion for uint32
  1306  var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{
  1307  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32},
  1308  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32},
  1309  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32},
  1310  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32},
  1311  }
  1312  
  1313  // uint64<->float conversions, only on machines that have intructions for that
  1314  var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1315  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64},
  1316  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64},
  1317  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64},
  1318  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64},
  1319  }
  1320  
  1321  var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
  1322  	opAndTwoTypes{OLSH, TINT8, TUINT8}:   ssa.OpLsh8x8,
  1323  	opAndTwoTypes{OLSH, TUINT8, TUINT8}:  ssa.OpLsh8x8,
  1324  	opAndTwoTypes{OLSH, TINT8, TUINT16}:  ssa.OpLsh8x16,
  1325  	opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16,
  1326  	opAndTwoTypes{OLSH, TINT8, TUINT32}:  ssa.OpLsh8x32,
  1327  	opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32,
  1328  	opAndTwoTypes{OLSH, TINT8, TUINT64}:  ssa.OpLsh8x64,
  1329  	opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64,
  1330  
  1331  	opAndTwoTypes{OLSH, TINT16, TUINT8}:   ssa.OpLsh16x8,
  1332  	opAndTwoTypes{OLSH, TUINT16, TUINT8}:  ssa.OpLsh16x8,
  1333  	opAndTwoTypes{OLSH, TINT16, TUINT16}:  ssa.OpLsh16x16,
  1334  	opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16,
  1335  	opAndTwoTypes{OLSH, TINT16, TUINT32}:  ssa.OpLsh16x32,
  1336  	opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32,
  1337  	opAndTwoTypes{OLSH, TINT16, TUINT64}:  ssa.OpLsh16x64,
  1338  	opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64,
  1339  
  1340  	opAndTwoTypes{OLSH, TINT32, TUINT8}:   ssa.OpLsh32x8,
  1341  	opAndTwoTypes{OLSH, TUINT32, TUINT8}:  ssa.OpLsh32x8,
  1342  	opAndTwoTypes{OLSH, TINT32, TUINT16}:  ssa.OpLsh32x16,
  1343  	opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16,
  1344  	opAndTwoTypes{OLSH, TINT32, TUINT32}:  ssa.OpLsh32x32,
  1345  	opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32,
  1346  	opAndTwoTypes{OLSH, TINT32, TUINT64}:  ssa.OpLsh32x64,
  1347  	opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64,
  1348  
  1349  	opAndTwoTypes{OLSH, TINT64, TUINT8}:   ssa.OpLsh64x8,
  1350  	opAndTwoTypes{OLSH, TUINT64, TUINT8}:  ssa.OpLsh64x8,
  1351  	opAndTwoTypes{OLSH, TINT64, TUINT16}:  ssa.OpLsh64x16,
  1352  	opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16,
  1353  	opAndTwoTypes{OLSH, TINT64, TUINT32}:  ssa.OpLsh64x32,
  1354  	opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32,
  1355  	opAndTwoTypes{OLSH, TINT64, TUINT64}:  ssa.OpLsh64x64,
  1356  	opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64,
  1357  
  1358  	opAndTwoTypes{ORSH, TINT8, TUINT8}:   ssa.OpRsh8x8,
  1359  	opAndTwoTypes{ORSH, TUINT8, TUINT8}:  ssa.OpRsh8Ux8,
  1360  	opAndTwoTypes{ORSH, TINT8, TUINT16}:  ssa.OpRsh8x16,
  1361  	opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16,
  1362  	opAndTwoTypes{ORSH, TINT8, TUINT32}:  ssa.OpRsh8x32,
  1363  	opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32,
  1364  	opAndTwoTypes{ORSH, TINT8, TUINT64}:  ssa.OpRsh8x64,
  1365  	opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64,
  1366  
  1367  	opAndTwoTypes{ORSH, TINT16, TUINT8}:   ssa.OpRsh16x8,
  1368  	opAndTwoTypes{ORSH, TUINT16, TUINT8}:  ssa.OpRsh16Ux8,
  1369  	opAndTwoTypes{ORSH, TINT16, TUINT16}:  ssa.OpRsh16x16,
  1370  	opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16,
  1371  	opAndTwoTypes{ORSH, TINT16, TUINT32}:  ssa.OpRsh16x32,
  1372  	opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32,
  1373  	opAndTwoTypes{ORSH, TINT16, TUINT64}:  ssa.OpRsh16x64,
  1374  	opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64,
  1375  
  1376  	opAndTwoTypes{ORSH, TINT32, TUINT8}:   ssa.OpRsh32x8,
  1377  	opAndTwoTypes{ORSH, TUINT32, TUINT8}:  ssa.OpRsh32Ux8,
  1378  	opAndTwoTypes{ORSH, TINT32, TUINT16}:  ssa.OpRsh32x16,
  1379  	opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16,
  1380  	opAndTwoTypes{ORSH, TINT32, TUINT32}:  ssa.OpRsh32x32,
  1381  	opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32,
  1382  	opAndTwoTypes{ORSH, TINT32, TUINT64}:  ssa.OpRsh32x64,
  1383  	opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64,
  1384  
  1385  	opAndTwoTypes{ORSH, TINT64, TUINT8}:   ssa.OpRsh64x8,
  1386  	opAndTwoTypes{ORSH, TUINT64, TUINT8}:  ssa.OpRsh64Ux8,
  1387  	opAndTwoTypes{ORSH, TINT64, TUINT16}:  ssa.OpRsh64x16,
  1388  	opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16,
  1389  	opAndTwoTypes{ORSH, TINT64, TUINT32}:  ssa.OpRsh64x32,
  1390  	opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32,
  1391  	opAndTwoTypes{ORSH, TINT64, TUINT64}:  ssa.OpRsh64x64,
  1392  	opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64,
  1393  }
  1394  
  1395  func (s *state) ssaShiftOp(op Op, t *Type, u *Type) ssa.Op {
  1396  	etype1 := s.concreteEtype(t)
  1397  	etype2 := s.concreteEtype(u)
  1398  	x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
  1399  	if !ok {
  1400  		s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2)
  1401  	}
  1402  	return x
  1403  }
  1404  
  1405  func (s *state) ssaRotateOp(op Op, t *Type) ssa.Op {
  1406  	etype1 := s.concreteEtype(t)
  1407  	x, ok := opToSSA[opAndType{op, etype1}]
  1408  	if !ok {
  1409  		s.Fatalf("unhandled rotate op %v etype=%s", op, etype1)
  1410  	}
  1411  	return x
  1412  }
  1413  
  1414  // expr converts the expression n to ssa, adds it to s and returns the ssa result.
  1415  func (s *state) expr(n *Node) *ssa.Value {
  1416  	if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) {
  1417  		// ONAMEs and named OLITERALs have the line number
  1418  		// of the decl, not the use. See issue 14742.
  1419  		s.pushLine(n.Lineno)
  1420  		defer s.popLine()
  1421  	}
  1422  
  1423  	s.stmtList(n.Ninit)
  1424  	switch n.Op {
  1425  	case OARRAYBYTESTRTMP:
  1426  		slice := s.expr(n.Left)
  1427  		ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), slice)
  1428  		len := s.newValue1(ssa.OpSliceLen, Types[TINT], slice)
  1429  		return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
  1430  	case OSTRARRAYBYTETMP:
  1431  		str := s.expr(n.Left)
  1432  		ptr := s.newValue1(ssa.OpStringPtr, ptrto(Types[TUINT8]), str)
  1433  		len := s.newValue1(ssa.OpStringLen, Types[TINT], str)
  1434  		return s.newValue3(ssa.OpSliceMake, n.Type, ptr, len, len)
  1435  	case OCFUNC:
  1436  		aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: n.Left.Sym})
  1437  		return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb)
  1438  	case ONAME:
  1439  		if n.Class == PFUNC {
  1440  			// "value" of a function is the address of the function's closure
  1441  			sym := funcsym(n.Sym)
  1442  			aux := &ssa.ExternSymbol{Typ: n.Type, Sym: sym}
  1443  			return s.entryNewValue1A(ssa.OpAddr, ptrto(n.Type), aux, s.sb)
  1444  		}
  1445  		if s.canSSA(n) {
  1446  			return s.variable(n, n.Type)
  1447  		}
  1448  		addr, _ := s.addr(n, false)
  1449  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1450  	case OCLOSUREVAR:
  1451  		addr, _ := s.addr(n, false)
  1452  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1453  	case OLITERAL:
  1454  		switch u := n.Val().U.(type) {
  1455  		case *Mpint:
  1456  			i := u.Int64()
  1457  			switch n.Type.Size() {
  1458  			case 1:
  1459  				return s.constInt8(n.Type, int8(i))
  1460  			case 2:
  1461  				return s.constInt16(n.Type, int16(i))
  1462  			case 4:
  1463  				return s.constInt32(n.Type, int32(i))
  1464  			case 8:
  1465  				return s.constInt64(n.Type, i)
  1466  			default:
  1467  				s.Fatalf("bad integer size %d", n.Type.Size())
  1468  				return nil
  1469  			}
  1470  		case string:
  1471  			if u == "" {
  1472  				return s.constEmptyString(n.Type)
  1473  			}
  1474  			return s.entryNewValue0A(ssa.OpConstString, n.Type, u)
  1475  		case bool:
  1476  			return s.constBool(u)
  1477  		case *NilVal:
  1478  			t := n.Type
  1479  			switch {
  1480  			case t.IsSlice():
  1481  				return s.constSlice(t)
  1482  			case t.IsInterface():
  1483  				return s.constInterface(t)
  1484  			default:
  1485  				return s.constNil(t)
  1486  			}
  1487  		case *Mpflt:
  1488  			switch n.Type.Size() {
  1489  			case 4:
  1490  				return s.constFloat32(n.Type, u.Float32())
  1491  			case 8:
  1492  				return s.constFloat64(n.Type, u.Float64())
  1493  			default:
  1494  				s.Fatalf("bad float size %d", n.Type.Size())
  1495  				return nil
  1496  			}
  1497  		case *Mpcplx:
  1498  			r := &u.Real
  1499  			i := &u.Imag
  1500  			switch n.Type.Size() {
  1501  			case 8:
  1502  				pt := Types[TFLOAT32]
  1503  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1504  					s.constFloat32(pt, r.Float32()),
  1505  					s.constFloat32(pt, i.Float32()))
  1506  			case 16:
  1507  				pt := Types[TFLOAT64]
  1508  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1509  					s.constFloat64(pt, r.Float64()),
  1510  					s.constFloat64(pt, i.Float64()))
  1511  			default:
  1512  				s.Fatalf("bad float size %d", n.Type.Size())
  1513  				return nil
  1514  			}
  1515  
  1516  		default:
  1517  			s.Fatalf("unhandled OLITERAL %v", n.Val().Ctype())
  1518  			return nil
  1519  		}
  1520  	case OCONVNOP:
  1521  		to := n.Type
  1522  		from := n.Left.Type
  1523  
  1524  		// Assume everything will work out, so set up our return value.
  1525  		// Anything interesting that happens from here is a fatal.
  1526  		x := s.expr(n.Left)
  1527  
  1528  		// Special case for not confusing GC and liveness.
  1529  		// We don't want pointers accidentally classified
  1530  		// as not-pointers or vice-versa because of copy
  1531  		// elision.
  1532  		if to.IsPtrShaped() != from.IsPtrShaped() {
  1533  			return s.newValue2(ssa.OpConvert, to, x, s.mem())
  1534  		}
  1535  
  1536  		v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type
  1537  
  1538  		// CONVNOP closure
  1539  		if to.Etype == TFUNC && from.IsPtrShaped() {
  1540  			return v
  1541  		}
  1542  
  1543  		// named <--> unnamed type or typed <--> untyped const
  1544  		if from.Etype == to.Etype {
  1545  			return v
  1546  		}
  1547  
  1548  		// unsafe.Pointer <--> *T
  1549  		if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() {
  1550  			return v
  1551  		}
  1552  
  1553  		dowidth(from)
  1554  		dowidth(to)
  1555  		if from.Width != to.Width {
  1556  			s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width)
  1557  			return nil
  1558  		}
  1559  		if etypesign(from.Etype) != etypesign(to.Etype) {
  1560  			s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype)
  1561  			return nil
  1562  		}
  1563  
  1564  		if instrumenting {
  1565  			// These appear to be fine, but they fail the
  1566  			// integer constraint below, so okay them here.
  1567  			// Sample non-integer conversion: map[string]string -> *uint8
  1568  			return v
  1569  		}
  1570  
  1571  		if etypesign(from.Etype) == 0 {
  1572  			s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
  1573  			return nil
  1574  		}
  1575  
  1576  		// integer, same width, same sign
  1577  		return v
  1578  
  1579  	case OCONV:
  1580  		x := s.expr(n.Left)
  1581  		ft := n.Left.Type // from type
  1582  		tt := n.Type      // to type
  1583  		if ft.IsInteger() && tt.IsInteger() {
  1584  			var op ssa.Op
  1585  			if tt.Size() == ft.Size() {
  1586  				op = ssa.OpCopy
  1587  			} else if tt.Size() < ft.Size() {
  1588  				// truncation
  1589  				switch 10*ft.Size() + tt.Size() {
  1590  				case 21:
  1591  					op = ssa.OpTrunc16to8
  1592  				case 41:
  1593  					op = ssa.OpTrunc32to8
  1594  				case 42:
  1595  					op = ssa.OpTrunc32to16
  1596  				case 81:
  1597  					op = ssa.OpTrunc64to8
  1598  				case 82:
  1599  					op = ssa.OpTrunc64to16
  1600  				case 84:
  1601  					op = ssa.OpTrunc64to32
  1602  				default:
  1603  					s.Fatalf("weird integer truncation %v -> %v", ft, tt)
  1604  				}
  1605  			} else if ft.IsSigned() {
  1606  				// sign extension
  1607  				switch 10*ft.Size() + tt.Size() {
  1608  				case 12:
  1609  					op = ssa.OpSignExt8to16
  1610  				case 14:
  1611  					op = ssa.OpSignExt8to32
  1612  				case 18:
  1613  					op = ssa.OpSignExt8to64
  1614  				case 24:
  1615  					op = ssa.OpSignExt16to32
  1616  				case 28:
  1617  					op = ssa.OpSignExt16to64
  1618  				case 48:
  1619  					op = ssa.OpSignExt32to64
  1620  				default:
  1621  					s.Fatalf("bad integer sign extension %v -> %v", ft, tt)
  1622  				}
  1623  			} else {
  1624  				// zero extension
  1625  				switch 10*ft.Size() + tt.Size() {
  1626  				case 12:
  1627  					op = ssa.OpZeroExt8to16
  1628  				case 14:
  1629  					op = ssa.OpZeroExt8to32
  1630  				case 18:
  1631  					op = ssa.OpZeroExt8to64
  1632  				case 24:
  1633  					op = ssa.OpZeroExt16to32
  1634  				case 28:
  1635  					op = ssa.OpZeroExt16to64
  1636  				case 48:
  1637  					op = ssa.OpZeroExt32to64
  1638  				default:
  1639  					s.Fatalf("weird integer sign extension %v -> %v", ft, tt)
  1640  				}
  1641  			}
  1642  			return s.newValue1(op, n.Type, x)
  1643  		}
  1644  
  1645  		if ft.IsFloat() || tt.IsFloat() {
  1646  			conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
  1647  			if s.config.IntSize == 4 && Thearch.LinkArch.Name != "amd64p32" {
  1648  				if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1649  					conv = conv1
  1650  				}
  1651  			}
  1652  			if Thearch.LinkArch.Name == "arm64" {
  1653  				if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1654  					conv = conv1
  1655  				}
  1656  			}
  1657  			if !ok {
  1658  				s.Fatalf("weird float conversion %v -> %v", ft, tt)
  1659  			}
  1660  			op1, op2, it := conv.op1, conv.op2, conv.intermediateType
  1661  
  1662  			if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
  1663  				// normal case, not tripping over unsigned 64
  1664  				if op1 == ssa.OpCopy {
  1665  					if op2 == ssa.OpCopy {
  1666  						return x
  1667  					}
  1668  					return s.newValue1(op2, n.Type, x)
  1669  				}
  1670  				if op2 == ssa.OpCopy {
  1671  					return s.newValue1(op1, n.Type, x)
  1672  				}
  1673  				return s.newValue1(op2, n.Type, s.newValue1(op1, Types[it], x))
  1674  			}
  1675  			// Tricky 64-bit unsigned cases.
  1676  			if ft.IsInteger() {
  1677  				// therefore tt is float32 or float64, and ft is also unsigned
  1678  				if tt.Size() == 4 {
  1679  					return s.uint64Tofloat32(n, x, ft, tt)
  1680  				}
  1681  				if tt.Size() == 8 {
  1682  					return s.uint64Tofloat64(n, x, ft, tt)
  1683  				}
  1684  				s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt)
  1685  			}
  1686  			// therefore ft is float32 or float64, and tt is unsigned integer
  1687  			if ft.Size() == 4 {
  1688  				return s.float32ToUint64(n, x, ft, tt)
  1689  			}
  1690  			if ft.Size() == 8 {
  1691  				return s.float64ToUint64(n, x, ft, tt)
  1692  			}
  1693  			s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt)
  1694  			return nil
  1695  		}
  1696  
  1697  		if ft.IsComplex() && tt.IsComplex() {
  1698  			var op ssa.Op
  1699  			if ft.Size() == tt.Size() {
  1700  				op = ssa.OpCopy
  1701  			} else if ft.Size() == 8 && tt.Size() == 16 {
  1702  				op = ssa.OpCvt32Fto64F
  1703  			} else if ft.Size() == 16 && tt.Size() == 8 {
  1704  				op = ssa.OpCvt64Fto32F
  1705  			} else {
  1706  				s.Fatalf("weird complex conversion %v -> %v", ft, tt)
  1707  			}
  1708  			ftp := floatForComplex(ft)
  1709  			ttp := floatForComplex(tt)
  1710  			return s.newValue2(ssa.OpComplexMake, tt,
  1711  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)),
  1712  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x)))
  1713  		}
  1714  
  1715  		s.Fatalf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype)
  1716  		return nil
  1717  
  1718  	case ODOTTYPE:
  1719  		res, _ := s.dottype(n, false)
  1720  		return res
  1721  
  1722  	// binary ops
  1723  	case OLT, OEQ, ONE, OLE, OGE, OGT:
  1724  		a := s.expr(n.Left)
  1725  		b := s.expr(n.Right)
  1726  		if n.Left.Type.IsComplex() {
  1727  			pt := floatForComplex(n.Left.Type)
  1728  			op := s.ssaOp(OEQ, pt)
  1729  			r := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
  1730  			i := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
  1731  			c := s.newValue2(ssa.OpAndB, Types[TBOOL], r, i)
  1732  			switch n.Op {
  1733  			case OEQ:
  1734  				return c
  1735  			case ONE:
  1736  				return s.newValue1(ssa.OpNot, Types[TBOOL], c)
  1737  			default:
  1738  				s.Fatalf("ordered complex compare %v", n.Op)
  1739  			}
  1740  		}
  1741  		return s.newValue2(s.ssaOp(n.Op, n.Left.Type), Types[TBOOL], a, b)
  1742  	case OMUL:
  1743  		a := s.expr(n.Left)
  1744  		b := s.expr(n.Right)
  1745  		if n.Type.IsComplex() {
  1746  			mulop := ssa.OpMul64F
  1747  			addop := ssa.OpAdd64F
  1748  			subop := ssa.OpSub64F
  1749  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1750  			wt := Types[TFLOAT64]         // Compute in Float64 to minimize cancelation error
  1751  
  1752  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1753  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1754  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1755  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1756  
  1757  			if pt != wt { // Widen for calculation
  1758  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1759  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1760  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1761  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1762  			}
  1763  
  1764  			xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1765  			ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal))
  1766  
  1767  			if pt != wt { // Narrow to store back
  1768  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1769  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1770  			}
  1771  
  1772  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1773  		}
  1774  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1775  
  1776  	case ODIV:
  1777  		a := s.expr(n.Left)
  1778  		b := s.expr(n.Right)
  1779  		if n.Type.IsComplex() {
  1780  			// TODO this is not executed because the front-end substitutes a runtime call.
  1781  			// That probably ought to change; with modest optimization the widen/narrow
  1782  			// conversions could all be elided in larger expression trees.
  1783  			mulop := ssa.OpMul64F
  1784  			addop := ssa.OpAdd64F
  1785  			subop := ssa.OpSub64F
  1786  			divop := ssa.OpDiv64F
  1787  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1788  			wt := Types[TFLOAT64]         // Compute in Float64 to minimize cancelation error
  1789  
  1790  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1791  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1792  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1793  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1794  
  1795  			if pt != wt { // Widen for calculation
  1796  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1797  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1798  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1799  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1800  			}
  1801  
  1802  			denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag))
  1803  			xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1804  			ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag))
  1805  
  1806  			// TODO not sure if this is best done in wide precision or narrow
  1807  			// Double-rounding might be an issue.
  1808  			// Note that the pre-SSA implementation does the entire calculation
  1809  			// in wide format, so wide is compatible.
  1810  			xreal = s.newValue2(divop, wt, xreal, denom)
  1811  			ximag = s.newValue2(divop, wt, ximag, denom)
  1812  
  1813  			if pt != wt { // Narrow to store back
  1814  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1815  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1816  			}
  1817  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1818  		}
  1819  		if n.Type.IsFloat() {
  1820  			return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1821  		}
  1822  		return s.intDivide(n, a, b)
  1823  	case OMOD:
  1824  		a := s.expr(n.Left)
  1825  		b := s.expr(n.Right)
  1826  		return s.intDivide(n, a, b)
  1827  	case OADD, OSUB:
  1828  		a := s.expr(n.Left)
  1829  		b := s.expr(n.Right)
  1830  		if n.Type.IsComplex() {
  1831  			pt := floatForComplex(n.Type)
  1832  			op := s.ssaOp(n.Op, pt)
  1833  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1834  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
  1835  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
  1836  		}
  1837  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1838  	case OAND, OOR, OHMUL, OXOR:
  1839  		a := s.expr(n.Left)
  1840  		b := s.expr(n.Right)
  1841  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1842  	case OLSH, ORSH:
  1843  		a := s.expr(n.Left)
  1844  		b := s.expr(n.Right)
  1845  		return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b)
  1846  	case OLROT:
  1847  		a := s.expr(n.Left)
  1848  		i := n.Right.Int64()
  1849  		if i <= 0 || i >= n.Type.Size()*8 {
  1850  			s.Fatalf("Wrong rotate distance for LROT, expected 1 through %d, saw %d", n.Type.Size()*8-1, i)
  1851  		}
  1852  		return s.newValue1I(s.ssaRotateOp(n.Op, n.Type), a.Type, i, a)
  1853  	case OANDAND, OOROR:
  1854  		// To implement OANDAND (and OOROR), we introduce a
  1855  		// new temporary variable to hold the result. The
  1856  		// variable is associated with the OANDAND node in the
  1857  		// s.vars table (normally variables are only
  1858  		// associated with ONAME nodes). We convert
  1859  		//     A && B
  1860  		// to
  1861  		//     var = A
  1862  		//     if var {
  1863  		//         var = B
  1864  		//     }
  1865  		// Using var in the subsequent block introduces the
  1866  		// necessary phi variable.
  1867  		el := s.expr(n.Left)
  1868  		s.vars[n] = el
  1869  
  1870  		b := s.endBlock()
  1871  		b.Kind = ssa.BlockIf
  1872  		b.SetControl(el)
  1873  		// In theory, we should set b.Likely here based on context.
  1874  		// However, gc only gives us likeliness hints
  1875  		// in a single place, for plain OIF statements,
  1876  		// and passing around context is finnicky, so don't bother for now.
  1877  
  1878  		bRight := s.f.NewBlock(ssa.BlockPlain)
  1879  		bResult := s.f.NewBlock(ssa.BlockPlain)
  1880  		if n.Op == OANDAND {
  1881  			b.AddEdgeTo(bRight)
  1882  			b.AddEdgeTo(bResult)
  1883  		} else if n.Op == OOROR {
  1884  			b.AddEdgeTo(bResult)
  1885  			b.AddEdgeTo(bRight)
  1886  		}
  1887  
  1888  		s.startBlock(bRight)
  1889  		er := s.expr(n.Right)
  1890  		s.vars[n] = er
  1891  
  1892  		b = s.endBlock()
  1893  		b.AddEdgeTo(bResult)
  1894  
  1895  		s.startBlock(bResult)
  1896  		return s.variable(n, Types[TBOOL])
  1897  	case OCOMPLEX:
  1898  		r := s.expr(n.Left)
  1899  		i := s.expr(n.Right)
  1900  		return s.newValue2(ssa.OpComplexMake, n.Type, r, i)
  1901  
  1902  	// unary ops
  1903  	case OMINUS:
  1904  		a := s.expr(n.Left)
  1905  		if n.Type.IsComplex() {
  1906  			tp := floatForComplex(n.Type)
  1907  			negop := s.ssaOp(n.Op, tp)
  1908  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1909  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
  1910  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
  1911  		}
  1912  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1913  	case ONOT, OCOM, OSQRT:
  1914  		a := s.expr(n.Left)
  1915  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1916  	case OIMAG, OREAL:
  1917  		a := s.expr(n.Left)
  1918  		return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a)
  1919  	case OPLUS:
  1920  		return s.expr(n.Left)
  1921  
  1922  	case OADDR:
  1923  		a, _ := s.addr(n.Left, n.Bounded)
  1924  		// Note we know the volatile result is false because you can't write &f() in Go.
  1925  		return a
  1926  
  1927  	case OINDREGSP:
  1928  		addr := s.entryNewValue1I(ssa.OpOffPtr, ptrto(n.Type), n.Xoffset, s.sp)
  1929  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1930  
  1931  	case OIND:
  1932  		p := s.exprPtr(n.Left, false, n.Lineno)
  1933  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1934  
  1935  	case ODOT:
  1936  		t := n.Left.Type
  1937  		if canSSAType(t) {
  1938  			v := s.expr(n.Left)
  1939  			return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v)
  1940  		}
  1941  		p, _ := s.addr(n, false)
  1942  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1943  
  1944  	case ODOTPTR:
  1945  		p := s.exprPtr(n.Left, false, n.Lineno)
  1946  		p = s.newValue1I(ssa.OpOffPtr, p.Type, n.Xoffset, p)
  1947  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1948  
  1949  	case OINDEX:
  1950  		switch {
  1951  		case n.Left.Type.IsString():
  1952  			if n.Bounded && Isconst(n.Left, CTSTR) && Isconst(n.Right, CTINT) {
  1953  				// Replace "abc"[1] with 'b'.
  1954  				// Delayed until now because "abc"[1] is not an ideal constant.
  1955  				// See test/fixedbugs/issue11370.go.
  1956  				return s.newValue0I(ssa.OpConst8, Types[TUINT8], int64(int8(n.Left.Val().U.(string)[n.Right.Int64()])))
  1957  			}
  1958  			a := s.expr(n.Left)
  1959  			i := s.expr(n.Right)
  1960  			i = s.extendIndex(i, panicindex)
  1961  			if !n.Bounded {
  1962  				len := s.newValue1(ssa.OpStringLen, Types[TINT], a)
  1963  				s.boundsCheck(i, len)
  1964  			}
  1965  			ptrtyp := ptrto(Types[TUINT8])
  1966  			ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
  1967  			if Isconst(n.Right, CTINT) {
  1968  				ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr)
  1969  			} else {
  1970  				ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
  1971  			}
  1972  			return s.newValue2(ssa.OpLoad, Types[TUINT8], ptr, s.mem())
  1973  		case n.Left.Type.IsSlice():
  1974  			p, _ := s.addr(n, false)
  1975  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  1976  		case n.Left.Type.IsArray():
  1977  			if bound := n.Left.Type.NumElem(); bound <= 1 {
  1978  				// SSA can handle arrays of length at most 1.
  1979  				a := s.expr(n.Left)
  1980  				i := s.expr(n.Right)
  1981  				if bound == 0 {
  1982  					// Bounds check will never succeed.  Might as well
  1983  					// use constants for the bounds check.
  1984  					z := s.constInt(Types[TINT], 0)
  1985  					s.boundsCheck(z, z)
  1986  					// The return value won't be live, return junk.
  1987  					return s.newValue0(ssa.OpUnknown, n.Type)
  1988  				}
  1989  				i = s.extendIndex(i, panicindex)
  1990  				s.boundsCheck(i, s.constInt(Types[TINT], bound))
  1991  				return s.newValue1I(ssa.OpArraySelect, n.Type, 0, a)
  1992  			}
  1993  			p, _ := s.addr(n, false)
  1994  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  1995  		default:
  1996  			s.Fatalf("bad type for index %v", n.Left.Type)
  1997  			return nil
  1998  		}
  1999  
  2000  	case OLEN, OCAP:
  2001  		switch {
  2002  		case n.Left.Type.IsSlice():
  2003  			op := ssa.OpSliceLen
  2004  			if n.Op == OCAP {
  2005  				op = ssa.OpSliceCap
  2006  			}
  2007  			return s.newValue1(op, Types[TINT], s.expr(n.Left))
  2008  		case n.Left.Type.IsString(): // string; not reachable for OCAP
  2009  			return s.newValue1(ssa.OpStringLen, Types[TINT], s.expr(n.Left))
  2010  		case n.Left.Type.IsMap(), n.Left.Type.IsChan():
  2011  			return s.referenceTypeBuiltin(n, s.expr(n.Left))
  2012  		default: // array
  2013  			return s.constInt(Types[TINT], n.Left.Type.NumElem())
  2014  		}
  2015  
  2016  	case OSPTR:
  2017  		a := s.expr(n.Left)
  2018  		if n.Left.Type.IsSlice() {
  2019  			return s.newValue1(ssa.OpSlicePtr, n.Type, a)
  2020  		} else {
  2021  			return s.newValue1(ssa.OpStringPtr, n.Type, a)
  2022  		}
  2023  
  2024  	case OITAB:
  2025  		a := s.expr(n.Left)
  2026  		return s.newValue1(ssa.OpITab, n.Type, a)
  2027  
  2028  	case OIDATA:
  2029  		a := s.expr(n.Left)
  2030  		return s.newValue1(ssa.OpIData, n.Type, a)
  2031  
  2032  	case OEFACE:
  2033  		tab := s.expr(n.Left)
  2034  		data := s.expr(n.Right)
  2035  		return s.newValue2(ssa.OpIMake, n.Type, tab, data)
  2036  
  2037  	case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR:
  2038  		v := s.expr(n.Left)
  2039  		var i, j, k *ssa.Value
  2040  		low, high, max := n.SliceBounds()
  2041  		if low != nil {
  2042  			i = s.extendIndex(s.expr(low), panicslice)
  2043  		}
  2044  		if high != nil {
  2045  			j = s.extendIndex(s.expr(high), panicslice)
  2046  		}
  2047  		if max != nil {
  2048  			k = s.extendIndex(s.expr(max), panicslice)
  2049  		}
  2050  		p, l, c := s.slice(n.Left.Type, v, i, j, k)
  2051  		return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)
  2052  
  2053  	case OSLICESTR:
  2054  		v := s.expr(n.Left)
  2055  		var i, j *ssa.Value
  2056  		low, high, _ := n.SliceBounds()
  2057  		if low != nil {
  2058  			i = s.extendIndex(s.expr(low), panicslice)
  2059  		}
  2060  		if high != nil {
  2061  			j = s.extendIndex(s.expr(high), panicslice)
  2062  		}
  2063  		p, l, _ := s.slice(n.Left.Type, v, i, j, nil)
  2064  		return s.newValue2(ssa.OpStringMake, n.Type, p, l)
  2065  
  2066  	case OCALLFUNC:
  2067  		if isIntrinsicCall(n) {
  2068  			return s.intrinsicCall(n)
  2069  		}
  2070  		fallthrough
  2071  
  2072  	case OCALLINTER, OCALLMETH:
  2073  		a := s.call(n, callNormal)
  2074  		return s.newValue2(ssa.OpLoad, n.Type, a, s.mem())
  2075  
  2076  	case OGETG:
  2077  		return s.newValue1(ssa.OpGetG, n.Type, s.mem())
  2078  
  2079  	case OAPPEND:
  2080  		return s.append(n, false)
  2081  
  2082  	default:
  2083  		s.Fatalf("unhandled expr %v", n.Op)
  2084  		return nil
  2085  	}
  2086  }
  2087  
  2088  // append converts an OAPPEND node to SSA.
  2089  // If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
  2090  // adds it to s, and returns the Value.
  2091  // If inplace is true, it writes the result of the OAPPEND expression n
  2092  // back to the slice being appended to, and returns nil.
  2093  // inplace MUST be set to false if the slice can be SSA'd.
  2094  func (s *state) append(n *Node, inplace bool) *ssa.Value {
  2095  	// If inplace is false, process as expression "append(s, e1, e2, e3)":
  2096  	//
  2097  	// ptr, len, cap := s
  2098  	// newlen := len + 3
  2099  	// if newlen > cap {
  2100  	//     ptr, len, cap = growslice(s, newlen)
  2101  	//     newlen = len + 3 // recalculate to avoid a spill
  2102  	// }
  2103  	// // with write barriers, if needed:
  2104  	// *(ptr+len) = e1
  2105  	// *(ptr+len+1) = e2
  2106  	// *(ptr+len+2) = e3
  2107  	// return makeslice(ptr, newlen, cap)
  2108  	//
  2109  	//
  2110  	// If inplace is true, process as statement "s = append(s, e1, e2, e3)":
  2111  	//
  2112  	// a := &s
  2113  	// ptr, len, cap := s
  2114  	// newlen := len + 3
  2115  	// if newlen > cap {
  2116  	//    newptr, len, newcap = growslice(ptr, len, cap, newlen)
  2117  	//    vardef(a)       // if necessary, advise liveness we are writing a new a
  2118  	//    *a.cap = newcap // write before ptr to avoid a spill
  2119  	//    *a.ptr = newptr // with write barrier
  2120  	// }
  2121  	// newlen = len + 3 // recalculate to avoid a spill
  2122  	// *a.len = newlen
  2123  	// // with write barriers, if needed:
  2124  	// *(ptr+len) = e1
  2125  	// *(ptr+len+1) = e2
  2126  	// *(ptr+len+2) = e3
  2127  
  2128  	et := n.Type.Elem()
  2129  	pt := ptrto(et)
  2130  
  2131  	// Evaluate slice
  2132  	sn := n.List.First() // the slice node is the first in the list
  2133  
  2134  	var slice, addr *ssa.Value
  2135  	if inplace {
  2136  		addr, _ = s.addr(sn, false)
  2137  		slice = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  2138  	} else {
  2139  		slice = s.expr(sn)
  2140  	}
  2141  
  2142  	// Allocate new blocks
  2143  	grow := s.f.NewBlock(ssa.BlockPlain)
  2144  	assign := s.f.NewBlock(ssa.BlockPlain)
  2145  
  2146  	// Decide if we need to grow
  2147  	nargs := int64(n.List.Len() - 1)
  2148  	p := s.newValue1(ssa.OpSlicePtr, pt, slice)
  2149  	l := s.newValue1(ssa.OpSliceLen, Types[TINT], slice)
  2150  	c := s.newValue1(ssa.OpSliceCap, Types[TINT], slice)
  2151  	nl := s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs))
  2152  
  2153  	cmp := s.newValue2(s.ssaOp(OGT, Types[TINT]), Types[TBOOL], nl, c)
  2154  	s.vars[&ptrVar] = p
  2155  
  2156  	if !inplace {
  2157  		s.vars[&newlenVar] = nl
  2158  		s.vars[&capVar] = c
  2159  	} else {
  2160  		s.vars[&lenVar] = l
  2161  	}
  2162  
  2163  	b := s.endBlock()
  2164  	b.Kind = ssa.BlockIf
  2165  	b.Likely = ssa.BranchUnlikely
  2166  	b.SetControl(cmp)
  2167  	b.AddEdgeTo(grow)
  2168  	b.AddEdgeTo(assign)
  2169  
  2170  	// Call growslice
  2171  	s.startBlock(grow)
  2172  	taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(n.Type.Elem())}, s.sb)
  2173  
  2174  	r := s.rtcall(growslice, true, []*Type{pt, Types[TINT], Types[TINT]}, taddr, p, l, c, nl)
  2175  
  2176  	if inplace {
  2177  		if sn.Op == ONAME {
  2178  			// Tell liveness we're about to build a new slice
  2179  			s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, sn, s.mem())
  2180  		}
  2181  		capaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(array_cap), addr)
  2182  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capaddr, r[2], s.mem())
  2183  		if ssa.IsStackAddr(addr) {
  2184  			s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, pt.Size(), addr, r[0], s.mem())
  2185  		} else {
  2186  			s.insertWBstore(pt, addr, r[0], n.Lineno, 0)
  2187  		}
  2188  		// load the value we just stored to avoid having to spill it
  2189  		s.vars[&ptrVar] = s.newValue2(ssa.OpLoad, pt, addr, s.mem())
  2190  		s.vars[&lenVar] = r[1] // avoid a spill in the fast path
  2191  	} else {
  2192  		s.vars[&ptrVar] = r[0]
  2193  		s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], r[1], s.constInt(Types[TINT], nargs))
  2194  		s.vars[&capVar] = r[2]
  2195  	}
  2196  
  2197  	b = s.endBlock()
  2198  	b.AddEdgeTo(assign)
  2199  
  2200  	// assign new elements to slots
  2201  	s.startBlock(assign)
  2202  
  2203  	if inplace {
  2204  		l = s.variable(&lenVar, Types[TINT]) // generates phi for len
  2205  		nl = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs))
  2206  		lenaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(array_nel), addr)
  2207  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenaddr, nl, s.mem())
  2208  	}
  2209  
  2210  	// Evaluate args
  2211  	type argRec struct {
  2212  		// if store is true, we're appending the value v.  If false, we're appending the
  2213  		// value at *v.  If store==false, isVolatile reports whether the source
  2214  		// is in the outargs section of the stack frame.
  2215  		v          *ssa.Value
  2216  		store      bool
  2217  		isVolatile bool
  2218  	}
  2219  	args := make([]argRec, 0, nargs)
  2220  	for _, n := range n.List.Slice()[1:] {
  2221  		if canSSAType(n.Type) {
  2222  			args = append(args, argRec{v: s.expr(n), store: true})
  2223  		} else {
  2224  			v, isVolatile := s.addr(n, false)
  2225  			args = append(args, argRec{v: v, isVolatile: isVolatile})
  2226  		}
  2227  	}
  2228  
  2229  	p = s.variable(&ptrVar, pt) // generates phi for ptr
  2230  	if !inplace {
  2231  		nl = s.variable(&newlenVar, Types[TINT]) // generates phi for nl
  2232  		c = s.variable(&capVar, Types[TINT])     // generates phi for cap
  2233  	}
  2234  	p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l)
  2235  	// TODO: just one write barrier call for all of these writes?
  2236  	// TODO: maybe just one writeBarrier.enabled check?
  2237  	for i, arg := range args {
  2238  		addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(Types[TINT], int64(i)))
  2239  		if arg.store {
  2240  			if haspointers(et) {
  2241  				s.insertWBstore(et, addr, arg.v, n.Lineno, 0)
  2242  			} else {
  2243  				s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, et.Size(), addr, arg.v, s.mem())
  2244  			}
  2245  		} else {
  2246  			if haspointers(et) {
  2247  				s.insertWBmove(et, addr, arg.v, n.Lineno, arg.isVolatile)
  2248  			} else {
  2249  				s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, sizeAlignAuxInt(et), addr, arg.v, s.mem())
  2250  			}
  2251  		}
  2252  	}
  2253  
  2254  	delete(s.vars, &ptrVar)
  2255  	if inplace {
  2256  		delete(s.vars, &lenVar)
  2257  		return nil
  2258  	}
  2259  	delete(s.vars, &newlenVar)
  2260  	delete(s.vars, &capVar)
  2261  	// make result
  2262  	return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c)
  2263  }
  2264  
  2265  // condBranch evaluates the boolean expression cond and branches to yes
  2266  // if cond is true and no if cond is false.
  2267  // This function is intended to handle && and || better than just calling
  2268  // s.expr(cond) and branching on the result.
  2269  func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) {
  2270  	if cond.Op == OANDAND {
  2271  		mid := s.f.NewBlock(ssa.BlockPlain)
  2272  		s.stmtList(cond.Ninit)
  2273  		s.condBranch(cond.Left, mid, no, max8(likely, 0))
  2274  		s.startBlock(mid)
  2275  		s.condBranch(cond.Right, yes, no, likely)
  2276  		return
  2277  		// Note: if likely==1, then both recursive calls pass 1.
  2278  		// If likely==-1, then we don't have enough information to decide
  2279  		// whether the first branch is likely or not. So we pass 0 for
  2280  		// the likeliness of the first branch.
  2281  		// TODO: have the frontend give us branch prediction hints for
  2282  		// OANDAND and OOROR nodes (if it ever has such info).
  2283  	}
  2284  	if cond.Op == OOROR {
  2285  		mid := s.f.NewBlock(ssa.BlockPlain)
  2286  		s.stmtList(cond.Ninit)
  2287  		s.condBranch(cond.Left, yes, mid, min8(likely, 0))
  2288  		s.startBlock(mid)
  2289  		s.condBranch(cond.Right, yes, no, likely)
  2290  		return
  2291  		// Note: if likely==-1, then both recursive calls pass -1.
  2292  		// If likely==1, then we don't have enough info to decide
  2293  		// the likelihood of the first branch.
  2294  	}
  2295  	if cond.Op == ONOT {
  2296  		s.stmtList(cond.Ninit)
  2297  		s.condBranch(cond.Left, no, yes, -likely)
  2298  		return
  2299  	}
  2300  	c := s.expr(cond)
  2301  	b := s.endBlock()
  2302  	b.Kind = ssa.BlockIf
  2303  	b.SetControl(c)
  2304  	b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
  2305  	b.AddEdgeTo(yes)
  2306  	b.AddEdgeTo(no)
  2307  }
  2308  
  2309  type skipMask uint8
  2310  
  2311  const (
  2312  	skipPtr skipMask = 1 << iota
  2313  	skipLen
  2314  	skipCap
  2315  )
  2316  
  2317  // assign does left = right.
  2318  // Right has already been evaluated to ssa, left has not.
  2319  // If deref is true, then we do left = *right instead (and right has already been nil-checked).
  2320  // If deref is true and right == nil, just do left = 0.
  2321  // If deref is true, rightIsVolatile reports whether right points to volatile (clobbered by a call) storage.
  2322  // Include a write barrier if wb is true.
  2323  // skip indicates assignments (at the top level) that can be avoided.
  2324  func (s *state) assign(left *Node, right *ssa.Value, wb, deref bool, line int32, skip skipMask, rightIsVolatile bool) {
  2325  	if left.Op == ONAME && isblank(left) {
  2326  		return
  2327  	}
  2328  	t := left.Type
  2329  	dowidth(t)
  2330  	if s.canSSA(left) {
  2331  		if deref {
  2332  			s.Fatalf("can SSA LHS %v but not RHS %s", left, right)
  2333  		}
  2334  		if left.Op == ODOT {
  2335  			// We're assigning to a field of an ssa-able value.
  2336  			// We need to build a new structure with the new value for the
  2337  			// field we're assigning and the old values for the other fields.
  2338  			// For instance:
  2339  			//   type T struct {a, b, c int}
  2340  			//   var T x
  2341  			//   x.b = 5
  2342  			// For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}
  2343  
  2344  			// Grab information about the structure type.
  2345  			t := left.Left.Type
  2346  			nf := t.NumFields()
  2347  			idx := fieldIdx(left)
  2348  
  2349  			// Grab old value of structure.
  2350  			old := s.expr(left.Left)
  2351  
  2352  			// Make new structure.
  2353  			new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)
  2354  
  2355  			// Add fields as args.
  2356  			for i := 0; i < nf; i++ {
  2357  				if i == idx {
  2358  					new.AddArg(right)
  2359  				} else {
  2360  					new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old))
  2361  				}
  2362  			}
  2363  
  2364  			// Recursively assign the new value we've made to the base of the dot op.
  2365  			s.assign(left.Left, new, false, false, line, 0, rightIsVolatile)
  2366  			// TODO: do we need to update named values here?
  2367  			return
  2368  		}
  2369  		if left.Op == OINDEX && left.Left.Type.IsArray() {
  2370  			// We're assigning to an element of an ssa-able array.
  2371  			// a[i] = v
  2372  			t := left.Left.Type
  2373  			n := t.NumElem()
  2374  
  2375  			i := s.expr(left.Right) // index
  2376  			if n == 0 {
  2377  				// The bounds check must fail.  Might as well
  2378  				// ignore the actual index and just use zeros.
  2379  				z := s.constInt(Types[TINT], 0)
  2380  				s.boundsCheck(z, z)
  2381  				return
  2382  			}
  2383  			if n != 1 {
  2384  				s.Fatalf("assigning to non-1-length array")
  2385  			}
  2386  			// Rewrite to a = [1]{v}
  2387  			i = s.extendIndex(i, panicindex)
  2388  			s.boundsCheck(i, s.constInt(Types[TINT], 1))
  2389  			v := s.newValue1(ssa.OpArrayMake1, t, right)
  2390  			s.assign(left.Left, v, false, false, line, 0, rightIsVolatile)
  2391  			return
  2392  		}
  2393  		// Update variable assignment.
  2394  		s.vars[left] = right
  2395  		s.addNamedValue(left, right)
  2396  		return
  2397  	}
  2398  	// Left is not ssa-able. Compute its address.
  2399  	addr, _ := s.addr(left, false)
  2400  	if left.Op == ONAME && skip == 0 {
  2401  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, left, s.mem())
  2402  	}
  2403  	if deref {
  2404  		// Treat as a mem->mem move.
  2405  		if wb && !ssa.IsStackAddr(addr) {
  2406  			s.insertWBmove(t, addr, right, line, rightIsVolatile)
  2407  			return
  2408  		}
  2409  		if right == nil {
  2410  			s.vars[&memVar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, sizeAlignAuxInt(t), addr, s.mem())
  2411  			return
  2412  		}
  2413  		s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, sizeAlignAuxInt(t), addr, right, s.mem())
  2414  		return
  2415  	}
  2416  	// Treat as a store.
  2417  	if wb && !ssa.IsStackAddr(addr) {
  2418  		if skip&skipPtr != 0 {
  2419  			// Special case: if we don't write back the pointers, don't bother
  2420  			// doing the write barrier check.
  2421  			s.storeTypeScalars(t, addr, right, skip)
  2422  			return
  2423  		}
  2424  		s.insertWBstore(t, addr, right, line, skip)
  2425  		return
  2426  	}
  2427  	if skip != 0 {
  2428  		if skip&skipPtr == 0 {
  2429  			s.storeTypePtrs(t, addr, right)
  2430  		}
  2431  		s.storeTypeScalars(t, addr, right, skip)
  2432  		return
  2433  	}
  2434  	s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), addr, right, s.mem())
  2435  }
  2436  
  2437  // zeroVal returns the zero value for type t.
  2438  func (s *state) zeroVal(t *Type) *ssa.Value {
  2439  	switch {
  2440  	case t.IsInteger():
  2441  		switch t.Size() {
  2442  		case 1:
  2443  			return s.constInt8(t, 0)
  2444  		case 2:
  2445  			return s.constInt16(t, 0)
  2446  		case 4:
  2447  			return s.constInt32(t, 0)
  2448  		case 8:
  2449  			return s.constInt64(t, 0)
  2450  		default:
  2451  			s.Fatalf("bad sized integer type %v", t)
  2452  		}
  2453  	case t.IsFloat():
  2454  		switch t.Size() {
  2455  		case 4:
  2456  			return s.constFloat32(t, 0)
  2457  		case 8:
  2458  			return s.constFloat64(t, 0)
  2459  		default:
  2460  			s.Fatalf("bad sized float type %v", t)
  2461  		}
  2462  	case t.IsComplex():
  2463  		switch t.Size() {
  2464  		case 8:
  2465  			z := s.constFloat32(Types[TFLOAT32], 0)
  2466  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2467  		case 16:
  2468  			z := s.constFloat64(Types[TFLOAT64], 0)
  2469  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2470  		default:
  2471  			s.Fatalf("bad sized complex type %v", t)
  2472  		}
  2473  
  2474  	case t.IsString():
  2475  		return s.constEmptyString(t)
  2476  	case t.IsPtrShaped():
  2477  		return s.constNil(t)
  2478  	case t.IsBoolean():
  2479  		return s.constBool(false)
  2480  	case t.IsInterface():
  2481  		return s.constInterface(t)
  2482  	case t.IsSlice():
  2483  		return s.constSlice(t)
  2484  	case t.IsStruct():
  2485  		n := t.NumFields()
  2486  		v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
  2487  		for i := 0; i < n; i++ {
  2488  			v.AddArg(s.zeroVal(t.FieldType(i).(*Type)))
  2489  		}
  2490  		return v
  2491  	case t.IsArray():
  2492  		switch t.NumElem() {
  2493  		case 0:
  2494  			return s.entryNewValue0(ssa.OpArrayMake0, t)
  2495  		case 1:
  2496  			return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem()))
  2497  		}
  2498  	}
  2499  	s.Fatalf("zero for type %v not implemented", t)
  2500  	return nil
  2501  }
  2502  
  2503  type callKind int8
  2504  
  2505  const (
  2506  	callNormal callKind = iota
  2507  	callDefer
  2508  	callGo
  2509  )
  2510  
  2511  // TODO: make this a field of a configuration object instead of a global.
  2512  var intrinsics *intrinsicInfo
  2513  
  2514  type intrinsicInfo struct {
  2515  	std      map[intrinsicKey]intrinsicBuilder
  2516  	intSized map[sizedIntrinsicKey]intrinsicBuilder
  2517  	ptrSized map[sizedIntrinsicKey]intrinsicBuilder
  2518  }
  2519  
  2520  // An intrinsicBuilder converts a call node n into an ssa value that
  2521  // implements that call as an intrinsic.
  2522  type intrinsicBuilder func(s *state, n *Node) *ssa.Value
  2523  
  2524  type intrinsicKey struct {
  2525  	pkg string
  2526  	fn  string
  2527  }
  2528  
  2529  type sizedIntrinsicKey struct {
  2530  	pkg  string
  2531  	fn   string
  2532  	size int
  2533  }
  2534  
  2535  // disableForInstrumenting returns nil when instrumenting, fn otherwise
  2536  func disableForInstrumenting(fn intrinsicBuilder) intrinsicBuilder {
  2537  	if instrumenting {
  2538  		return nil
  2539  	}
  2540  	return fn
  2541  }
  2542  
  2543  // enableOnArch returns fn on given archs, nil otherwise
  2544  func enableOnArch(fn intrinsicBuilder, archs ...sys.ArchFamily) intrinsicBuilder {
  2545  	if Thearch.LinkArch.InFamily(archs...) {
  2546  		return fn
  2547  	}
  2548  	return nil
  2549  }
  2550  
  2551  func intrinsicInit() {
  2552  	i := &intrinsicInfo{}
  2553  	intrinsics = i
  2554  
  2555  	// initial set of intrinsics.
  2556  	i.std = map[intrinsicKey]intrinsicBuilder{
  2557  		/******** runtime ********/
  2558  		intrinsicKey{"runtime", "slicebytetostringtmp"}: disableForInstrumenting(func(s *state, n *Node) *ssa.Value {
  2559  			// Compiler frontend optimizations emit OARRAYBYTESTRTMP nodes
  2560  			// for the backend instead of slicebytetostringtmp calls
  2561  			// when not instrumenting.
  2562  			slice := s.intrinsicFirstArg(n)
  2563  			ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), slice)
  2564  			len := s.newValue1(ssa.OpSliceLen, Types[TINT], slice)
  2565  			return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
  2566  		}),
  2567  		intrinsicKey{"runtime", "KeepAlive"}: func(s *state, n *Node) *ssa.Value {
  2568  			data := s.newValue1(ssa.OpIData, ptrto(Types[TUINT8]), s.intrinsicFirstArg(n))
  2569  			s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, data, s.mem())
  2570  			return nil
  2571  		},
  2572  
  2573  		/******** runtime/internal/sys ********/
  2574  		intrinsicKey{"runtime/internal/sys", "Ctz32"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2575  			return s.newValue1(ssa.OpCtz32, Types[TUINT32], s.intrinsicFirstArg(n))
  2576  		}, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X),
  2577  		intrinsicKey{"runtime/internal/sys", "Ctz64"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2578  			return s.newValue1(ssa.OpCtz64, Types[TUINT64], s.intrinsicFirstArg(n))
  2579  		}, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X),
  2580  		intrinsicKey{"runtime/internal/sys", "Bswap32"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2581  			return s.newValue1(ssa.OpBswap32, Types[TUINT32], s.intrinsicFirstArg(n))
  2582  		}, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X),
  2583  		intrinsicKey{"runtime/internal/sys", "Bswap64"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2584  			return s.newValue1(ssa.OpBswap64, Types[TUINT64], s.intrinsicFirstArg(n))
  2585  		}, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X),
  2586  
  2587  		/******** runtime/internal/atomic ********/
  2588  		intrinsicKey{"runtime/internal/atomic", "Load"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2589  			v := s.newValue2(ssa.OpAtomicLoad32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), s.intrinsicArg(n, 0), s.mem())
  2590  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2591  			return s.newValue1(ssa.OpSelect0, Types[TUINT32], v)
  2592  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2593  		intrinsicKey{"runtime/internal/atomic", "Load64"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2594  			v := s.newValue2(ssa.OpAtomicLoad64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), s.intrinsicArg(n, 0), s.mem())
  2595  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2596  			return s.newValue1(ssa.OpSelect0, Types[TUINT64], v)
  2597  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2598  		intrinsicKey{"runtime/internal/atomic", "Loadp"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2599  			v := s.newValue2(ssa.OpAtomicLoadPtr, ssa.MakeTuple(ptrto(Types[TUINT8]), ssa.TypeMem), s.intrinsicArg(n, 0), s.mem())
  2600  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2601  			return s.newValue1(ssa.OpSelect0, ptrto(Types[TUINT8]), v)
  2602  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2603  
  2604  		intrinsicKey{"runtime/internal/atomic", "Store"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2605  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore32, ssa.TypeMem, s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2606  			return nil
  2607  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2608  		intrinsicKey{"runtime/internal/atomic", "Store64"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2609  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore64, ssa.TypeMem, s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2610  			return nil
  2611  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2612  		intrinsicKey{"runtime/internal/atomic", "StorepNoWB"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2613  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, ssa.TypeMem, s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2614  			return nil
  2615  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2616  
  2617  		intrinsicKey{"runtime/internal/atomic", "Xchg"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2618  			v := s.newValue3(ssa.OpAtomicExchange32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2619  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2620  			return s.newValue1(ssa.OpSelect0, Types[TUINT32], v)
  2621  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2622  		intrinsicKey{"runtime/internal/atomic", "Xchg64"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2623  			v := s.newValue3(ssa.OpAtomicExchange64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2624  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2625  			return s.newValue1(ssa.OpSelect0, Types[TUINT64], v)
  2626  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2627  
  2628  		intrinsicKey{"runtime/internal/atomic", "Xadd"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2629  			v := s.newValue3(ssa.OpAtomicAdd32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2630  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2631  			return s.newValue1(ssa.OpSelect0, Types[TUINT32], v)
  2632  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2633  		intrinsicKey{"runtime/internal/atomic", "Xadd64"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2634  			v := s.newValue3(ssa.OpAtomicAdd64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2635  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2636  			return s.newValue1(ssa.OpSelect0, Types[TUINT64], v)
  2637  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2638  
  2639  		intrinsicKey{"runtime/internal/atomic", "Cas"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2640  			v := s.newValue4(ssa.OpAtomicCompareAndSwap32, ssa.MakeTuple(Types[TBOOL], ssa.TypeMem), s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.intrinsicArg(n, 2), s.mem())
  2641  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2642  			return s.newValue1(ssa.OpSelect0, Types[TBOOL], v)
  2643  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2644  		intrinsicKey{"runtime/internal/atomic", "Cas64"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2645  			v := s.newValue4(ssa.OpAtomicCompareAndSwap64, ssa.MakeTuple(Types[TBOOL], ssa.TypeMem), s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.intrinsicArg(n, 2), s.mem())
  2646  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2647  			return s.newValue1(ssa.OpSelect0, Types[TBOOL], v)
  2648  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2649  
  2650  		intrinsicKey{"runtime/internal/atomic", "And8"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2651  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicAnd8, ssa.TypeMem, s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2652  			return nil
  2653  		}, sys.AMD64, sys.ARM64),
  2654  		intrinsicKey{"runtime/internal/atomic", "Or8"}: enableOnArch(func(s *state, n *Node) *ssa.Value {
  2655  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicOr8, ssa.TypeMem, s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2656  			return nil
  2657  		}, sys.AMD64, sys.ARM64),
  2658  	}
  2659  
  2660  	// aliases internal to runtime/internal/atomic
  2661  	i.std[intrinsicKey{"runtime/internal/atomic", "Loadint64"}] =
  2662  		i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}]
  2663  	i.std[intrinsicKey{"runtime/internal/atomic", "Xaddint64"}] =
  2664  		i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}]
  2665  
  2666  	// intrinsics which vary depending on the size of int/ptr.
  2667  	i.intSized = map[sizedIntrinsicKey]intrinsicBuilder{
  2668  		sizedIntrinsicKey{"runtime/internal/atomic", "Loaduint", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Load"}],
  2669  		sizedIntrinsicKey{"runtime/internal/atomic", "Loaduint", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}],
  2670  	}
  2671  	i.ptrSized = map[sizedIntrinsicKey]intrinsicBuilder{
  2672  		sizedIntrinsicKey{"runtime/internal/atomic", "Loaduintptr", 4}:  i.std[intrinsicKey{"runtime/internal/atomic", "Load"}],
  2673  		sizedIntrinsicKey{"runtime/internal/atomic", "Loaduintptr", 8}:  i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}],
  2674  		sizedIntrinsicKey{"runtime/internal/atomic", "Storeuintptr", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Store"}],
  2675  		sizedIntrinsicKey{"runtime/internal/atomic", "Storeuintptr", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Store64"}],
  2676  		sizedIntrinsicKey{"runtime/internal/atomic", "Xchguintptr", 4}:  i.std[intrinsicKey{"runtime/internal/atomic", "Xchg"}],
  2677  		sizedIntrinsicKey{"runtime/internal/atomic", "Xchguintptr", 8}:  i.std[intrinsicKey{"runtime/internal/atomic", "Xchg64"}],
  2678  		sizedIntrinsicKey{"runtime/internal/atomic", "Xadduintptr", 4}:  i.std[intrinsicKey{"runtime/internal/atomic", "Xadd"}],
  2679  		sizedIntrinsicKey{"runtime/internal/atomic", "Xadduintptr", 8}:  i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}],
  2680  		sizedIntrinsicKey{"runtime/internal/atomic", "Casuintptr", 4}:   i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}],
  2681  		sizedIntrinsicKey{"runtime/internal/atomic", "Casuintptr", 8}:   i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}],
  2682  		sizedIntrinsicKey{"runtime/internal/atomic", "Casp1", 4}:        i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}],
  2683  		sizedIntrinsicKey{"runtime/internal/atomic", "Casp1", 8}:        i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}],
  2684  	}
  2685  
  2686  	/******** sync/atomic ********/
  2687  	if flag_race {
  2688  		// The race detector needs to be able to intercept these calls.
  2689  		// We can't intrinsify them.
  2690  		return
  2691  	}
  2692  	// these are all aliases to runtime/internal/atomic implementations.
  2693  	i.std[intrinsicKey{"sync/atomic", "LoadInt32"}] =
  2694  		i.std[intrinsicKey{"runtime/internal/atomic", "Load"}]
  2695  	i.std[intrinsicKey{"sync/atomic", "LoadInt64"}] =
  2696  		i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}]
  2697  	i.std[intrinsicKey{"sync/atomic", "LoadPointer"}] =
  2698  		i.std[intrinsicKey{"runtime/internal/atomic", "Loadp"}]
  2699  	i.std[intrinsicKey{"sync/atomic", "LoadUint32"}] =
  2700  		i.std[intrinsicKey{"runtime/internal/atomic", "Load"}]
  2701  	i.std[intrinsicKey{"sync/atomic", "LoadUint64"}] =
  2702  		i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}]
  2703  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "LoadUintptr", 4}] =
  2704  		i.std[intrinsicKey{"runtime/internal/atomic", "Load"}]
  2705  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "LoadUintptr", 8}] =
  2706  		i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}]
  2707  
  2708  	i.std[intrinsicKey{"sync/atomic", "StoreInt32"}] =
  2709  		i.std[intrinsicKey{"runtime/internal/atomic", "Store"}]
  2710  	i.std[intrinsicKey{"sync/atomic", "StoreInt64"}] =
  2711  		i.std[intrinsicKey{"runtime/internal/atomic", "Store64"}]
  2712  	// Note: not StorePointer, that needs a write barrier.  Same below for {CompareAnd}Swap.
  2713  	i.std[intrinsicKey{"sync/atomic", "StoreUint32"}] =
  2714  		i.std[intrinsicKey{"runtime/internal/atomic", "Store"}]
  2715  	i.std[intrinsicKey{"sync/atomic", "StoreUint64"}] =
  2716  		i.std[intrinsicKey{"runtime/internal/atomic", "Store64"}]
  2717  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "StoreUintptr", 4}] =
  2718  		i.std[intrinsicKey{"runtime/internal/atomic", "Store"}]
  2719  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "StoreUintptr", 8}] =
  2720  		i.std[intrinsicKey{"runtime/internal/atomic", "Store64"}]
  2721  
  2722  	i.std[intrinsicKey{"sync/atomic", "SwapInt32"}] =
  2723  		i.std[intrinsicKey{"runtime/internal/atomic", "Xchg"}]
  2724  	i.std[intrinsicKey{"sync/atomic", "SwapInt64"}] =
  2725  		i.std[intrinsicKey{"runtime/internal/atomic", "Xchg64"}]
  2726  	i.std[intrinsicKey{"sync/atomic", "SwapUint32"}] =
  2727  		i.std[intrinsicKey{"runtime/internal/atomic", "Xchg"}]
  2728  	i.std[intrinsicKey{"sync/atomic", "SwapUint64"}] =
  2729  		i.std[intrinsicKey{"runtime/internal/atomic", "Xchg64"}]
  2730  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "SwapUintptr", 4}] =
  2731  		i.std[intrinsicKey{"runtime/internal/atomic", "Xchg"}]
  2732  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "SwapUintptr", 8}] =
  2733  		i.std[intrinsicKey{"runtime/internal/atomic", "Xchg64"}]
  2734  
  2735  	i.std[intrinsicKey{"sync/atomic", "CompareAndSwapInt32"}] =
  2736  		i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}]
  2737  	i.std[intrinsicKey{"sync/atomic", "CompareAndSwapInt64"}] =
  2738  		i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}]
  2739  	i.std[intrinsicKey{"sync/atomic", "CompareAndSwapUint32"}] =
  2740  		i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}]
  2741  	i.std[intrinsicKey{"sync/atomic", "CompareAndSwapUint64"}] =
  2742  		i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}]
  2743  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "CompareAndSwapUintptr", 4}] =
  2744  		i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}]
  2745  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "CompareAndSwapUintptr", 8}] =
  2746  		i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}]
  2747  
  2748  	i.std[intrinsicKey{"sync/atomic", "AddInt32"}] =
  2749  		i.std[intrinsicKey{"runtime/internal/atomic", "Xadd"}]
  2750  	i.std[intrinsicKey{"sync/atomic", "AddInt64"}] =
  2751  		i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}]
  2752  	i.std[intrinsicKey{"sync/atomic", "AddUint32"}] =
  2753  		i.std[intrinsicKey{"runtime/internal/atomic", "Xadd"}]
  2754  	i.std[intrinsicKey{"sync/atomic", "AddUint64"}] =
  2755  		i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}]
  2756  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "AddUintptr", 4}] =
  2757  		i.std[intrinsicKey{"runtime/internal/atomic", "Xadd"}]
  2758  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "AddUintptr", 8}] =
  2759  		i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}]
  2760  
  2761  	/******** math/big ********/
  2762  	i.intSized[sizedIntrinsicKey{"math/big", "mulWW", 8}] =
  2763  		enableOnArch(func(s *state, n *Node) *ssa.Value {
  2764  			return s.newValue2(ssa.OpMul64uhilo, ssa.MakeTuple(Types[TUINT64], Types[TUINT64]), s.intrinsicArg(n, 0), s.intrinsicArg(n, 1))
  2765  		}, sys.AMD64)
  2766  	i.intSized[sizedIntrinsicKey{"math/big", "divWW", 8}] =
  2767  		enableOnArch(func(s *state, n *Node) *ssa.Value {
  2768  			return s.newValue3(ssa.OpDiv128u, ssa.MakeTuple(Types[TUINT64], Types[TUINT64]), s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.intrinsicArg(n, 2))
  2769  		}, sys.AMD64)
  2770  }
  2771  
  2772  // findIntrinsic returns a function which builds the SSA equivalent of the
  2773  // function identified by the symbol sym.  If sym is not an intrinsic call, returns nil.
  2774  func findIntrinsic(sym *Sym) intrinsicBuilder {
  2775  	if ssa.IntrinsicsDisable {
  2776  		return nil
  2777  	}
  2778  	if sym == nil || sym.Pkg == nil {
  2779  		return nil
  2780  	}
  2781  	if intrinsics == nil {
  2782  		intrinsicInit()
  2783  	}
  2784  	pkg := sym.Pkg.Path
  2785  	if sym.Pkg == localpkg {
  2786  		pkg = myimportpath
  2787  	}
  2788  	fn := sym.Name
  2789  	f := intrinsics.std[intrinsicKey{pkg, fn}]
  2790  	if f != nil {
  2791  		return f
  2792  	}
  2793  	f = intrinsics.intSized[sizedIntrinsicKey{pkg, fn, Widthint}]
  2794  	if f != nil {
  2795  		return f
  2796  	}
  2797  	return intrinsics.ptrSized[sizedIntrinsicKey{pkg, fn, Widthptr}]
  2798  }
  2799  
  2800  func isIntrinsicCall(n *Node) bool {
  2801  	if n == nil || n.Left == nil {
  2802  		return false
  2803  	}
  2804  	return findIntrinsic(n.Left.Sym) != nil
  2805  }
  2806  
  2807  // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation.
  2808  func (s *state) intrinsicCall(n *Node) *ssa.Value {
  2809  	v := findIntrinsic(n.Left.Sym)(s, n)
  2810  	if ssa.IntrinsicsDebug > 0 {
  2811  		x := v
  2812  		if x == nil {
  2813  			x = s.mem()
  2814  		}
  2815  		if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 {
  2816  			x = x.Args[0]
  2817  		}
  2818  		Warnl(n.Lineno, "intrinsic substitution for %v with %s", n.Left.Sym.Name, x.LongString())
  2819  	}
  2820  	return v
  2821  }
  2822  
  2823  // intrinsicArg extracts the ith arg from n.List and returns its value.
  2824  func (s *state) intrinsicArg(n *Node, i int) *ssa.Value {
  2825  	x := n.List.Slice()[i]
  2826  	if x.Op == OAS {
  2827  		x = x.Right
  2828  	}
  2829  	return s.expr(x)
  2830  }
  2831  func (s *state) intrinsicFirstArg(n *Node) *ssa.Value {
  2832  	return s.intrinsicArg(n, 0)
  2833  }
  2834  
  2835  // Calls the function n using the specified call type.
  2836  // Returns the address of the return value (or nil if none).
  2837  func (s *state) call(n *Node, k callKind) *ssa.Value {
  2838  	var sym *Sym           // target symbol (if static)
  2839  	var closure *ssa.Value // ptr to closure to run (if dynamic)
  2840  	var codeptr *ssa.Value // ptr to target code (if dynamic)
  2841  	var rcvr *ssa.Value    // receiver to set
  2842  	fn := n.Left
  2843  	switch n.Op {
  2844  	case OCALLFUNC:
  2845  		if k == callNormal && fn.Op == ONAME && fn.Class == PFUNC {
  2846  			sym = fn.Sym
  2847  			break
  2848  		}
  2849  		closure = s.expr(fn)
  2850  	case OCALLMETH:
  2851  		if fn.Op != ODOTMETH {
  2852  			Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn)
  2853  		}
  2854  		if k == callNormal {
  2855  			sym = fn.Sym
  2856  			break
  2857  		}
  2858  		// Make a name n2 for the function.
  2859  		// fn.Sym might be sync.(*Mutex).Unlock.
  2860  		// Make a PFUNC node out of that, then evaluate it.
  2861  		// We get back an SSA value representing &sync.(*Mutex).Unlock·f.
  2862  		// We can then pass that to defer or go.
  2863  		n2 := newname(fn.Sym)
  2864  		n2.Class = PFUNC
  2865  		n2.Lineno = fn.Lineno
  2866  		n2.Type = Types[TUINT8] // dummy type for a static closure. Could use runtime.funcval if we had it.
  2867  		closure = s.expr(n2)
  2868  		// Note: receiver is already assigned in n.List, so we don't
  2869  		// want to set it here.
  2870  	case OCALLINTER:
  2871  		if fn.Op != ODOTINTER {
  2872  			Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op)
  2873  		}
  2874  		i := s.expr(fn.Left)
  2875  		itab := s.newValue1(ssa.OpITab, Types[TUINTPTR], i)
  2876  		if k != callNormal {
  2877  			s.nilCheck(itab)
  2878  		}
  2879  		itabidx := fn.Xoffset + 3*int64(Widthptr) + 8 // offset of fun field in runtime.itab
  2880  		itab = s.newValue1I(ssa.OpOffPtr, ptrto(Types[TUINTPTR]), itabidx, itab)
  2881  		if k == callNormal {
  2882  			codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], itab, s.mem())
  2883  		} else {
  2884  			closure = itab
  2885  		}
  2886  		rcvr = s.newValue1(ssa.OpIData, Types[TUINTPTR], i)
  2887  	}
  2888  	dowidth(fn.Type)
  2889  	stksize := fn.Type.ArgWidth() // includes receiver
  2890  
  2891  	// Run all argument assignments. The arg slots have already
  2892  	// been offset by the appropriate amount (+2*widthptr for go/defer,
  2893  	// +widthptr for interface calls).
  2894  	// For OCALLMETH, the receiver is set in these statements.
  2895  	s.stmtList(n.List)
  2896  
  2897  	// Set receiver (for interface calls)
  2898  	if rcvr != nil {
  2899  		argStart := Ctxt.FixedFrameSize()
  2900  		if k != callNormal {
  2901  			argStart += int64(2 * Widthptr)
  2902  		}
  2903  		addr := s.entryNewValue1I(ssa.OpOffPtr, ptrto(Types[TUINTPTR]), argStart, s.sp)
  2904  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, rcvr, s.mem())
  2905  	}
  2906  
  2907  	// Defer/go args
  2908  	if k != callNormal {
  2909  		// Write argsize and closure (args to Newproc/Deferproc).
  2910  		argStart := Ctxt.FixedFrameSize()
  2911  		argsize := s.constInt32(Types[TUINT32], int32(stksize))
  2912  		addr := s.entryNewValue1I(ssa.OpOffPtr, ptrto(Types[TUINT32]), argStart, s.sp)
  2913  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, 4, addr, argsize, s.mem())
  2914  		addr = s.entryNewValue1I(ssa.OpOffPtr, ptrto(Types[TUINTPTR]), argStart+int64(Widthptr), s.sp)
  2915  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, closure, s.mem())
  2916  		stksize += 2 * int64(Widthptr)
  2917  	}
  2918  
  2919  	// call target
  2920  	var call *ssa.Value
  2921  	switch {
  2922  	case k == callDefer:
  2923  		call = s.newValue1(ssa.OpDeferCall, ssa.TypeMem, s.mem())
  2924  	case k == callGo:
  2925  		call = s.newValue1(ssa.OpGoCall, ssa.TypeMem, s.mem())
  2926  	case closure != nil:
  2927  		codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], closure, s.mem())
  2928  		call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, codeptr, closure, s.mem())
  2929  	case codeptr != nil:
  2930  		call = s.newValue2(ssa.OpInterCall, ssa.TypeMem, codeptr, s.mem())
  2931  	case sym != nil:
  2932  		call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, sym, s.mem())
  2933  	default:
  2934  		Fatalf("bad call type %v %v", n.Op, n)
  2935  	}
  2936  	call.AuxInt = stksize // Call operations carry the argsize of the callee along with them
  2937  	s.vars[&memVar] = call
  2938  
  2939  	// Finish block for defers
  2940  	if k == callDefer {
  2941  		b := s.endBlock()
  2942  		b.Kind = ssa.BlockDefer
  2943  		b.SetControl(call)
  2944  		bNext := s.f.NewBlock(ssa.BlockPlain)
  2945  		b.AddEdgeTo(bNext)
  2946  		// Add recover edge to exit code.
  2947  		r := s.f.NewBlock(ssa.BlockPlain)
  2948  		s.startBlock(r)
  2949  		s.exit()
  2950  		b.AddEdgeTo(r)
  2951  		b.Likely = ssa.BranchLikely
  2952  		s.startBlock(bNext)
  2953  	}
  2954  
  2955  	res := n.Left.Type.Results()
  2956  	if res.NumFields() == 0 || k != callNormal {
  2957  		// call has no return value. Continue with the next statement.
  2958  		return nil
  2959  	}
  2960  	fp := res.Field(0)
  2961  	return s.entryNewValue1I(ssa.OpOffPtr, ptrto(fp.Type), fp.Offset+Ctxt.FixedFrameSize(), s.sp)
  2962  }
  2963  
  2964  // etypesign returns the signed-ness of e, for integer/pointer etypes.
  2965  // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
  2966  func etypesign(e EType) int8 {
  2967  	switch e {
  2968  	case TINT8, TINT16, TINT32, TINT64, TINT:
  2969  		return -1
  2970  	case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR:
  2971  		return +1
  2972  	}
  2973  	return 0
  2974  }
  2975  
  2976  // lookupSymbol is used to retrieve the symbol (Extern, Arg or Auto) used for a particular node.
  2977  // This improves the effectiveness of cse by using the same Aux values for the
  2978  // same symbols.
  2979  func (s *state) lookupSymbol(n *Node, sym interface{}) interface{} {
  2980  	switch sym.(type) {
  2981  	default:
  2982  		s.Fatalf("sym %v is of uknown type %T", sym, sym)
  2983  	case *ssa.ExternSymbol, *ssa.ArgSymbol, *ssa.AutoSymbol:
  2984  		// these are the only valid types
  2985  	}
  2986  
  2987  	if lsym, ok := s.varsyms[n]; ok {
  2988  		return lsym
  2989  	} else {
  2990  		s.varsyms[n] = sym
  2991  		return sym
  2992  	}
  2993  }
  2994  
  2995  // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
  2996  // Also returns a bool reporting whether the returned value is "volatile", that is it
  2997  // points to the outargs section and thus the referent will be clobbered by any call.
  2998  // The value that the returned Value represents is guaranteed to be non-nil.
  2999  // If bounded is true then this address does not require a nil check for its operand
  3000  // even if that would otherwise be implied.
  3001  func (s *state) addr(n *Node, bounded bool) (*ssa.Value, bool) {
  3002  	t := ptrto(n.Type)
  3003  	switch n.Op {
  3004  	case ONAME:
  3005  		switch n.Class {
  3006  		case PEXTERN:
  3007  			// global variable
  3008  			aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: n.Sym})
  3009  			v := s.entryNewValue1A(ssa.OpAddr, t, aux, s.sb)
  3010  			// TODO: Make OpAddr use AuxInt as well as Aux.
  3011  			if n.Xoffset != 0 {
  3012  				v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v)
  3013  			}
  3014  			return v, false
  3015  		case PPARAM:
  3016  			// parameter slot
  3017  			v := s.decladdrs[n]
  3018  			if v != nil {
  3019  				return v, false
  3020  			}
  3021  			if n == nodfp {
  3022  				// Special arg that points to the frame pointer (Used by ORECOVER).
  3023  				aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
  3024  				return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp), false
  3025  			}
  3026  			s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
  3027  			return nil, false
  3028  		case PAUTO:
  3029  			aux := s.lookupSymbol(n, &ssa.AutoSymbol{Typ: n.Type, Node: n})
  3030  			return s.newValue1A(ssa.OpAddr, t, aux, s.sp), false
  3031  		case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
  3032  			// ensure that we reuse symbols for out parameters so
  3033  			// that cse works on their addresses
  3034  			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
  3035  			return s.newValue1A(ssa.OpAddr, t, aux, s.sp), false
  3036  		default:
  3037  			s.Fatalf("variable address class %v not implemented", classnames[n.Class])
  3038  			return nil, false
  3039  		}
  3040  	case OINDREGSP:
  3041  		// indirect off REGSP
  3042  		// used for storing/loading arguments/returns to/from callees
  3043  		return s.entryNewValue1I(ssa.OpOffPtr, t, n.Xoffset, s.sp), true
  3044  	case OINDEX:
  3045  		if n.Left.Type.IsSlice() {
  3046  			a := s.expr(n.Left)
  3047  			i := s.expr(n.Right)
  3048  			i = s.extendIndex(i, panicindex)
  3049  			len := s.newValue1(ssa.OpSliceLen, Types[TINT], a)
  3050  			if !n.Bounded {
  3051  				s.boundsCheck(i, len)
  3052  			}
  3053  			p := s.newValue1(ssa.OpSlicePtr, t, a)
  3054  			return s.newValue2(ssa.OpPtrIndex, t, p, i), false
  3055  		} else { // array
  3056  			a, isVolatile := s.addr(n.Left, bounded)
  3057  			i := s.expr(n.Right)
  3058  			i = s.extendIndex(i, panicindex)
  3059  			len := s.constInt(Types[TINT], n.Left.Type.NumElem())
  3060  			if !n.Bounded {
  3061  				s.boundsCheck(i, len)
  3062  			}
  3063  			return s.newValue2(ssa.OpPtrIndex, ptrto(n.Left.Type.Elem()), a, i), isVolatile
  3064  		}
  3065  	case OIND:
  3066  		return s.exprPtr(n.Left, bounded, n.Lineno), false
  3067  	case ODOT:
  3068  		p, isVolatile := s.addr(n.Left, bounded)
  3069  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p), isVolatile
  3070  	case ODOTPTR:
  3071  		p := s.exprPtr(n.Left, bounded, n.Lineno)
  3072  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p), false
  3073  	case OCLOSUREVAR:
  3074  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset,
  3075  			s.entryNewValue0(ssa.OpGetClosurePtr, ptrto(Types[TUINT8]))), false
  3076  	case OCONVNOP:
  3077  		addr, isVolatile := s.addr(n.Left, bounded)
  3078  		return s.newValue1(ssa.OpCopy, t, addr), isVolatile // ensure that addr has the right type
  3079  	case OCALLFUNC, OCALLINTER, OCALLMETH:
  3080  		return s.call(n, callNormal), true
  3081  
  3082  	default:
  3083  		s.Fatalf("unhandled addr %v", n.Op)
  3084  		return nil, false
  3085  	}
  3086  }
  3087  
  3088  // canSSA reports whether n is SSA-able.
  3089  // n must be an ONAME (or an ODOT sequence with an ONAME base).
  3090  func (s *state) canSSA(n *Node) bool {
  3091  	if Debug['N'] != 0 {
  3092  		return false
  3093  	}
  3094  	for n.Op == ODOT || (n.Op == OINDEX && n.Left.Type.IsArray()) {
  3095  		n = n.Left
  3096  	}
  3097  	if n.Op != ONAME {
  3098  		return false
  3099  	}
  3100  	if n.Addrtaken {
  3101  		return false
  3102  	}
  3103  	if n.isParamHeapCopy() {
  3104  		return false
  3105  	}
  3106  	if n.Class == PAUTOHEAP {
  3107  		Fatalf("canSSA of PAUTOHEAP %v", n)
  3108  	}
  3109  	switch n.Class {
  3110  	case PEXTERN:
  3111  		return false
  3112  	case PPARAMOUT:
  3113  		if hasdefer {
  3114  			// TODO: handle this case?  Named return values must be
  3115  			// in memory so that the deferred function can see them.
  3116  			// Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
  3117  			return false
  3118  		}
  3119  		if s.cgoUnsafeArgs {
  3120  			// Cgo effectively takes the address of all result args,
  3121  			// but the compiler can't see that.
  3122  			return false
  3123  		}
  3124  	}
  3125  	if n.Class == PPARAM && n.String() == ".this" {
  3126  		// wrappers generated by genwrapper need to update
  3127  		// the .this pointer in place.
  3128  		// TODO: treat as a PPARMOUT?
  3129  		return false
  3130  	}
  3131  	return canSSAType(n.Type)
  3132  	// TODO: try to make more variables SSAable?
  3133  }
  3134  
  3135  // canSSA reports whether variables of type t are SSA-able.
  3136  func canSSAType(t *Type) bool {
  3137  	dowidth(t)
  3138  	if t.Width > int64(4*Widthptr) {
  3139  		// 4*Widthptr is an arbitrary constant. We want it
  3140  		// to be at least 3*Widthptr so slices can be registerized.
  3141  		// Too big and we'll introduce too much register pressure.
  3142  		return false
  3143  	}
  3144  	switch t.Etype {
  3145  	case TARRAY:
  3146  		// We can't do larger arrays because dynamic indexing is
  3147  		// not supported on SSA variables.
  3148  		// TODO: allow if all indexes are constant.
  3149  		if t.NumElem() == 0 {
  3150  			return true
  3151  		}
  3152  		if t.NumElem() == 1 {
  3153  			return canSSAType(t.Elem())
  3154  		}
  3155  		return false
  3156  	case TSTRUCT:
  3157  		if t.NumFields() > ssa.MaxStruct {
  3158  			return false
  3159  		}
  3160  		for _, t1 := range t.Fields().Slice() {
  3161  			if !canSSAType(t1.Type) {
  3162  				return false
  3163  			}
  3164  		}
  3165  		return true
  3166  	default:
  3167  		return true
  3168  	}
  3169  }
  3170  
  3171  // exprPtr evaluates n to a pointer and nil-checks it.
  3172  func (s *state) exprPtr(n *Node, bounded bool, lineno int32) *ssa.Value {
  3173  	p := s.expr(n)
  3174  	if bounded || n.NonNil {
  3175  		if s.f.Config.Debug_checknil() && lineno > 1 {
  3176  			s.f.Config.Warnl(lineno, "removed nil check")
  3177  		}
  3178  		return p
  3179  	}
  3180  	s.nilCheck(p)
  3181  	return p
  3182  }
  3183  
  3184  // nilCheck generates nil pointer checking code.
  3185  // Used only for automatically inserted nil checks,
  3186  // not for user code like 'x != nil'.
  3187  func (s *state) nilCheck(ptr *ssa.Value) {
  3188  	if disable_checknil != 0 {
  3189  		return
  3190  	}
  3191  	s.newValue2(ssa.OpNilCheck, ssa.TypeVoid, ptr, s.mem())
  3192  }
  3193  
  3194  // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not.
  3195  // Starts a new block on return.
  3196  // idx is already converted to full int width.
  3197  func (s *state) boundsCheck(idx, len *ssa.Value) {
  3198  	if Debug['B'] != 0 {
  3199  		return
  3200  	}
  3201  
  3202  	// bounds check
  3203  	cmp := s.newValue2(ssa.OpIsInBounds, Types[TBOOL], idx, len)
  3204  	s.check(cmp, panicindex)
  3205  }
  3206  
  3207  // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not.
  3208  // Starts a new block on return.
  3209  // idx and len are already converted to full int width.
  3210  func (s *state) sliceBoundsCheck(idx, len *ssa.Value) {
  3211  	if Debug['B'] != 0 {
  3212  		return
  3213  	}
  3214  
  3215  	// bounds check
  3216  	cmp := s.newValue2(ssa.OpIsSliceInBounds, Types[TBOOL], idx, len)
  3217  	s.check(cmp, panicslice)
  3218  }
  3219  
  3220  // If cmp (a bool) is false, panic using the given function.
  3221  func (s *state) check(cmp *ssa.Value, fn *Node) {
  3222  	b := s.endBlock()
  3223  	b.Kind = ssa.BlockIf
  3224  	b.SetControl(cmp)
  3225  	b.Likely = ssa.BranchLikely
  3226  	bNext := s.f.NewBlock(ssa.BlockPlain)
  3227  	line := s.peekLine()
  3228  	bPanic := s.panics[funcLine{fn, line}]
  3229  	if bPanic == nil {
  3230  		bPanic = s.f.NewBlock(ssa.BlockPlain)
  3231  		s.panics[funcLine{fn, line}] = bPanic
  3232  		s.startBlock(bPanic)
  3233  		// The panic call takes/returns memory to ensure that the right
  3234  		// memory state is observed if the panic happens.
  3235  		s.rtcall(fn, false, nil)
  3236  	}
  3237  	b.AddEdgeTo(bNext)
  3238  	b.AddEdgeTo(bPanic)
  3239  	s.startBlock(bNext)
  3240  }
  3241  
  3242  func (s *state) intDivide(n *Node, a, b *ssa.Value) *ssa.Value {
  3243  	needcheck := true
  3244  	switch b.Op {
  3245  	case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64:
  3246  		if b.AuxInt != 0 {
  3247  			needcheck = false
  3248  		}
  3249  	}
  3250  	if needcheck {
  3251  		// do a size-appropriate check for zero
  3252  		cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type))
  3253  		s.check(cmp, panicdivide)
  3254  	}
  3255  	return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  3256  }
  3257  
  3258  // rtcall issues a call to the given runtime function fn with the listed args.
  3259  // Returns a slice of results of the given result types.
  3260  // The call is added to the end of the current block.
  3261  // If returns is false, the block is marked as an exit block.
  3262  // If returns is true, the block is marked as a call block. A new block
  3263  // is started to load the return values.
  3264  func (s *state) rtcall(fn *Node, returns bool, results []*Type, args ...*ssa.Value) []*ssa.Value {
  3265  	// Write args to the stack
  3266  	off := Ctxt.FixedFrameSize()
  3267  	for _, arg := range args {
  3268  		t := arg.Type
  3269  		off = Rnd(off, t.Alignment())
  3270  		ptr := s.sp
  3271  		if off != 0 {
  3272  			ptr = s.newValue1I(ssa.OpOffPtr, t.PtrTo(), off, s.sp)
  3273  		}
  3274  		size := t.Size()
  3275  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, size, ptr, arg, s.mem())
  3276  		off += size
  3277  	}
  3278  	off = Rnd(off, int64(Widthptr))
  3279  	if Thearch.LinkArch.Name == "amd64p32" {
  3280  		// amd64p32 wants 8-byte alignment of the start of the return values.
  3281  		off = Rnd(off, 8)
  3282  	}
  3283  
  3284  	// Issue call
  3285  	call := s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, fn.Sym, s.mem())
  3286  	s.vars[&memVar] = call
  3287  
  3288  	if !returns {
  3289  		// Finish block
  3290  		b := s.endBlock()
  3291  		b.Kind = ssa.BlockExit
  3292  		b.SetControl(call)
  3293  		call.AuxInt = off - Ctxt.FixedFrameSize()
  3294  		if len(results) > 0 {
  3295  			Fatalf("panic call can't have results")
  3296  		}
  3297  		return nil
  3298  	}
  3299  
  3300  	// Load results
  3301  	res := make([]*ssa.Value, len(results))
  3302  	for i, t := range results {
  3303  		off = Rnd(off, t.Alignment())
  3304  		ptr := s.sp
  3305  		if off != 0 {
  3306  			ptr = s.newValue1I(ssa.OpOffPtr, ptrto(t), off, s.sp)
  3307  		}
  3308  		res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem())
  3309  		off += t.Size()
  3310  	}
  3311  	off = Rnd(off, int64(Widthptr))
  3312  
  3313  	// Remember how much callee stack space we needed.
  3314  	call.AuxInt = off
  3315  
  3316  	return res
  3317  }
  3318  
  3319  // insertWBmove inserts the assignment *left = *right including a write barrier.
  3320  // t is the type being assigned.
  3321  // If right == nil, then we're zeroing *left.
  3322  func (s *state) insertWBmove(t *Type, left, right *ssa.Value, line int32, rightIsVolatile bool) {
  3323  	// if writeBarrier.enabled {
  3324  	//   typedmemmove(&t, left, right)
  3325  	// } else {
  3326  	//   *left = *right
  3327  	// }
  3328  	//
  3329  	// or
  3330  	//
  3331  	// if writeBarrier.enabled {
  3332  	//   typedmemclr(&t, left)
  3333  	// } else {
  3334  	//   *left = zeroValue
  3335  	// }
  3336  
  3337  	if s.noWB {
  3338  		s.Error("write barrier prohibited")
  3339  	}
  3340  	if s.WBLineno == 0 {
  3341  		s.WBLineno = left.Line
  3342  	}
  3343  
  3344  	var val *ssa.Value
  3345  	if right == nil {
  3346  		val = s.newValue2I(ssa.OpZeroWB, ssa.TypeMem, sizeAlignAuxInt(t), left, s.mem())
  3347  	} else {
  3348  		var op ssa.Op
  3349  		if rightIsVolatile {
  3350  			op = ssa.OpMoveWBVolatile
  3351  		} else {
  3352  			op = ssa.OpMoveWB
  3353  		}
  3354  		val = s.newValue3I(op, ssa.TypeMem, sizeAlignAuxInt(t), left, right, s.mem())
  3355  	}
  3356  	val.Aux = &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(t)}
  3357  	s.vars[&memVar] = val
  3358  
  3359  	// WB ops will be expanded to branches at writebarrier phase.
  3360  	// To make it easy, we put WB ops at the end of a block, so
  3361  	// that it does not need to split a block into two parts when
  3362  	// expanding WB ops.
  3363  	b := s.f.NewBlock(ssa.BlockPlain)
  3364  	s.endBlock().AddEdgeTo(b)
  3365  	s.startBlock(b)
  3366  }
  3367  
  3368  // insertWBstore inserts the assignment *left = right including a write barrier.
  3369  // t is the type being assigned.
  3370  func (s *state) insertWBstore(t *Type, left, right *ssa.Value, line int32, skip skipMask) {
  3371  	// store scalar fields
  3372  	// if writeBarrier.enabled {
  3373  	//   writebarrierptr for pointer fields
  3374  	// } else {
  3375  	//   store pointer fields
  3376  	// }
  3377  
  3378  	if s.noWB {
  3379  		s.Error("write barrier prohibited")
  3380  	}
  3381  	if s.WBLineno == 0 {
  3382  		s.WBLineno = left.Line
  3383  	}
  3384  	s.storeTypeScalars(t, left, right, skip)
  3385  	s.storeTypePtrsWB(t, left, right)
  3386  
  3387  	// WB ops will be expanded to branches at writebarrier phase.
  3388  	// To make it easy, we put WB ops at the end of a block, so
  3389  	// that it does not need to split a block into two parts when
  3390  	// expanding WB ops.
  3391  	b := s.f.NewBlock(ssa.BlockPlain)
  3392  	s.endBlock().AddEdgeTo(b)
  3393  	s.startBlock(b)
  3394  }
  3395  
  3396  // do *left = right for all scalar (non-pointer) parts of t.
  3397  func (s *state) storeTypeScalars(t *Type, left, right *ssa.Value, skip skipMask) {
  3398  	switch {
  3399  	case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
  3400  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), left, right, s.mem())
  3401  	case t.IsPtrShaped():
  3402  		// no scalar fields.
  3403  	case t.IsString():
  3404  		if skip&skipLen != 0 {
  3405  			return
  3406  		}
  3407  		len := s.newValue1(ssa.OpStringLen, Types[TINT], right)
  3408  		lenAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TINT]), s.config.IntSize, left)
  3409  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem())
  3410  	case t.IsSlice():
  3411  		if skip&skipLen == 0 {
  3412  			len := s.newValue1(ssa.OpSliceLen, Types[TINT], right)
  3413  			lenAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TINT]), s.config.IntSize, left)
  3414  			s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem())
  3415  		}
  3416  		if skip&skipCap == 0 {
  3417  			cap := s.newValue1(ssa.OpSliceCap, Types[TINT], right)
  3418  			capAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TINT]), 2*s.config.IntSize, left)
  3419  			s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capAddr, cap, s.mem())
  3420  		}
  3421  	case t.IsInterface():
  3422  		// itab field doesn't need a write barrier (even though it is a pointer).
  3423  		itab := s.newValue1(ssa.OpITab, ptrto(Types[TUINT8]), right)
  3424  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, left, itab, s.mem())
  3425  	case t.IsStruct():
  3426  		n := t.NumFields()
  3427  		for i := 0; i < n; i++ {
  3428  			ft := t.FieldType(i)
  3429  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3430  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3431  			s.storeTypeScalars(ft.(*Type), addr, val, 0)
  3432  		}
  3433  	case t.IsArray() && t.NumElem() == 0:
  3434  		// nothing
  3435  	case t.IsArray() && t.NumElem() == 1:
  3436  		s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0)
  3437  	default:
  3438  		s.Fatalf("bad write barrier type %v", t)
  3439  	}
  3440  }
  3441  
  3442  // do *left = right for all pointer parts of t.
  3443  func (s *state) storeTypePtrs(t *Type, left, right *ssa.Value) {
  3444  	switch {
  3445  	case t.IsPtrShaped():
  3446  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, right, s.mem())
  3447  	case t.IsString():
  3448  		ptr := s.newValue1(ssa.OpStringPtr, ptrto(Types[TUINT8]), right)
  3449  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
  3450  	case t.IsSlice():
  3451  		ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), right)
  3452  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
  3453  	case t.IsInterface():
  3454  		// itab field is treated as a scalar.
  3455  		idata := s.newValue1(ssa.OpIData, ptrto(Types[TUINT8]), right)
  3456  		idataAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TUINT8]), s.config.PtrSize, left)
  3457  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, idataAddr, idata, s.mem())
  3458  	case t.IsStruct():
  3459  		n := t.NumFields()
  3460  		for i := 0; i < n; i++ {
  3461  			ft := t.FieldType(i)
  3462  			if !haspointers(ft.(*Type)) {
  3463  				continue
  3464  			}
  3465  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3466  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3467  			s.storeTypePtrs(ft.(*Type), addr, val)
  3468  		}
  3469  	case t.IsArray() && t.NumElem() == 0:
  3470  		// nothing
  3471  	case t.IsArray() && t.NumElem() == 1:
  3472  		s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right))
  3473  	default:
  3474  		s.Fatalf("bad write barrier type %v", t)
  3475  	}
  3476  }
  3477  
  3478  // do *left = right for all pointer parts of t, with write barriers if necessary.
  3479  func (s *state) storeTypePtrsWB(t *Type, left, right *ssa.Value) {
  3480  	switch {
  3481  	case t.IsPtrShaped():
  3482  		s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, right, s.mem())
  3483  	case t.IsString():
  3484  		ptr := s.newValue1(ssa.OpStringPtr, ptrto(Types[TUINT8]), right)
  3485  		s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
  3486  	case t.IsSlice():
  3487  		ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), right)
  3488  		s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
  3489  	case t.IsInterface():
  3490  		// itab field is treated as a scalar.
  3491  		idata := s.newValue1(ssa.OpIData, ptrto(Types[TUINT8]), right)
  3492  		idataAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TUINT8]), s.config.PtrSize, left)
  3493  		s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, idataAddr, idata, s.mem())
  3494  	case t.IsStruct():
  3495  		n := t.NumFields()
  3496  		for i := 0; i < n; i++ {
  3497  			ft := t.FieldType(i)
  3498  			if !haspointers(ft.(*Type)) {
  3499  				continue
  3500  			}
  3501  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3502  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3503  			s.storeTypePtrsWB(ft.(*Type), addr, val)
  3504  		}
  3505  	case t.IsArray() && t.NumElem() == 0:
  3506  		// nothing
  3507  	case t.IsArray() && t.NumElem() == 1:
  3508  		s.storeTypePtrsWB(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right))
  3509  	default:
  3510  		s.Fatalf("bad write barrier type %v", t)
  3511  	}
  3512  }
  3513  
  3514  // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
  3515  // i,j,k may be nil, in which case they are set to their default value.
  3516  // t is a slice, ptr to array, or string type.
  3517  func (s *state) slice(t *Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) {
  3518  	var elemtype *Type
  3519  	var ptrtype *Type
  3520  	var ptr *ssa.Value
  3521  	var len *ssa.Value
  3522  	var cap *ssa.Value
  3523  	zero := s.constInt(Types[TINT], 0)
  3524  	switch {
  3525  	case t.IsSlice():
  3526  		elemtype = t.Elem()
  3527  		ptrtype = ptrto(elemtype)
  3528  		ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v)
  3529  		len = s.newValue1(ssa.OpSliceLen, Types[TINT], v)
  3530  		cap = s.newValue1(ssa.OpSliceCap, Types[TINT], v)
  3531  	case t.IsString():
  3532  		elemtype = Types[TUINT8]
  3533  		ptrtype = ptrto(elemtype)
  3534  		ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v)
  3535  		len = s.newValue1(ssa.OpStringLen, Types[TINT], v)
  3536  		cap = len
  3537  	case t.IsPtr():
  3538  		if !t.Elem().IsArray() {
  3539  			s.Fatalf("bad ptr to array in slice %v\n", t)
  3540  		}
  3541  		elemtype = t.Elem().Elem()
  3542  		ptrtype = ptrto(elemtype)
  3543  		s.nilCheck(v)
  3544  		ptr = v
  3545  		len = s.constInt(Types[TINT], t.Elem().NumElem())
  3546  		cap = len
  3547  	default:
  3548  		s.Fatalf("bad type in slice %v\n", t)
  3549  	}
  3550  
  3551  	// Set default values
  3552  	if i == nil {
  3553  		i = zero
  3554  	}
  3555  	if j == nil {
  3556  		j = len
  3557  	}
  3558  	if k == nil {
  3559  		k = cap
  3560  	}
  3561  
  3562  	// Panic if slice indices are not in bounds.
  3563  	s.sliceBoundsCheck(i, j)
  3564  	if j != k {
  3565  		s.sliceBoundsCheck(j, k)
  3566  	}
  3567  	if k != cap {
  3568  		s.sliceBoundsCheck(k, cap)
  3569  	}
  3570  
  3571  	// Generate the following code assuming that indexes are in bounds.
  3572  	// The masking is to make sure that we don't generate a slice
  3573  	// that points to the next object in memory.
  3574  	// rlen = j - i
  3575  	// rcap = k - i
  3576  	// delta = i * elemsize
  3577  	// rptr = p + delta&mask(rcap)
  3578  	// result = (SliceMake rptr rlen rcap)
  3579  	// where mask(x) is 0 if x==0 and -1 if x>0.
  3580  	subOp := s.ssaOp(OSUB, Types[TINT])
  3581  	mulOp := s.ssaOp(OMUL, Types[TINT])
  3582  	andOp := s.ssaOp(OAND, Types[TINT])
  3583  	rlen := s.newValue2(subOp, Types[TINT], j, i)
  3584  	var rcap *ssa.Value
  3585  	switch {
  3586  	case t.IsString():
  3587  		// Capacity of the result is unimportant. However, we use
  3588  		// rcap to test if we've generated a zero-length slice.
  3589  		// Use length of strings for that.
  3590  		rcap = rlen
  3591  	case j == k:
  3592  		rcap = rlen
  3593  	default:
  3594  		rcap = s.newValue2(subOp, Types[TINT], k, i)
  3595  	}
  3596  
  3597  	var rptr *ssa.Value
  3598  	if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 {
  3599  		// No pointer arithmetic necessary.
  3600  		rptr = ptr
  3601  	} else {
  3602  		// delta = # of bytes to offset pointer by.
  3603  		delta := s.newValue2(mulOp, Types[TINT], i, s.constInt(Types[TINT], elemtype.Width))
  3604  		// If we're slicing to the point where the capacity is zero,
  3605  		// zero out the delta.
  3606  		mask := s.newValue1(ssa.OpSlicemask, Types[TINT], rcap)
  3607  		delta = s.newValue2(andOp, Types[TINT], delta, mask)
  3608  		// Compute rptr = ptr + delta
  3609  		rptr = s.newValue2(ssa.OpAddPtr, ptrtype, ptr, delta)
  3610  	}
  3611  
  3612  	return rptr, rlen, rcap
  3613  }
  3614  
  3615  type u2fcvtTab struct {
  3616  	geq, cvt2F, and, rsh, or, add ssa.Op
  3617  	one                           func(*state, ssa.Type, int64) *ssa.Value
  3618  }
  3619  
  3620  var u64_f64 u2fcvtTab = u2fcvtTab{
  3621  	geq:   ssa.OpGeq64,
  3622  	cvt2F: ssa.OpCvt64to64F,
  3623  	and:   ssa.OpAnd64,
  3624  	rsh:   ssa.OpRsh64Ux64,
  3625  	or:    ssa.OpOr64,
  3626  	add:   ssa.OpAdd64F,
  3627  	one:   (*state).constInt64,
  3628  }
  3629  
  3630  var u64_f32 u2fcvtTab = u2fcvtTab{
  3631  	geq:   ssa.OpGeq64,
  3632  	cvt2F: ssa.OpCvt64to32F,
  3633  	and:   ssa.OpAnd64,
  3634  	rsh:   ssa.OpRsh64Ux64,
  3635  	or:    ssa.OpOr64,
  3636  	add:   ssa.OpAdd32F,
  3637  	one:   (*state).constInt64,
  3638  }
  3639  
  3640  func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3641  	return s.uintTofloat(&u64_f64, n, x, ft, tt)
  3642  }
  3643  
  3644  func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3645  	return s.uintTofloat(&u64_f32, n, x, ft, tt)
  3646  }
  3647  
  3648  func (s *state) uintTofloat(cvttab *u2fcvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3649  	// if x >= 0 {
  3650  	//    result = (floatY) x
  3651  	// } else {
  3652  	// 	  y = uintX(x) ; y = x & 1
  3653  	// 	  z = uintX(x) ; z = z >> 1
  3654  	// 	  z = z >> 1
  3655  	// 	  z = z | y
  3656  	// 	  result = floatY(z)
  3657  	// 	  result = result + result
  3658  	// }
  3659  	//
  3660  	// Code borrowed from old code generator.
  3661  	// What's going on: large 64-bit "unsigned" looks like
  3662  	// negative number to hardware's integer-to-float
  3663  	// conversion. However, because the mantissa is only
  3664  	// 63 bits, we don't need the LSB, so instead we do an
  3665  	// unsigned right shift (divide by two), convert, and
  3666  	// double. However, before we do that, we need to be
  3667  	// sure that we do not lose a "1" if that made the
  3668  	// difference in the resulting rounding. Therefore, we
  3669  	// preserve it, and OR (not ADD) it back in. The case
  3670  	// that matters is when the eleven discarded bits are
  3671  	// equal to 10000000001; that rounds up, and the 1 cannot
  3672  	// be lost else it would round down if the LSB of the
  3673  	// candidate mantissa is 0.
  3674  	cmp := s.newValue2(cvttab.geq, Types[TBOOL], x, s.zeroVal(ft))
  3675  	b := s.endBlock()
  3676  	b.Kind = ssa.BlockIf
  3677  	b.SetControl(cmp)
  3678  	b.Likely = ssa.BranchLikely
  3679  
  3680  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3681  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3682  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3683  
  3684  	b.AddEdgeTo(bThen)
  3685  	s.startBlock(bThen)
  3686  	a0 := s.newValue1(cvttab.cvt2F, tt, x)
  3687  	s.vars[n] = a0
  3688  	s.endBlock()
  3689  	bThen.AddEdgeTo(bAfter)
  3690  
  3691  	b.AddEdgeTo(bElse)
  3692  	s.startBlock(bElse)
  3693  	one := cvttab.one(s, ft, 1)
  3694  	y := s.newValue2(cvttab.and, ft, x, one)
  3695  	z := s.newValue2(cvttab.rsh, ft, x, one)
  3696  	z = s.newValue2(cvttab.or, ft, z, y)
  3697  	a := s.newValue1(cvttab.cvt2F, tt, z)
  3698  	a1 := s.newValue2(cvttab.add, tt, a, a)
  3699  	s.vars[n] = a1
  3700  	s.endBlock()
  3701  	bElse.AddEdgeTo(bAfter)
  3702  
  3703  	s.startBlock(bAfter)
  3704  	return s.variable(n, n.Type)
  3705  }
  3706  
  3707  // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
  3708  func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value {
  3709  	if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() {
  3710  		s.Fatalf("node must be a map or a channel")
  3711  	}
  3712  	// if n == nil {
  3713  	//   return 0
  3714  	// } else {
  3715  	//   // len
  3716  	//   return *((*int)n)
  3717  	//   // cap
  3718  	//   return *(((*int)n)+1)
  3719  	// }
  3720  	lenType := n.Type
  3721  	nilValue := s.constNil(Types[TUINTPTR])
  3722  	cmp := s.newValue2(ssa.OpEqPtr, Types[TBOOL], x, nilValue)
  3723  	b := s.endBlock()
  3724  	b.Kind = ssa.BlockIf
  3725  	b.SetControl(cmp)
  3726  	b.Likely = ssa.BranchUnlikely
  3727  
  3728  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3729  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3730  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3731  
  3732  	// length/capacity of a nil map/chan is zero
  3733  	b.AddEdgeTo(bThen)
  3734  	s.startBlock(bThen)
  3735  	s.vars[n] = s.zeroVal(lenType)
  3736  	s.endBlock()
  3737  	bThen.AddEdgeTo(bAfter)
  3738  
  3739  	b.AddEdgeTo(bElse)
  3740  	s.startBlock(bElse)
  3741  	if n.Op == OLEN {
  3742  		// length is stored in the first word for map/chan
  3743  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem())
  3744  	} else if n.Op == OCAP {
  3745  		// capacity is stored in the second word for chan
  3746  		sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x)
  3747  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem())
  3748  	} else {
  3749  		s.Fatalf("op must be OLEN or OCAP")
  3750  	}
  3751  	s.endBlock()
  3752  	bElse.AddEdgeTo(bAfter)
  3753  
  3754  	s.startBlock(bAfter)
  3755  	return s.variable(n, lenType)
  3756  }
  3757  
  3758  type f2uCvtTab struct {
  3759  	ltf, cvt2U, subf ssa.Op
  3760  	value            func(*state, ssa.Type, float64) *ssa.Value
  3761  }
  3762  
  3763  var f32_u64 f2uCvtTab = f2uCvtTab{
  3764  	ltf:   ssa.OpLess32F,
  3765  	cvt2U: ssa.OpCvt32Fto64,
  3766  	subf:  ssa.OpSub32F,
  3767  	value: (*state).constFloat32,
  3768  }
  3769  
  3770  var f64_u64 f2uCvtTab = f2uCvtTab{
  3771  	ltf:   ssa.OpLess64F,
  3772  	cvt2U: ssa.OpCvt64Fto64,
  3773  	subf:  ssa.OpSub64F,
  3774  	value: (*state).constFloat64,
  3775  }
  3776  
  3777  func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3778  	return s.floatToUint(&f32_u64, n, x, ft, tt)
  3779  }
  3780  func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3781  	return s.floatToUint(&f64_u64, n, x, ft, tt)
  3782  }
  3783  
  3784  func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3785  	// if x < 9223372036854775808.0 {
  3786  	// 	result = uintY(x)
  3787  	// } else {
  3788  	// 	y = x - 9223372036854775808.0
  3789  	// 	z = uintY(y)
  3790  	// 	result = z | -9223372036854775808
  3791  	// }
  3792  	twoToThe63 := cvttab.value(s, ft, 9223372036854775808.0)
  3793  	cmp := s.newValue2(cvttab.ltf, Types[TBOOL], x, twoToThe63)
  3794  	b := s.endBlock()
  3795  	b.Kind = ssa.BlockIf
  3796  	b.SetControl(cmp)
  3797  	b.Likely = ssa.BranchLikely
  3798  
  3799  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3800  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3801  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3802  
  3803  	b.AddEdgeTo(bThen)
  3804  	s.startBlock(bThen)
  3805  	a0 := s.newValue1(cvttab.cvt2U, tt, x)
  3806  	s.vars[n] = a0
  3807  	s.endBlock()
  3808  	bThen.AddEdgeTo(bAfter)
  3809  
  3810  	b.AddEdgeTo(bElse)
  3811  	s.startBlock(bElse)
  3812  	y := s.newValue2(cvttab.subf, ft, x, twoToThe63)
  3813  	y = s.newValue1(cvttab.cvt2U, tt, y)
  3814  	z := s.constInt64(tt, -9223372036854775808)
  3815  	a1 := s.newValue2(ssa.OpOr64, tt, y, z)
  3816  	s.vars[n] = a1
  3817  	s.endBlock()
  3818  	bElse.AddEdgeTo(bAfter)
  3819  
  3820  	s.startBlock(bAfter)
  3821  	return s.variable(n, n.Type)
  3822  }
  3823  
  3824  // ifaceType returns the value for the word containing the type.
  3825  // n is the node for the interface expression.
  3826  // v is the corresponding value.
  3827  func (s *state) ifaceType(n *Node, v *ssa.Value) *ssa.Value {
  3828  	byteptr := ptrto(Types[TUINT8]) // type used in runtime prototypes for runtime type (*byte)
  3829  
  3830  	if n.Type.IsEmptyInterface() {
  3831  		// Have *eface. The type is the first word in the struct.
  3832  		return s.newValue1(ssa.OpITab, byteptr, v)
  3833  	}
  3834  
  3835  	// Have *iface.
  3836  	// The first word in the struct is the *itab.
  3837  	// If the *itab is nil, return 0.
  3838  	// Otherwise, the second word in the *itab is the type.
  3839  
  3840  	tab := s.newValue1(ssa.OpITab, byteptr, v)
  3841  	s.vars[&typVar] = tab
  3842  	isnonnil := s.newValue2(ssa.OpNeqPtr, Types[TBOOL], tab, s.constNil(byteptr))
  3843  	b := s.endBlock()
  3844  	b.Kind = ssa.BlockIf
  3845  	b.SetControl(isnonnil)
  3846  	b.Likely = ssa.BranchLikely
  3847  
  3848  	bLoad := s.f.NewBlock(ssa.BlockPlain)
  3849  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  3850  
  3851  	b.AddEdgeTo(bLoad)
  3852  	b.AddEdgeTo(bEnd)
  3853  	bLoad.AddEdgeTo(bEnd)
  3854  
  3855  	s.startBlock(bLoad)
  3856  	off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), tab)
  3857  	s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  3858  	s.endBlock()
  3859  
  3860  	s.startBlock(bEnd)
  3861  	typ := s.variable(&typVar, byteptr)
  3862  	delete(s.vars, &typVar)
  3863  	return typ
  3864  }
  3865  
  3866  // dottype generates SSA for a type assertion node.
  3867  // commaok indicates whether to panic or return a bool.
  3868  // If commaok is false, resok will be nil.
  3869  func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) {
  3870  	iface := s.expr(n.Left)
  3871  	typ := s.ifaceType(n.Left, iface)  // actual concrete type
  3872  	target := s.expr(typename(n.Type)) // target type
  3873  	if !isdirectiface(n.Type) {
  3874  		// walk rewrites ODOTTYPE/OAS2DOTTYPE into runtime calls except for this case.
  3875  		Fatalf("dottype needs a direct iface type %v", n.Type)
  3876  	}
  3877  
  3878  	if Debug_typeassert > 0 {
  3879  		Warnl(n.Lineno, "type assertion inlined")
  3880  	}
  3881  
  3882  	// TODO:  If we have a nonempty interface and its itab field is nil,
  3883  	// then this test is redundant and ifaceType should just branch directly to bFail.
  3884  	cond := s.newValue2(ssa.OpEqPtr, Types[TBOOL], typ, target)
  3885  	b := s.endBlock()
  3886  	b.Kind = ssa.BlockIf
  3887  	b.SetControl(cond)
  3888  	b.Likely = ssa.BranchLikely
  3889  
  3890  	byteptr := ptrto(Types[TUINT8])
  3891  
  3892  	bOk := s.f.NewBlock(ssa.BlockPlain)
  3893  	bFail := s.f.NewBlock(ssa.BlockPlain)
  3894  	b.AddEdgeTo(bOk)
  3895  	b.AddEdgeTo(bFail)
  3896  
  3897  	if !commaok {
  3898  		// on failure, panic by calling panicdottype
  3899  		s.startBlock(bFail)
  3900  		taddr := s.newValue1A(ssa.OpAddr, byteptr, &ssa.ExternSymbol{Typ: byteptr, Sym: typenamesym(n.Left.Type)}, s.sb)
  3901  		s.rtcall(panicdottype, false, nil, typ, target, taddr)
  3902  
  3903  		// on success, return idata field
  3904  		s.startBlock(bOk)
  3905  		return s.newValue1(ssa.OpIData, n.Type, iface), nil
  3906  	}
  3907  
  3908  	// commaok is the more complicated case because we have
  3909  	// a control flow merge point.
  3910  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  3911  
  3912  	// type assertion succeeded
  3913  	s.startBlock(bOk)
  3914  	s.vars[&idataVar] = s.newValue1(ssa.OpIData, n.Type, iface)
  3915  	s.vars[&okVar] = s.constBool(true)
  3916  	s.endBlock()
  3917  	bOk.AddEdgeTo(bEnd)
  3918  
  3919  	// type assertion failed
  3920  	s.startBlock(bFail)
  3921  	s.vars[&idataVar] = s.constNil(byteptr)
  3922  	s.vars[&okVar] = s.constBool(false)
  3923  	s.endBlock()
  3924  	bFail.AddEdgeTo(bEnd)
  3925  
  3926  	// merge point
  3927  	s.startBlock(bEnd)
  3928  	res = s.variable(&idataVar, byteptr)
  3929  	resok = s.variable(&okVar, Types[TBOOL])
  3930  	delete(s.vars, &idataVar)
  3931  	delete(s.vars, &okVar)
  3932  	return res, resok
  3933  }
  3934  
  3935  // checkgoto checks that a goto from from to to does not
  3936  // jump into a block or jump over variable declarations.
  3937  // It is a copy of checkgoto in the pre-SSA backend,
  3938  // modified only for line number handling.
  3939  // TODO: document how this works and why it is designed the way it is.
  3940  func (s *state) checkgoto(from *Node, to *Node) {
  3941  	if from.Sym == to.Sym {
  3942  		return
  3943  	}
  3944  
  3945  	nf := 0
  3946  	for fs := from.Sym; fs != nil; fs = fs.Link {
  3947  		nf++
  3948  	}
  3949  	nt := 0
  3950  	for fs := to.Sym; fs != nil; fs = fs.Link {
  3951  		nt++
  3952  	}
  3953  	fs := from.Sym
  3954  	for ; nf > nt; nf-- {
  3955  		fs = fs.Link
  3956  	}
  3957  	if fs != to.Sym {
  3958  		// decide what to complain about.
  3959  		// prefer to complain about 'into block' over declarations,
  3960  		// so scan backward to find most recent block or else dcl.
  3961  		var block *Sym
  3962  
  3963  		var dcl *Sym
  3964  		ts := to.Sym
  3965  		for ; nt > nf; nt-- {
  3966  			if ts.Pkg == nil {
  3967  				block = ts
  3968  			} else {
  3969  				dcl = ts
  3970  			}
  3971  			ts = ts.Link
  3972  		}
  3973  
  3974  		for ts != fs {
  3975  			if ts.Pkg == nil {
  3976  				block = ts
  3977  			} else {
  3978  				dcl = ts
  3979  			}
  3980  			ts = ts.Link
  3981  			fs = fs.Link
  3982  		}
  3983  
  3984  		lno := from.Left.Lineno
  3985  		if block != nil {
  3986  			yyerrorl(lno, "goto %v jumps into block starting at %v", from.Left.Sym, linestr(block.Lastlineno))
  3987  		} else {
  3988  			yyerrorl(lno, "goto %v jumps over declaration of %v at %v", from.Left.Sym, dcl, linestr(dcl.Lastlineno))
  3989  		}
  3990  	}
  3991  }
  3992  
  3993  // variable returns the value of a variable at the current location.
  3994  func (s *state) variable(name *Node, t ssa.Type) *ssa.Value {
  3995  	v := s.vars[name]
  3996  	if v != nil {
  3997  		return v
  3998  	}
  3999  	v = s.fwdVars[name]
  4000  	if v != nil {
  4001  		return v
  4002  	}
  4003  
  4004  	if s.curBlock == s.f.Entry {
  4005  		// No variable should be live at entry.
  4006  		s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, name, v)
  4007  	}
  4008  	// Make a FwdRef, which records a value that's live on block input.
  4009  	// We'll find the matching definition as part of insertPhis.
  4010  	v = s.newValue0A(ssa.OpFwdRef, t, name)
  4011  	s.fwdVars[name] = v
  4012  	s.addNamedValue(name, v)
  4013  	return v
  4014  }
  4015  
  4016  func (s *state) mem() *ssa.Value {
  4017  	return s.variable(&memVar, ssa.TypeMem)
  4018  }
  4019  
  4020  func (s *state) addNamedValue(n *Node, v *ssa.Value) {
  4021  	if n.Class == Pxxx {
  4022  		// Don't track our dummy nodes (&memVar etc.).
  4023  		return
  4024  	}
  4025  	if n.IsAutoTmp() {
  4026  		// Don't track temporary variables.
  4027  		return
  4028  	}
  4029  	if n.Class == PPARAMOUT {
  4030  		// Don't track named output values.  This prevents return values
  4031  		// from being assigned too early. See #14591 and #14762. TODO: allow this.
  4032  		return
  4033  	}
  4034  	if n.Class == PAUTO && n.Xoffset != 0 {
  4035  		s.Fatalf("AUTO var with offset %v %d", n, n.Xoffset)
  4036  	}
  4037  	loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0}
  4038  	values, ok := s.f.NamedValues[loc]
  4039  	if !ok {
  4040  		s.f.Names = append(s.f.Names, loc)
  4041  	}
  4042  	s.f.NamedValues[loc] = append(values, v)
  4043  }
  4044  
  4045  // Branch is an unresolved branch.
  4046  type Branch struct {
  4047  	P *obj.Prog  // branch instruction
  4048  	B *ssa.Block // target
  4049  }
  4050  
  4051  // SSAGenState contains state needed during Prog generation.
  4052  type SSAGenState struct {
  4053  	// Branches remembers all the branch instructions we've seen
  4054  	// and where they would like to go.
  4055  	Branches []Branch
  4056  
  4057  	// bstart remembers where each block starts (indexed by block ID)
  4058  	bstart []*obj.Prog
  4059  
  4060  	// 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?)
  4061  	SSEto387 map[int16]int16
  4062  	// Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8.
  4063  	ScratchFpMem *Node
  4064  }
  4065  
  4066  // Pc returns the current Prog.
  4067  func (s *SSAGenState) Pc() *obj.Prog {
  4068  	return pc
  4069  }
  4070  
  4071  // SetLineno sets the current source line number.
  4072  func (s *SSAGenState) SetLineno(l int32) {
  4073  	lineno = l
  4074  }
  4075  
  4076  // genssa appends entries to ptxt for each instruction in f.
  4077  // gcargs and gclocals are filled in with pointer maps for the frame.
  4078  func genssa(f *ssa.Func, ptxt *obj.Prog, gcargs, gclocals *Sym) {
  4079  	var s SSAGenState
  4080  
  4081  	e := f.Config.Frontend().(*ssaExport)
  4082  
  4083  	// Remember where each block starts.
  4084  	s.bstart = make([]*obj.Prog, f.NumBlocks())
  4085  
  4086  	var valueProgs map[*obj.Prog]*ssa.Value
  4087  	var blockProgs map[*obj.Prog]*ssa.Block
  4088  	var logProgs = e.log
  4089  	if logProgs {
  4090  		valueProgs = make(map[*obj.Prog]*ssa.Value, f.NumValues())
  4091  		blockProgs = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
  4092  		f.Logf("genssa %s\n", f.Name)
  4093  		blockProgs[pc] = f.Blocks[0]
  4094  	}
  4095  
  4096  	if Thearch.Use387 {
  4097  		s.SSEto387 = map[int16]int16{}
  4098  	}
  4099  
  4100  	s.ScratchFpMem = scratchFpMem
  4101  	scratchFpMem = nil
  4102  
  4103  	// Emit basic blocks
  4104  	for i, b := range f.Blocks {
  4105  		s.bstart[b.ID] = pc
  4106  		// Emit values in block
  4107  		Thearch.SSAMarkMoves(&s, b)
  4108  		for _, v := range b.Values {
  4109  			x := pc
  4110  			Thearch.SSAGenValue(&s, v)
  4111  			if logProgs {
  4112  				for ; x != pc; x = x.Link {
  4113  					valueProgs[x] = v
  4114  				}
  4115  			}
  4116  		}
  4117  		// Emit control flow instructions for block
  4118  		var next *ssa.Block
  4119  		if i < len(f.Blocks)-1 && Debug['N'] == 0 {
  4120  			// If -N, leave next==nil so every block with successors
  4121  			// ends in a JMP (except call blocks - plive doesn't like
  4122  			// select{send,recv} followed by a JMP call).  Helps keep
  4123  			// line numbers for otherwise empty blocks.
  4124  			next = f.Blocks[i+1]
  4125  		}
  4126  		x := pc
  4127  		Thearch.SSAGenBlock(&s, b, next)
  4128  		if logProgs {
  4129  			for ; x != pc; x = x.Link {
  4130  				blockProgs[x] = b
  4131  			}
  4132  		}
  4133  	}
  4134  
  4135  	// Resolve branches
  4136  	for _, br := range s.Branches {
  4137  		br.P.To.Val = s.bstart[br.B.ID]
  4138  	}
  4139  
  4140  	if logProgs {
  4141  		for p := ptxt; p != nil; p = p.Link {
  4142  			var s string
  4143  			if v, ok := valueProgs[p]; ok {
  4144  				s = v.String()
  4145  			} else if b, ok := blockProgs[p]; ok {
  4146  				s = b.String()
  4147  			} else {
  4148  				s = "   " // most value and branch strings are 2-3 characters long
  4149  			}
  4150  			f.Logf("%s\t%s\n", s, p)
  4151  		}
  4152  		if f.Config.HTML != nil {
  4153  			saved := ptxt.Ctxt.LineHist.PrintFilenameOnly
  4154  			ptxt.Ctxt.LineHist.PrintFilenameOnly = true
  4155  			var buf bytes.Buffer
  4156  			buf.WriteString("<code>")
  4157  			buf.WriteString("<dl class=\"ssa-gen\">")
  4158  			for p := ptxt; p != nil; p = p.Link {
  4159  				buf.WriteString("<dt class=\"ssa-prog-src\">")
  4160  				if v, ok := valueProgs[p]; ok {
  4161  					buf.WriteString(v.HTML())
  4162  				} else if b, ok := blockProgs[p]; ok {
  4163  					buf.WriteString(b.HTML())
  4164  				}
  4165  				buf.WriteString("</dt>")
  4166  				buf.WriteString("<dd class=\"ssa-prog\">")
  4167  				buf.WriteString(html.EscapeString(p.String()))
  4168  				buf.WriteString("</dd>")
  4169  				buf.WriteString("</li>")
  4170  			}
  4171  			buf.WriteString("</dl>")
  4172  			buf.WriteString("</code>")
  4173  			f.Config.HTML.WriteColumn("genssa", buf.String())
  4174  			ptxt.Ctxt.LineHist.PrintFilenameOnly = saved
  4175  		}
  4176  	}
  4177  
  4178  	// Emit static data
  4179  	if f.StaticData != nil {
  4180  		for _, n := range f.StaticData.([]*Node) {
  4181  			if !gen_as_init(n, false) {
  4182  				Fatalf("non-static data marked as static: %v\n\n", n)
  4183  			}
  4184  		}
  4185  	}
  4186  
  4187  	// Generate gc bitmaps.
  4188  	liveness(Curfn, ptxt, gcargs, gclocals)
  4189  
  4190  	// Add frame prologue. Zero ambiguously live variables.
  4191  	Thearch.Defframe(ptxt)
  4192  	if Debug['f'] != 0 {
  4193  		frame(0)
  4194  	}
  4195  
  4196  	// Remove leftover instrumentation from the instruction stream.
  4197  	removevardef(ptxt)
  4198  
  4199  	f.Config.HTML.Close()
  4200  	f.Config.HTML = nil
  4201  }
  4202  
  4203  type FloatingEQNEJump struct {
  4204  	Jump  obj.As
  4205  	Index int
  4206  }
  4207  
  4208  func oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump, likely ssa.BranchPrediction, branches []Branch) []Branch {
  4209  	p := Prog(jumps.Jump)
  4210  	p.To.Type = obj.TYPE_BRANCH
  4211  	to := jumps.Index
  4212  	branches = append(branches, Branch{p, b.Succs[to].Block()})
  4213  	if to == 1 {
  4214  		likely = -likely
  4215  	}
  4216  	// liblink reorders the instruction stream as it sees fit.
  4217  	// Pass along what we know so liblink can make use of it.
  4218  	// TODO: Once we've fully switched to SSA,
  4219  	// make liblink leave our output alone.
  4220  	switch likely {
  4221  	case ssa.BranchUnlikely:
  4222  		p.From.Type = obj.TYPE_CONST
  4223  		p.From.Offset = 0
  4224  	case ssa.BranchLikely:
  4225  		p.From.Type = obj.TYPE_CONST
  4226  		p.From.Offset = 1
  4227  	}
  4228  	return branches
  4229  }
  4230  
  4231  func SSAGenFPJump(s *SSAGenState, b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) {
  4232  	likely := b.Likely
  4233  	switch next {
  4234  	case b.Succs[0].Block():
  4235  		s.Branches = oneFPJump(b, &jumps[0][0], likely, s.Branches)
  4236  		s.Branches = oneFPJump(b, &jumps[0][1], likely, s.Branches)
  4237  	case b.Succs[1].Block():
  4238  		s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches)
  4239  		s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches)
  4240  	default:
  4241  		s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches)
  4242  		s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches)
  4243  		q := Prog(obj.AJMP)
  4244  		q.To.Type = obj.TYPE_BRANCH
  4245  		s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()})
  4246  	}
  4247  }
  4248  
  4249  func AuxOffset(v *ssa.Value) (offset int64) {
  4250  	if v.Aux == nil {
  4251  		return 0
  4252  	}
  4253  	switch sym := v.Aux.(type) {
  4254  
  4255  	case *ssa.AutoSymbol:
  4256  		n := sym.Node.(*Node)
  4257  		return n.Xoffset
  4258  	}
  4259  	return 0
  4260  }
  4261  
  4262  // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
  4263  func AddAux(a *obj.Addr, v *ssa.Value) {
  4264  	AddAux2(a, v, v.AuxInt)
  4265  }
  4266  func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) {
  4267  	if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR {
  4268  		v.Fatalf("bad AddAux addr %v", a)
  4269  	}
  4270  	// add integer offset
  4271  	a.Offset += offset
  4272  
  4273  	// If no additional symbol offset, we're done.
  4274  	if v.Aux == nil {
  4275  		return
  4276  	}
  4277  	// Add symbol's offset from its base register.
  4278  	switch sym := v.Aux.(type) {
  4279  	case *ssa.ExternSymbol:
  4280  		a.Name = obj.NAME_EXTERN
  4281  		switch s := sym.Sym.(type) {
  4282  		case *Sym:
  4283  			a.Sym = Linksym(s)
  4284  		case *obj.LSym:
  4285  			a.Sym = s
  4286  		default:
  4287  			v.Fatalf("ExternSymbol.Sym is %T", s)
  4288  		}
  4289  	case *ssa.ArgSymbol:
  4290  		n := sym.Node.(*Node)
  4291  		a.Name = obj.NAME_PARAM
  4292  		a.Node = n
  4293  		a.Sym = Linksym(n.Orig.Sym)
  4294  		a.Offset += n.Xoffset
  4295  	case *ssa.AutoSymbol:
  4296  		n := sym.Node.(*Node)
  4297  		a.Name = obj.NAME_AUTO
  4298  		a.Node = n
  4299  		a.Sym = Linksym(n.Sym)
  4300  		a.Offset += n.Xoffset
  4301  	default:
  4302  		v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
  4303  	}
  4304  }
  4305  
  4306  // sizeAlignAuxInt returns an AuxInt encoding the size and alignment of type t.
  4307  func sizeAlignAuxInt(t *Type) int64 {
  4308  	return ssa.MakeSizeAndAlign(t.Size(), t.Alignment()).Int64()
  4309  }
  4310  
  4311  // extendIndex extends v to a full int width.
  4312  // panic using the given function if v does not fit in an int (only on 32-bit archs).
  4313  func (s *state) extendIndex(v *ssa.Value, panicfn *Node) *ssa.Value {
  4314  	size := v.Type.Size()
  4315  	if size == s.config.IntSize {
  4316  		return v
  4317  	}
  4318  	if size > s.config.IntSize {
  4319  		// truncate 64-bit indexes on 32-bit pointer archs. Test the
  4320  		// high word and branch to out-of-bounds failure if it is not 0.
  4321  		if Debug['B'] == 0 {
  4322  			hi := s.newValue1(ssa.OpInt64Hi, Types[TUINT32], v)
  4323  			cmp := s.newValue2(ssa.OpEq32, Types[TBOOL], hi, s.constInt32(Types[TUINT32], 0))
  4324  			s.check(cmp, panicfn)
  4325  		}
  4326  		return s.newValue1(ssa.OpTrunc64to32, Types[TINT], v)
  4327  	}
  4328  
  4329  	// Extend value to the required size
  4330  	var op ssa.Op
  4331  	if v.Type.IsSigned() {
  4332  		switch 10*size + s.config.IntSize {
  4333  		case 14:
  4334  			op = ssa.OpSignExt8to32
  4335  		case 18:
  4336  			op = ssa.OpSignExt8to64
  4337  		case 24:
  4338  			op = ssa.OpSignExt16to32
  4339  		case 28:
  4340  			op = ssa.OpSignExt16to64
  4341  		case 48:
  4342  			op = ssa.OpSignExt32to64
  4343  		default:
  4344  			s.Fatalf("bad signed index extension %s", v.Type)
  4345  		}
  4346  	} else {
  4347  		switch 10*size + s.config.IntSize {
  4348  		case 14:
  4349  			op = ssa.OpZeroExt8to32
  4350  		case 18:
  4351  			op = ssa.OpZeroExt8to64
  4352  		case 24:
  4353  			op = ssa.OpZeroExt16to32
  4354  		case 28:
  4355  			op = ssa.OpZeroExt16to64
  4356  		case 48:
  4357  			op = ssa.OpZeroExt32to64
  4358  		default:
  4359  			s.Fatalf("bad unsigned index extension %s", v.Type)
  4360  		}
  4361  	}
  4362  	return s.newValue1(op, Types[TINT], v)
  4363  }
  4364  
  4365  // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values.
  4366  // Called during ssaGenValue.
  4367  func CheckLoweredPhi(v *ssa.Value) {
  4368  	if v.Op != ssa.OpPhi {
  4369  		v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString())
  4370  	}
  4371  	if v.Type.IsMemory() {
  4372  		return
  4373  	}
  4374  	f := v.Block.Func
  4375  	loc := f.RegAlloc[v.ID]
  4376  	for _, a := range v.Args {
  4377  		if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead?
  4378  			v.Fatalf("phi arg at different location than phi: %v @ %v, but arg %v @ %v\n%s\n", v, loc, a, aloc, v.Block.Func)
  4379  		}
  4380  	}
  4381  }
  4382  
  4383  // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block.
  4384  // The output of LoweredGetClosurePtr is generally hardwired to the correct register.
  4385  // That register contains the closure pointer on closure entry.
  4386  func CheckLoweredGetClosurePtr(v *ssa.Value) {
  4387  	entry := v.Block.Func.Entry
  4388  	if entry != v.Block || entry.Values[0] != v {
  4389  		Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
  4390  	}
  4391  }
  4392  
  4393  // KeepAlive marks the variable referenced by OpKeepAlive as live.
  4394  // Called during ssaGenValue.
  4395  func KeepAlive(v *ssa.Value) {
  4396  	if v.Op != ssa.OpKeepAlive {
  4397  		v.Fatalf("KeepAlive called with non-KeepAlive value: %v", v.LongString())
  4398  	}
  4399  	if !v.Args[0].Type.IsPtrShaped() {
  4400  		v.Fatalf("keeping non-pointer alive %v", v.Args[0])
  4401  	}
  4402  	n, off := AutoVar(v.Args[0])
  4403  	if n == nil {
  4404  		v.Fatalf("KeepAlive with non-spilled value %s %s", v, v.Args[0])
  4405  	}
  4406  	if off != 0 {
  4407  		v.Fatalf("KeepAlive with non-zero offset spill location %v:%d", n, off)
  4408  	}
  4409  	Gvarlive(n)
  4410  }
  4411  
  4412  // AutoVar returns a *Node and int64 representing the auto variable and offset within it
  4413  // where v should be spilled.
  4414  func AutoVar(v *ssa.Value) (*Node, int64) {
  4415  	loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot)
  4416  	if v.Type.Size() > loc.Type.Size() {
  4417  		v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
  4418  	}
  4419  	return loc.N.(*Node), loc.Off
  4420  }
  4421  
  4422  func AddrAuto(a *obj.Addr, v *ssa.Value) {
  4423  	n, off := AutoVar(v)
  4424  	a.Type = obj.TYPE_MEM
  4425  	a.Node = n
  4426  	a.Sym = Linksym(n.Sym)
  4427  	a.Offset = n.Xoffset + off
  4428  	if n.Class == PPARAM || n.Class == PPARAMOUT {
  4429  		a.Name = obj.NAME_PARAM
  4430  	} else {
  4431  		a.Name = obj.NAME_AUTO
  4432  	}
  4433  }
  4434  
  4435  func (s *SSAGenState) AddrScratch(a *obj.Addr) {
  4436  	if s.ScratchFpMem == nil {
  4437  		panic("no scratch memory available; forgot to declare usesScratch for Op?")
  4438  	}
  4439  	a.Type = obj.TYPE_MEM
  4440  	a.Name = obj.NAME_AUTO
  4441  	a.Node = s.ScratchFpMem
  4442  	a.Sym = Linksym(s.ScratchFpMem.Sym)
  4443  	a.Reg = int16(Thearch.REGSP)
  4444  	a.Offset = s.ScratchFpMem.Xoffset
  4445  }
  4446  
  4447  // fieldIdx finds the index of the field referred to by the ODOT node n.
  4448  func fieldIdx(n *Node) int {
  4449  	t := n.Left.Type
  4450  	f := n.Sym
  4451  	if !t.IsStruct() {
  4452  		panic("ODOT's LHS is not a struct")
  4453  	}
  4454  
  4455  	var i int
  4456  	for _, t1 := range t.Fields().Slice() {
  4457  		if t1.Sym != f {
  4458  			i++
  4459  			continue
  4460  		}
  4461  		if t1.Offset != n.Xoffset {
  4462  			panic("field offset doesn't match")
  4463  		}
  4464  		return i
  4465  	}
  4466  	panic(fmt.Sprintf("can't find field in expr %v\n", n))
  4467  
  4468  	// TODO: keep the result of this function somewhere in the ODOT Node
  4469  	// so we don't have to recompute it each time we need it.
  4470  }
  4471  
  4472  // ssaExport exports a bunch of compiler services for the ssa backend.
  4473  type ssaExport struct {
  4474  	log bool
  4475  }
  4476  
  4477  func (s *ssaExport) TypeBool() ssa.Type    { return Types[TBOOL] }
  4478  func (s *ssaExport) TypeInt8() ssa.Type    { return Types[TINT8] }
  4479  func (s *ssaExport) TypeInt16() ssa.Type   { return Types[TINT16] }
  4480  func (s *ssaExport) TypeInt32() ssa.Type   { return Types[TINT32] }
  4481  func (s *ssaExport) TypeInt64() ssa.Type   { return Types[TINT64] }
  4482  func (s *ssaExport) TypeUInt8() ssa.Type   { return Types[TUINT8] }
  4483  func (s *ssaExport) TypeUInt16() ssa.Type  { return Types[TUINT16] }
  4484  func (s *ssaExport) TypeUInt32() ssa.Type  { return Types[TUINT32] }
  4485  func (s *ssaExport) TypeUInt64() ssa.Type  { return Types[TUINT64] }
  4486  func (s *ssaExport) TypeFloat32() ssa.Type { return Types[TFLOAT32] }
  4487  func (s *ssaExport) TypeFloat64() ssa.Type { return Types[TFLOAT64] }
  4488  func (s *ssaExport) TypeInt() ssa.Type     { return Types[TINT] }
  4489  func (s *ssaExport) TypeUintptr() ssa.Type { return Types[TUINTPTR] }
  4490  func (s *ssaExport) TypeString() ssa.Type  { return Types[TSTRING] }
  4491  func (s *ssaExport) TypeBytePtr() ssa.Type { return ptrto(Types[TUINT8]) }
  4492  
  4493  // StringData returns a symbol (a *Sym wrapped in an interface) which
  4494  // is the data component of a global string constant containing s.
  4495  func (*ssaExport) StringData(s string) interface{} {
  4496  	// TODO: is idealstring correct?  It might not matter...
  4497  	data := stringsym(s)
  4498  	return &ssa.ExternSymbol{Typ: idealstring, Sym: data}
  4499  }
  4500  
  4501  func (e *ssaExport) Auto(t ssa.Type) ssa.GCNode {
  4502  	n := temp(t.(*Type)) // Note: adds new auto to Curfn.Func.Dcl list
  4503  	return n
  4504  }
  4505  
  4506  func (e *ssaExport) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4507  	n := name.N.(*Node)
  4508  	ptrType := ptrto(Types[TUINT8])
  4509  	lenType := Types[TINT]
  4510  	if n.Class == PAUTO && !n.Addrtaken {
  4511  		// Split this string up into two separate variables.
  4512  		p := e.namedAuto(n.Sym.Name+".ptr", ptrType)
  4513  		l := e.namedAuto(n.Sym.Name+".len", lenType)
  4514  		return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}
  4515  	}
  4516  	// Return the two parts of the larger variable.
  4517  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}
  4518  }
  4519  
  4520  func (e *ssaExport) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4521  	n := name.N.(*Node)
  4522  	t := ptrto(Types[TUINT8])
  4523  	if n.Class == PAUTO && !n.Addrtaken {
  4524  		// Split this interface up into two separate variables.
  4525  		f := ".itab"
  4526  		if n.Type.IsEmptyInterface() {
  4527  			f = ".type"
  4528  		}
  4529  		c := e.namedAuto(n.Sym.Name+f, t)
  4530  		d := e.namedAuto(n.Sym.Name+".data", t)
  4531  		return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
  4532  	}
  4533  	// Return the two parts of the larger variable.
  4534  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)}
  4535  }
  4536  
  4537  func (e *ssaExport) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) {
  4538  	n := name.N.(*Node)
  4539  	ptrType := ptrto(name.Type.ElemType().(*Type))
  4540  	lenType := Types[TINT]
  4541  	if n.Class == PAUTO && !n.Addrtaken {
  4542  		// Split this slice up into three separate variables.
  4543  		p := e.namedAuto(n.Sym.Name+".ptr", ptrType)
  4544  		l := e.namedAuto(n.Sym.Name+".len", lenType)
  4545  		c := e.namedAuto(n.Sym.Name+".cap", lenType)
  4546  		return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}, ssa.LocalSlot{N: c, Type: lenType, Off: 0}
  4547  	}
  4548  	// Return the three parts of the larger variable.
  4549  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off},
  4550  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)},
  4551  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)}
  4552  }
  4553  
  4554  func (e *ssaExport) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4555  	n := name.N.(*Node)
  4556  	s := name.Type.Size() / 2
  4557  	var t *Type
  4558  	if s == 8 {
  4559  		t = Types[TFLOAT64]
  4560  	} else {
  4561  		t = Types[TFLOAT32]
  4562  	}
  4563  	if n.Class == PAUTO && !n.Addrtaken {
  4564  		// Split this complex up into two separate variables.
  4565  		c := e.namedAuto(n.Sym.Name+".real", t)
  4566  		d := e.namedAuto(n.Sym.Name+".imag", t)
  4567  		return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
  4568  	}
  4569  	// Return the two parts of the larger variable.
  4570  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s}
  4571  }
  4572  
  4573  func (e *ssaExport) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4574  	n := name.N.(*Node)
  4575  	var t *Type
  4576  	if name.Type.IsSigned() {
  4577  		t = Types[TINT32]
  4578  	} else {
  4579  		t = Types[TUINT32]
  4580  	}
  4581  	if n.Class == PAUTO && !n.Addrtaken {
  4582  		// Split this int64 up into two separate variables.
  4583  		h := e.namedAuto(n.Sym.Name+".hi", t)
  4584  		l := e.namedAuto(n.Sym.Name+".lo", Types[TUINT32])
  4585  		return ssa.LocalSlot{N: h, Type: t, Off: 0}, ssa.LocalSlot{N: l, Type: Types[TUINT32], Off: 0}
  4586  	}
  4587  	// Return the two parts of the larger variable.
  4588  	// Assuming little endian (we don't support big endian 32-bit architecture yet)
  4589  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: Types[TUINT32], Off: name.Off}
  4590  }
  4591  
  4592  func (e *ssaExport) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot {
  4593  	n := name.N.(*Node)
  4594  	st := name.Type
  4595  	ft := st.FieldType(i)
  4596  	if n.Class == PAUTO && !n.Addrtaken {
  4597  		// Note: the _ field may appear several times.  But
  4598  		// have no fear, identically-named but distinct Autos are
  4599  		// ok, albeit maybe confusing for a debugger.
  4600  		x := e.namedAuto(n.Sym.Name+"."+st.FieldName(i), ft)
  4601  		return ssa.LocalSlot{N: x, Type: ft, Off: 0}
  4602  	}
  4603  	return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)}
  4604  }
  4605  
  4606  func (e *ssaExport) SplitArray(name ssa.LocalSlot) ssa.LocalSlot {
  4607  	n := name.N.(*Node)
  4608  	at := name.Type
  4609  	if at.NumElem() != 1 {
  4610  		Fatalf("bad array size")
  4611  	}
  4612  	et := at.ElemType()
  4613  	if n.Class == PAUTO && !n.Addrtaken {
  4614  		x := e.namedAuto(n.Sym.Name+"[0]", et)
  4615  		return ssa.LocalSlot{N: x, Type: et, Off: 0}
  4616  	}
  4617  	return ssa.LocalSlot{N: n, Type: et, Off: name.Off}
  4618  }
  4619  
  4620  // namedAuto returns a new AUTO variable with the given name and type.
  4621  // These are exposed to the debugger.
  4622  func (e *ssaExport) namedAuto(name string, typ ssa.Type) ssa.GCNode {
  4623  	t := typ.(*Type)
  4624  	s := &Sym{Name: name, Pkg: localpkg}
  4625  	n := nod(ONAME, nil, nil)
  4626  	s.Def = n
  4627  	s.Def.Used = true
  4628  	n.Sym = s
  4629  	n.Type = t
  4630  	n.Class = PAUTO
  4631  	n.Addable = true
  4632  	n.Ullman = 1
  4633  	n.Esc = EscNever
  4634  	n.Xoffset = 0
  4635  	n.Name.Curfn = Curfn
  4636  	Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
  4637  
  4638  	dowidth(t)
  4639  	return n
  4640  }
  4641  
  4642  func (e *ssaExport) CanSSA(t ssa.Type) bool {
  4643  	return canSSAType(t.(*Type))
  4644  }
  4645  
  4646  func (e *ssaExport) Line(line int32) string {
  4647  	return linestr(line)
  4648  }
  4649  
  4650  // Log logs a message from the compiler.
  4651  func (e *ssaExport) Logf(msg string, args ...interface{}) {
  4652  	if e.log {
  4653  		fmt.Printf(msg, args...)
  4654  	}
  4655  }
  4656  
  4657  func (e *ssaExport) Log() bool {
  4658  	return e.log
  4659  }
  4660  
  4661  // Fatal reports a compiler error and exits.
  4662  func (e *ssaExport) Fatalf(line int32, msg string, args ...interface{}) {
  4663  	lineno = line
  4664  	Fatalf(msg, args...)
  4665  }
  4666  
  4667  // Warnl reports a "warning", which is usually flag-triggered
  4668  // logging output for the benefit of tests.
  4669  func (e *ssaExport) Warnl(line int32, fmt_ string, args ...interface{}) {
  4670  	Warnl(line, fmt_, args...)
  4671  }
  4672  
  4673  func (e *ssaExport) Debug_checknil() bool {
  4674  	return Debug_checknil != 0
  4675  }
  4676  
  4677  func (e *ssaExport) Debug_wb() bool {
  4678  	return Debug_wb != 0
  4679  }
  4680  
  4681  func (e *ssaExport) Syslook(name string) interface{} {
  4682  	return syslook(name).Sym
  4683  }
  4684  
  4685  func (n *Node) Typ() ssa.Type {
  4686  	return n.Type
  4687  }