github.com/dannin/go@v0.0.0-20161031215817-d35dfd405eaa/src/cmd/compile/internal/gc/subr.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"bytes"
     9  	"cmd/internal/obj"
    10  	"crypto/md5"
    11  	"encoding/binary"
    12  	"fmt"
    13  	"os"
    14  	"runtime/debug"
    15  	"sort"
    16  	"strconv"
    17  	"strings"
    18  	"unicode"
    19  	"unicode/utf8"
    20  )
    21  
    22  type Error struct {
    23  	lineno int32
    24  	msg    string
    25  }
    26  
    27  var errors []Error
    28  
    29  func errorexit() {
    30  	flusherrors()
    31  	if outfile != "" {
    32  		os.Remove(outfile)
    33  	}
    34  	os.Exit(2)
    35  }
    36  
    37  func adderrorname(n *Node) {
    38  	if n.Op != ODOT {
    39  		return
    40  	}
    41  	old := fmt.Sprintf("%v: undefined: %v\n", n.Line(), n.Left)
    42  	if len(errors) > 0 && errors[len(errors)-1].lineno == n.Lineno && errors[len(errors)-1].msg == old {
    43  		errors[len(errors)-1].msg = fmt.Sprintf("%v: undefined: %v in %v\n", n.Line(), n.Left, n)
    44  	}
    45  }
    46  
    47  func adderr(line int32, format string, args ...interface{}) {
    48  	errors = append(errors, Error{
    49  		lineno: line,
    50  		msg:    fmt.Sprintf("%v: %s\n", linestr(line), fmt.Sprintf(format, args...)),
    51  	})
    52  }
    53  
    54  // byLineno sorts errors by lineno.
    55  type byLineno []Error
    56  
    57  func (x byLineno) Len() int           { return len(x) }
    58  func (x byLineno) Less(i, j int) bool { return x[i].lineno < x[j].lineno }
    59  func (x byLineno) Swap(i, j int)      { x[i], x[j] = x[j], x[i] }
    60  
    61  func flusherrors() {
    62  	Ctxt.Bso.Flush()
    63  	if len(errors) == 0 {
    64  		return
    65  	}
    66  	sort.Stable(byLineno(errors))
    67  	for i := 0; i < len(errors); i++ {
    68  		if i == 0 || errors[i].msg != errors[i-1].msg {
    69  			fmt.Printf("%s", errors[i].msg)
    70  		}
    71  	}
    72  	errors = errors[:0]
    73  }
    74  
    75  func hcrash() {
    76  	if Debug['h'] != 0 {
    77  		flusherrors()
    78  		if outfile != "" {
    79  			os.Remove(outfile)
    80  		}
    81  		var x *int
    82  		*x = 0
    83  	}
    84  }
    85  
    86  func linestr(line int32) string {
    87  	return Ctxt.Line(int(line))
    88  }
    89  
    90  // lasterror keeps track of the most recently issued error.
    91  // It is used to avoid multiple error messages on the same
    92  // line.
    93  var lasterror struct {
    94  	syntax int32  // line of last syntax error
    95  	other  int32  // line of last non-syntax error
    96  	msg    string // error message of last non-syntax error
    97  }
    98  
    99  func yyerrorl(line int32, format string, args ...interface{}) {
   100  	msg := fmt.Sprintf(format, args...)
   101  
   102  	if strings.HasPrefix(msg, "syntax error") {
   103  		nsyntaxerrors++
   104  		// only one syntax error per line, no matter what error
   105  		if lasterror.syntax == line {
   106  			return
   107  		}
   108  		lasterror.syntax = line
   109  	} else {
   110  		// only one of multiple equal non-syntax errors per line
   111  		// (flusherrors shows only one of them, so we filter them
   112  		// here as best as we can (they may not appear in order)
   113  		// so that we don't count them here and exit early, and
   114  		// then have nothing to show for.)
   115  		if lasterror.other == line && lasterror.msg == msg {
   116  			return
   117  		}
   118  		lasterror.other = line
   119  		lasterror.msg = msg
   120  	}
   121  
   122  	adderr(line, "%s", msg)
   123  
   124  	hcrash()
   125  	nerrors++
   126  	if nsavederrors+nerrors >= 10 && Debug['e'] == 0 {
   127  		flusherrors()
   128  		fmt.Printf("%v: too many errors\n", linestr(line))
   129  		errorexit()
   130  	}
   131  }
   132  
   133  func yyerror(format string, args ...interface{}) {
   134  	yyerrorl(lineno, format, args...)
   135  }
   136  
   137  func Warn(fmt_ string, args ...interface{}) {
   138  	adderr(lineno, fmt_, args...)
   139  
   140  	hcrash()
   141  }
   142  
   143  func Warnl(line int32, fmt_ string, args ...interface{}) {
   144  	adderr(line, fmt_, args...)
   145  	if Debug['m'] != 0 {
   146  		flusherrors()
   147  	}
   148  }
   149  
   150  func Fatalf(fmt_ string, args ...interface{}) {
   151  	flusherrors()
   152  
   153  	fmt.Printf("%v: internal compiler error: ", linestr(lineno))
   154  	fmt.Printf(fmt_, args...)
   155  	fmt.Printf("\n")
   156  
   157  	// If this is a released compiler version, ask for a bug report.
   158  	if strings.HasPrefix(obj.Version, "release") {
   159  		fmt.Printf("\n")
   160  		fmt.Printf("Please file a bug report including a short program that triggers the error.\n")
   161  		fmt.Printf("https://golang.org/issue/new\n")
   162  	} else {
   163  		// Not a release; dump a stack trace, too.
   164  		fmt.Println()
   165  		os.Stdout.Write(debug.Stack())
   166  		fmt.Println()
   167  	}
   168  
   169  	hcrash()
   170  	errorexit()
   171  }
   172  
   173  func linehistpragma(file string) {
   174  	if Debug['i'] != 0 {
   175  		fmt.Printf("pragma %s at line %v\n", file, linestr(lexlineno))
   176  	}
   177  	Ctxt.AddImport(file)
   178  }
   179  
   180  func linehistpush(file string) {
   181  	if Debug['i'] != 0 {
   182  		fmt.Printf("import %s at line %v\n", file, linestr(lexlineno))
   183  	}
   184  	Ctxt.LineHist.Push(int(lexlineno), file)
   185  }
   186  
   187  func linehistpop() {
   188  	if Debug['i'] != 0 {
   189  		fmt.Printf("end of import at line %v\n", linestr(lexlineno))
   190  	}
   191  	Ctxt.LineHist.Pop(int(lexlineno))
   192  }
   193  
   194  func linehistupdate(file string, off int) {
   195  	if Debug['i'] != 0 {
   196  		fmt.Printf("line %s at line %v\n", file, linestr(lexlineno))
   197  	}
   198  	Ctxt.LineHist.Update(int(lexlineno), file, off)
   199  }
   200  
   201  func setlineno(n *Node) int32 {
   202  	lno := lineno
   203  	if n != nil {
   204  		switch n.Op {
   205  		case ONAME, OPACK:
   206  			break
   207  
   208  		case OLITERAL, OTYPE:
   209  			if n.Sym != nil {
   210  				break
   211  			}
   212  			fallthrough
   213  
   214  		default:
   215  			lineno = n.Lineno
   216  			if lineno == 0 {
   217  				if Debug['K'] != 0 {
   218  					Warn("setlineno: line 0")
   219  				}
   220  				lineno = lno
   221  			}
   222  		}
   223  	}
   224  
   225  	return lno
   226  }
   227  
   228  func lookup(name string) *Sym {
   229  	return localpkg.Lookup(name)
   230  }
   231  
   232  func lookupf(format string, a ...interface{}) *Sym {
   233  	return lookup(fmt.Sprintf(format, a...))
   234  }
   235  
   236  func lookupBytes(name []byte) *Sym {
   237  	return localpkg.LookupBytes(name)
   238  }
   239  
   240  // lookupN looks up the symbol starting with prefix and ending with
   241  // the decimal n. If prefix is too long, lookupN panics.
   242  func lookupN(prefix string, n int) *Sym {
   243  	var buf [20]byte // plenty long enough for all current users
   244  	copy(buf[:], prefix)
   245  	b := strconv.AppendInt(buf[:len(prefix)], int64(n), 10)
   246  	return lookupBytes(b)
   247  }
   248  
   249  // autolabel generates a new Name node for use with
   250  // an automatically generated label.
   251  // prefix is a short mnemonic (e.g. ".s" for switch)
   252  // to help with debugging.
   253  // It should begin with "." to avoid conflicts with
   254  // user labels.
   255  func autolabel(prefix string) *Node {
   256  	if prefix[0] != '.' {
   257  		Fatalf("autolabel prefix must start with '.', have %q", prefix)
   258  	}
   259  	fn := Curfn
   260  	if Curfn == nil {
   261  		Fatalf("autolabel outside function")
   262  	}
   263  	n := fn.Func.Label
   264  	fn.Func.Label++
   265  	return newname(lookupN(prefix, int(n)))
   266  }
   267  
   268  var initSyms []*Sym
   269  
   270  var nopkg = &Pkg{
   271  	Syms: make(map[string]*Sym),
   272  }
   273  
   274  func (pkg *Pkg) Lookup(name string) *Sym {
   275  	if pkg == nil {
   276  		pkg = nopkg
   277  	}
   278  	if s := pkg.Syms[name]; s != nil {
   279  		return s
   280  	}
   281  
   282  	s := &Sym{
   283  		Name: name,
   284  		Pkg:  pkg,
   285  	}
   286  	if name == "init" {
   287  		initSyms = append(initSyms, s)
   288  	}
   289  	pkg.Syms[name] = s
   290  	return s
   291  }
   292  
   293  func (pkg *Pkg) LookupBytes(name []byte) *Sym {
   294  	if pkg == nil {
   295  		pkg = nopkg
   296  	}
   297  	if s := pkg.Syms[string(name)]; s != nil {
   298  		return s
   299  	}
   300  	str := internString(name)
   301  	return pkg.Lookup(str)
   302  }
   303  
   304  func Pkglookup(name string, pkg *Pkg) *Sym {
   305  	return pkg.Lookup(name)
   306  }
   307  
   308  func restrictlookup(name string, pkg *Pkg) *Sym {
   309  	if !exportname(name) && pkg != localpkg {
   310  		yyerror("cannot refer to unexported name %s.%s", pkg.Name, name)
   311  	}
   312  	return Pkglookup(name, pkg)
   313  }
   314  
   315  // find all the exported symbols in package opkg
   316  // and make them available in the current package
   317  func importdot(opkg *Pkg, pack *Node) {
   318  	var s1 *Sym
   319  	var pkgerror string
   320  
   321  	n := 0
   322  	for _, s := range opkg.Syms {
   323  		if s.Def == nil {
   324  			continue
   325  		}
   326  		if !exportname(s.Name) || strings.ContainsRune(s.Name, 0xb7) { // 0xb7 = center dot
   327  			continue
   328  		}
   329  		s1 = lookup(s.Name)
   330  		if s1.Def != nil {
   331  			pkgerror = fmt.Sprintf("during import %q", opkg.Path)
   332  			redeclare(s1, pkgerror)
   333  			continue
   334  		}
   335  
   336  		s1.Def = s.Def
   337  		s1.Block = s.Block
   338  		if s1.Def.Name == nil {
   339  			Dump("s1def", s1.Def)
   340  			Fatalf("missing Name")
   341  		}
   342  		s1.Def.Name.Pack = pack
   343  		s1.Origpkg = opkg
   344  		n++
   345  	}
   346  
   347  	if n == 0 {
   348  		// can't possibly be used - there were no symbols
   349  		yyerrorl(pack.Lineno, "imported and not used: %q", opkg.Path)
   350  	}
   351  }
   352  
   353  func nod(op Op, nleft *Node, nright *Node) *Node {
   354  	n := new(Node)
   355  	n.Op = op
   356  	n.Left = nleft
   357  	n.Right = nright
   358  	n.Lineno = lineno
   359  	n.Xoffset = BADWIDTH
   360  	n.Orig = n
   361  	switch op {
   362  	case OCLOSURE, ODCLFUNC:
   363  		n.Func = new(Func)
   364  		n.Func.IsHiddenClosure = Curfn != nil
   365  	case ONAME:
   366  		n.Name = new(Name)
   367  		n.Name.Param = new(Param)
   368  	case OLABEL, OPACK:
   369  		n.Name = new(Name)
   370  	}
   371  	if n.Name != nil {
   372  		n.Name.Curfn = Curfn
   373  	}
   374  	return n
   375  }
   376  
   377  // nodSym makes a Node with Op op and with the Left field set to left
   378  // and the Sym field set to sym. This is for ODOT and friends.
   379  func nodSym(op Op, left *Node, sym *Sym) *Node {
   380  	n := nod(op, left, nil)
   381  	n.Sym = sym
   382  	return n
   383  }
   384  
   385  func saveorignode(n *Node) {
   386  	if n.Orig != nil {
   387  		return
   388  	}
   389  	norig := nod(n.Op, nil, nil)
   390  	*norig = *n
   391  	n.Orig = norig
   392  }
   393  
   394  // methcmp sorts by symbol, then by package path for unexported symbols.
   395  type methcmp []*Field
   396  
   397  func (x methcmp) Len() int      { return len(x) }
   398  func (x methcmp) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   399  func (x methcmp) Less(i, j int) bool {
   400  	a := x[i]
   401  	b := x[j]
   402  	if a.Sym == nil && b.Sym == nil {
   403  		return false
   404  	}
   405  	if a.Sym == nil {
   406  		return true
   407  	}
   408  	if b.Sym == nil {
   409  		return false
   410  	}
   411  	if a.Sym.Name != b.Sym.Name {
   412  		return a.Sym.Name < b.Sym.Name
   413  	}
   414  	if !exportname(a.Sym.Name) {
   415  		if a.Sym.Pkg.Path != b.Sym.Pkg.Path {
   416  			return a.Sym.Pkg.Path < b.Sym.Pkg.Path
   417  		}
   418  	}
   419  
   420  	return false
   421  }
   422  
   423  func nodintconst(v int64) *Node {
   424  	c := nod(OLITERAL, nil, nil)
   425  	c.Addable = true
   426  	c.SetVal(Val{new(Mpint)})
   427  	c.Val().U.(*Mpint).SetInt64(v)
   428  	c.Type = Types[TIDEAL]
   429  	ullmancalc(c)
   430  	return c
   431  }
   432  
   433  func nodfltconst(v *Mpflt) *Node {
   434  	c := nod(OLITERAL, nil, nil)
   435  	c.Addable = true
   436  	c.SetVal(Val{newMpflt()})
   437  	c.Val().U.(*Mpflt).Set(v)
   438  	c.Type = Types[TIDEAL]
   439  	ullmancalc(c)
   440  	return c
   441  }
   442  
   443  func Nodconst(n *Node, t *Type, v int64) {
   444  	*n = Node{}
   445  	n.Op = OLITERAL
   446  	n.Addable = true
   447  	ullmancalc(n)
   448  	n.SetVal(Val{new(Mpint)})
   449  	n.Val().U.(*Mpint).SetInt64(v)
   450  	n.Type = t
   451  
   452  	if t.IsFloat() {
   453  		Fatalf("nodconst: bad type %v", t)
   454  	}
   455  }
   456  
   457  func nodnil() *Node {
   458  	c := nodintconst(0)
   459  	c.SetVal(Val{new(NilVal)})
   460  	c.Type = Types[TNIL]
   461  	return c
   462  }
   463  
   464  func nodbool(b bool) *Node {
   465  	c := nodintconst(0)
   466  	c.SetVal(Val{b})
   467  	c.Type = idealbool
   468  	return c
   469  }
   470  
   471  // treecopy recursively copies n, with the exception of
   472  // ONAME, OLITERAL, OTYPE, and non-iota ONONAME leaves.
   473  // Copies of iota ONONAME nodes are assigned the current
   474  // value of iota_. If lineno != 0, it sets the line number
   475  // of newly allocated nodes to lineno.
   476  func treecopy(n *Node, lineno int32) *Node {
   477  	if n == nil {
   478  		return nil
   479  	}
   480  
   481  	switch n.Op {
   482  	default:
   483  		m := *n
   484  		m.Orig = &m
   485  		m.Left = treecopy(n.Left, lineno)
   486  		m.Right = treecopy(n.Right, lineno)
   487  		m.List.Set(listtreecopy(n.List.Slice(), lineno))
   488  		if lineno != 0 {
   489  			m.Lineno = lineno
   490  		}
   491  		if m.Name != nil && n.Op != ODCLFIELD {
   492  			Dump("treecopy", n)
   493  			Fatalf("treecopy Name")
   494  		}
   495  		return &m
   496  
   497  	case ONONAME:
   498  		if n.Sym == lookup("iota") {
   499  			// Not sure yet whether this is the real iota,
   500  			// but make a copy of the Node* just in case,
   501  			// so that all the copies of this const definition
   502  			// don't have the same iota value.
   503  			m := *n
   504  			if lineno != 0 {
   505  				m.Lineno = lineno
   506  			}
   507  			m.SetIota(iota_)
   508  			return &m
   509  		}
   510  		return n
   511  
   512  	case OPACK:
   513  		// OPACK nodes are never valid in const value declarations,
   514  		// but allow them like any other declared symbol to avoid
   515  		// crashing (golang.org/issue/11361).
   516  		fallthrough
   517  
   518  	case ONAME, OLITERAL, OTYPE:
   519  		return n
   520  
   521  	}
   522  }
   523  
   524  // isnil reports whether n represents the universal untyped zero value "nil".
   525  func isnil(n *Node) bool {
   526  	// Check n.Orig because constant propagation may produce typed nil constants,
   527  	// which don't exist in the Go spec.
   528  	return Isconst(n.Orig, CTNIL)
   529  }
   530  
   531  func isptrto(t *Type, et EType) bool {
   532  	if t == nil {
   533  		return false
   534  	}
   535  	if !t.IsPtr() {
   536  		return false
   537  	}
   538  	t = t.Elem()
   539  	if t == nil {
   540  		return false
   541  	}
   542  	if t.Etype != et {
   543  		return false
   544  	}
   545  	return true
   546  }
   547  
   548  func isblank(n *Node) bool {
   549  	if n == nil {
   550  		return false
   551  	}
   552  	return isblanksym(n.Sym)
   553  }
   554  
   555  func isblanksym(s *Sym) bool {
   556  	return s != nil && s.Name == "_"
   557  }
   558  
   559  // methtype returns the underlying type, if any,
   560  // that owns methods with receiver parameter t.
   561  // The result is either a named type or an anonymous struct.
   562  func methtype(t *Type) *Type {
   563  	if t == nil {
   564  		return nil
   565  	}
   566  
   567  	// Strip away pointer if it's there.
   568  	if t.IsPtr() {
   569  		if t.Sym != nil {
   570  			return nil
   571  		}
   572  		t = t.Elem()
   573  		if t == nil {
   574  			return nil
   575  		}
   576  	}
   577  
   578  	// Must be a named type or anonymous struct.
   579  	if t.Sym == nil && !t.IsStruct() {
   580  		return nil
   581  	}
   582  
   583  	// Check types.
   584  	if issimple[t.Etype] {
   585  		return t
   586  	}
   587  	switch t.Etype {
   588  	case TARRAY, TCHAN, TFUNC, TMAP, TSLICE, TSTRING, TSTRUCT:
   589  		return t
   590  	}
   591  	return nil
   592  }
   593  
   594  func cplxsubtype(et EType) EType {
   595  	switch et {
   596  	case TCOMPLEX64:
   597  		return TFLOAT32
   598  
   599  	case TCOMPLEX128:
   600  		return TFLOAT64
   601  	}
   602  
   603  	Fatalf("cplxsubtype: %v\n", et)
   604  	return 0
   605  }
   606  
   607  // eqtype reports whether t1 and t2 are identical, following the spec rules.
   608  //
   609  // Any cyclic type must go through a named type, and if one is
   610  // named, it is only identical to the other if they are the same
   611  // pointer (t1 == t2), so there's no chance of chasing cycles
   612  // ad infinitum, so no need for a depth counter.
   613  func eqtype(t1, t2 *Type) bool {
   614  	return eqtype1(t1, t2, true, nil)
   615  }
   616  
   617  // eqtypeIgnoreTags is like eqtype but it ignores struct tags for struct identity.
   618  func eqtypeIgnoreTags(t1, t2 *Type) bool {
   619  	return eqtype1(t1, t2, false, nil)
   620  }
   621  
   622  type typePair struct {
   623  	t1 *Type
   624  	t2 *Type
   625  }
   626  
   627  func eqtype1(t1, t2 *Type, cmpTags bool, assumedEqual map[typePair]struct{}) bool {
   628  	if t1 == t2 {
   629  		return true
   630  	}
   631  	if t1 == nil || t2 == nil || t1.Etype != t2.Etype || t1.Broke || t2.Broke {
   632  		return false
   633  	}
   634  	if t1.Sym != nil || t2.Sym != nil {
   635  		// Special case: we keep byte/uint8 and rune/int32
   636  		// separate for error messages. Treat them as equal.
   637  		switch t1.Etype {
   638  		case TUINT8:
   639  			return (t1 == Types[TUINT8] || t1 == bytetype) && (t2 == Types[TUINT8] || t2 == bytetype)
   640  		case TINT32:
   641  			return (t1 == Types[TINT32] || t1 == runetype) && (t2 == Types[TINT32] || t2 == runetype)
   642  		default:
   643  			return false
   644  		}
   645  	}
   646  
   647  	if assumedEqual == nil {
   648  		assumedEqual = make(map[typePair]struct{})
   649  	} else if _, ok := assumedEqual[typePair{t1, t2}]; ok {
   650  		return true
   651  	}
   652  	assumedEqual[typePair{t1, t2}] = struct{}{}
   653  
   654  	switch t1.Etype {
   655  	case TINTER, TSTRUCT:
   656  		t1, i1 := iterFields(t1)
   657  		t2, i2 := iterFields(t2)
   658  		for ; t1 != nil && t2 != nil; t1, t2 = i1.Next(), i2.Next() {
   659  			if t1.Sym != t2.Sym || t1.Embedded != t2.Embedded || !eqtype1(t1.Type, t2.Type, cmpTags, assumedEqual) || cmpTags && t1.Note != t2.Note {
   660  				return false
   661  			}
   662  		}
   663  
   664  		if t1 == nil && t2 == nil {
   665  			return true
   666  		}
   667  		return false
   668  
   669  	case TFUNC:
   670  		// Check parameters and result parameters for type equality.
   671  		// We intentionally ignore receiver parameters for type
   672  		// equality, because they're never relevant.
   673  		for _, f := range paramsResults {
   674  			// Loop over fields in structs, ignoring argument names.
   675  			ta, ia := iterFields(f(t1))
   676  			tb, ib := iterFields(f(t2))
   677  			for ; ta != nil && tb != nil; ta, tb = ia.Next(), ib.Next() {
   678  				if ta.Isddd != tb.Isddd || !eqtype1(ta.Type, tb.Type, cmpTags, assumedEqual) {
   679  					return false
   680  				}
   681  			}
   682  			if ta != nil || tb != nil {
   683  				return false
   684  			}
   685  		}
   686  		return true
   687  
   688  	case TARRAY:
   689  		if t1.NumElem() != t2.NumElem() {
   690  			return false
   691  		}
   692  
   693  	case TCHAN:
   694  		if t1.ChanDir() != t2.ChanDir() {
   695  			return false
   696  		}
   697  
   698  	case TMAP:
   699  		if !eqtype1(t1.Key(), t2.Key(), cmpTags, assumedEqual) {
   700  			return false
   701  		}
   702  		return eqtype1(t1.Val(), t2.Val(), cmpTags, assumedEqual)
   703  	}
   704  
   705  	return eqtype1(t1.Elem(), t2.Elem(), cmpTags, assumedEqual)
   706  }
   707  
   708  // Are t1 and t2 equal struct types when field names are ignored?
   709  // For deciding whether the result struct from g can be copied
   710  // directly when compiling f(g()).
   711  func eqtypenoname(t1 *Type, t2 *Type) bool {
   712  	if t1 == nil || t2 == nil || !t1.IsStruct() || !t2.IsStruct() {
   713  		return false
   714  	}
   715  
   716  	f1, i1 := iterFields(t1)
   717  	f2, i2 := iterFields(t2)
   718  	for {
   719  		if !eqtype(f1.Type, f2.Type) {
   720  			return false
   721  		}
   722  		if f1 == nil {
   723  			return true
   724  		}
   725  		f1 = i1.Next()
   726  		f2 = i2.Next()
   727  	}
   728  }
   729  
   730  // Is type src assignment compatible to type dst?
   731  // If so, return op code to use in conversion.
   732  // If not, return 0.
   733  func assignop(src *Type, dst *Type, why *string) Op {
   734  	if why != nil {
   735  		*why = ""
   736  	}
   737  
   738  	// TODO(rsc,lvd): This behaves poorly in the presence of inlining.
   739  	// https://golang.org/issue/2795
   740  	if safemode && importpkg == nil && src != nil && src.Etype == TUNSAFEPTR {
   741  		yyerror("cannot use unsafe.Pointer")
   742  		errorexit()
   743  	}
   744  
   745  	if src == dst {
   746  		return OCONVNOP
   747  	}
   748  	if src == nil || dst == nil || src.Etype == TFORW || dst.Etype == TFORW || src.Orig == nil || dst.Orig == nil {
   749  		return 0
   750  	}
   751  
   752  	// 1. src type is identical to dst.
   753  	if eqtype(src, dst) {
   754  		return OCONVNOP
   755  	}
   756  
   757  	// 2. src and dst have identical underlying types
   758  	// and either src or dst is not a named type or
   759  	// both are empty interface types.
   760  	// For assignable but different non-empty interface types,
   761  	// we want to recompute the itab.
   762  	if eqtype(src.Orig, dst.Orig) && (src.Sym == nil || dst.Sym == nil || src.IsEmptyInterface()) {
   763  		return OCONVNOP
   764  	}
   765  
   766  	// 3. dst is an interface type and src implements dst.
   767  	if dst.IsInterface() && src.Etype != TNIL {
   768  		var missing, have *Field
   769  		var ptr int
   770  		if implements(src, dst, &missing, &have, &ptr) {
   771  			return OCONVIFACE
   772  		}
   773  
   774  		// we'll have complained about this method anyway, suppress spurious messages.
   775  		if have != nil && have.Sym == missing.Sym && (have.Type.Broke || missing.Type.Broke) {
   776  			return OCONVIFACE
   777  		}
   778  
   779  		if why != nil {
   780  			if isptrto(src, TINTER) {
   781  				*why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", src)
   782  			} else if have != nil && have.Sym == missing.Sym && have.Nointerface {
   783  				*why = fmt.Sprintf(":\n\t%v does not implement %v (%v method is marked 'nointerface')", src, dst, missing.Sym)
   784  			} else if have != nil && have.Sym == missing.Sym {
   785  				*why = fmt.Sprintf(":\n\t%v does not implement %v (wrong type for %v method)\n"+
   786  					"\t\thave %v%0S\n\t\twant %v%0S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
   787  			} else if ptr != 0 {
   788  				*why = fmt.Sprintf(":\n\t%v does not implement %v (%v method has pointer receiver)", src, dst, missing.Sym)
   789  			} else if have != nil {
   790  				*why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)\n"+
   791  					"\t\thave %v%0S\n\t\twant %v%0S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
   792  			} else {
   793  				*why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)", src, dst, missing.Sym)
   794  			}
   795  		}
   796  
   797  		return 0
   798  	}
   799  
   800  	if isptrto(dst, TINTER) {
   801  		if why != nil {
   802  			*why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", dst)
   803  		}
   804  		return 0
   805  	}
   806  
   807  	if src.IsInterface() && dst.Etype != TBLANK {
   808  		var missing, have *Field
   809  		var ptr int
   810  		if why != nil && implements(dst, src, &missing, &have, &ptr) {
   811  			*why = ": need type assertion"
   812  		}
   813  		return 0
   814  	}
   815  
   816  	// 4. src is a bidirectional channel value, dst is a channel type,
   817  	// src and dst have identical element types, and
   818  	// either src or dst is not a named type.
   819  	if src.IsChan() && src.ChanDir() == Cboth && dst.IsChan() {
   820  		if eqtype(src.Elem(), dst.Elem()) && (src.Sym == nil || dst.Sym == nil) {
   821  			return OCONVNOP
   822  		}
   823  	}
   824  
   825  	// 5. src is the predeclared identifier nil and dst is a nillable type.
   826  	if src.Etype == TNIL {
   827  		switch dst.Etype {
   828  		case TPTR32,
   829  			TPTR64,
   830  			TFUNC,
   831  			TMAP,
   832  			TCHAN,
   833  			TINTER,
   834  			TSLICE:
   835  			return OCONVNOP
   836  		}
   837  	}
   838  
   839  	// 6. rule about untyped constants - already converted by defaultlit.
   840  
   841  	// 7. Any typed value can be assigned to the blank identifier.
   842  	if dst.Etype == TBLANK {
   843  		return OCONVNOP
   844  	}
   845  
   846  	return 0
   847  }
   848  
   849  // Can we convert a value of type src to a value of type dst?
   850  // If so, return op code to use in conversion (maybe OCONVNOP).
   851  // If not, return 0.
   852  func convertop(src *Type, dst *Type, why *string) Op {
   853  	if why != nil {
   854  		*why = ""
   855  	}
   856  
   857  	if src == dst {
   858  		return OCONVNOP
   859  	}
   860  	if src == nil || dst == nil {
   861  		return 0
   862  	}
   863  
   864  	// Conversions from regular to go:notinheap are not allowed
   865  	// (unless it's unsafe.Pointer). This is a runtime-specific
   866  	// rule.
   867  	if src.IsPtr() && dst.IsPtr() && dst.Elem().NotInHeap && !src.Elem().NotInHeap {
   868  		if why != nil {
   869  			*why = fmt.Sprintf(":\n\t%v is go:notinheap, but %v is not", dst.Elem(), src.Elem())
   870  		}
   871  		return 0
   872  	}
   873  
   874  	// 1. src can be assigned to dst.
   875  	op := assignop(src, dst, why)
   876  	if op != 0 {
   877  		return op
   878  	}
   879  
   880  	// The rules for interfaces are no different in conversions
   881  	// than assignments. If interfaces are involved, stop now
   882  	// with the good message from assignop.
   883  	// Otherwise clear the error.
   884  	if src.IsInterface() || dst.IsInterface() {
   885  		return 0
   886  	}
   887  	if why != nil {
   888  		*why = ""
   889  	}
   890  
   891  	// 2. Ignoring struct tags, src and dst have identical underlying types.
   892  	if eqtypeIgnoreTags(src.Orig, dst.Orig) {
   893  		return OCONVNOP
   894  	}
   895  
   896  	// 3. src and dst are unnamed pointer types and, ignoring struct tags,
   897  	// their base types have identical underlying types.
   898  	if src.IsPtr() && dst.IsPtr() && src.Sym == nil && dst.Sym == nil {
   899  		if eqtypeIgnoreTags(src.Elem().Orig, dst.Elem().Orig) {
   900  			return OCONVNOP
   901  		}
   902  	}
   903  
   904  	// 4. src and dst are both integer or floating point types.
   905  	if (src.IsInteger() || src.IsFloat()) && (dst.IsInteger() || dst.IsFloat()) {
   906  		if simtype[src.Etype] == simtype[dst.Etype] {
   907  			return OCONVNOP
   908  		}
   909  		return OCONV
   910  	}
   911  
   912  	// 5. src and dst are both complex types.
   913  	if src.IsComplex() && dst.IsComplex() {
   914  		if simtype[src.Etype] == simtype[dst.Etype] {
   915  			return OCONVNOP
   916  		}
   917  		return OCONV
   918  	}
   919  
   920  	// 6. src is an integer or has type []byte or []rune
   921  	// and dst is a string type.
   922  	if src.IsInteger() && dst.IsString() {
   923  		return ORUNESTR
   924  	}
   925  
   926  	if src.IsSlice() && dst.IsString() {
   927  		if src.Elem().Etype == bytetype.Etype {
   928  			return OARRAYBYTESTR
   929  		}
   930  		if src.Elem().Etype == runetype.Etype {
   931  			return OARRAYRUNESTR
   932  		}
   933  	}
   934  
   935  	// 7. src is a string and dst is []byte or []rune.
   936  	// String to slice.
   937  	if src.IsString() && dst.IsSlice() {
   938  		if dst.Elem().Etype == bytetype.Etype {
   939  			return OSTRARRAYBYTE
   940  		}
   941  		if dst.Elem().Etype == runetype.Etype {
   942  			return OSTRARRAYRUNE
   943  		}
   944  	}
   945  
   946  	// 8. src is a pointer or uintptr and dst is unsafe.Pointer.
   947  	if (src.IsPtr() || src.Etype == TUINTPTR) && dst.Etype == TUNSAFEPTR {
   948  		return OCONVNOP
   949  	}
   950  
   951  	// 9. src is unsafe.Pointer and dst is a pointer or uintptr.
   952  	if src.Etype == TUNSAFEPTR && (dst.IsPtr() || dst.Etype == TUINTPTR) {
   953  		return OCONVNOP
   954  	}
   955  
   956  	return 0
   957  }
   958  
   959  func assignconv(n *Node, t *Type, context string) *Node {
   960  	return assignconvfn(n, t, func() string { return context })
   961  }
   962  
   963  // Convert node n for assignment to type t.
   964  func assignconvfn(n *Node, t *Type, context func() string) *Node {
   965  	if n == nil || n.Type == nil || n.Type.Broke {
   966  		return n
   967  	}
   968  
   969  	if t.Etype == TBLANK && n.Type.Etype == TNIL {
   970  		yyerror("use of untyped nil")
   971  	}
   972  
   973  	old := n
   974  	od := old.Diag
   975  	old.Diag = true // silence errors about n; we'll issue one below
   976  	n = defaultlit(n, t)
   977  	old.Diag = od
   978  	if t.Etype == TBLANK {
   979  		return n
   980  	}
   981  
   982  	// Convert ideal bool from comparison to plain bool
   983  	// if the next step is non-bool (like interface{}).
   984  	if n.Type == idealbool && !t.IsBoolean() {
   985  		if n.Op == ONAME || n.Op == OLITERAL {
   986  			r := nod(OCONVNOP, n, nil)
   987  			r.Type = Types[TBOOL]
   988  			r.Typecheck = 1
   989  			r.Implicit = true
   990  			n = r
   991  		}
   992  	}
   993  
   994  	if eqtype(n.Type, t) {
   995  		return n
   996  	}
   997  
   998  	var why string
   999  	op := assignop(n.Type, t, &why)
  1000  	if op == 0 {
  1001  		yyerror("cannot use %L as type %v in %s%s", n, t, context(), why)
  1002  		op = OCONV
  1003  	}
  1004  
  1005  	r := nod(op, n, nil)
  1006  	r.Type = t
  1007  	r.Typecheck = 1
  1008  	r.Implicit = true
  1009  	r.Orig = n.Orig
  1010  	return r
  1011  }
  1012  
  1013  // IsMethod reports whether n is a method.
  1014  // n must be a function or a method.
  1015  func (n *Node) IsMethod() bool {
  1016  	return n.Type.Recv() != nil
  1017  }
  1018  
  1019  // SliceBounds returns n's slice bounds: low, high, and max in expr[low:high:max].
  1020  // n must be a slice expression. max is nil if n is a simple slice expression.
  1021  func (n *Node) SliceBounds() (low, high, max *Node) {
  1022  	if n.List.Len() == 0 {
  1023  		return nil, nil, nil
  1024  	}
  1025  
  1026  	switch n.Op {
  1027  	case OSLICE, OSLICEARR, OSLICESTR:
  1028  		s := n.List.Slice()
  1029  		return s[0], s[1], nil
  1030  	case OSLICE3, OSLICE3ARR:
  1031  		s := n.List.Slice()
  1032  		return s[0], s[1], s[2]
  1033  	}
  1034  	Fatalf("SliceBounds op %v: %v", n.Op, n)
  1035  	return nil, nil, nil
  1036  }
  1037  
  1038  // SetSliceBounds sets n's slice bounds, where n is a slice expression.
  1039  // n must be a slice expression. If max is non-nil, n must be a full slice expression.
  1040  func (n *Node) SetSliceBounds(low, high, max *Node) {
  1041  	switch n.Op {
  1042  	case OSLICE, OSLICEARR, OSLICESTR:
  1043  		if max != nil {
  1044  			Fatalf("SetSliceBounds %v given three bounds", n.Op)
  1045  		}
  1046  		s := n.List.Slice()
  1047  		if s == nil {
  1048  			if low == nil && high == nil {
  1049  				return
  1050  			}
  1051  			n.List.Set([]*Node{low, high})
  1052  			return
  1053  		}
  1054  		s[0] = low
  1055  		s[1] = high
  1056  		return
  1057  	case OSLICE3, OSLICE3ARR:
  1058  		s := n.List.Slice()
  1059  		if s == nil {
  1060  			if low == nil && high == nil && max == nil {
  1061  				return
  1062  			}
  1063  			n.List.Set([]*Node{low, high, max})
  1064  			return
  1065  		}
  1066  		s[0] = low
  1067  		s[1] = high
  1068  		s[2] = max
  1069  		return
  1070  	}
  1071  	Fatalf("SetSliceBounds op %v: %v", n.Op, n)
  1072  }
  1073  
  1074  // IsSlice3 reports whether o is a slice3 op (OSLICE3, OSLICE3ARR).
  1075  // o must be a slicing op.
  1076  func (o Op) IsSlice3() bool {
  1077  	switch o {
  1078  	case OSLICE, OSLICEARR, OSLICESTR:
  1079  		return false
  1080  	case OSLICE3, OSLICE3ARR:
  1081  		return true
  1082  	}
  1083  	Fatalf("IsSlice3 op %v", o)
  1084  	return false
  1085  }
  1086  
  1087  func syslook(name string) *Node {
  1088  	s := Pkglookup(name, Runtimepkg)
  1089  	if s == nil || s.Def == nil {
  1090  		Fatalf("syslook: can't find runtime.%s", name)
  1091  	}
  1092  	return s.Def
  1093  }
  1094  
  1095  // typehash computes a hash value for type t to use in type switch
  1096  // statements.
  1097  func typehash(t *Type) uint32 {
  1098  	// t.tconv(FmtLeft | FmtUnsigned) already contains all the necessary logic
  1099  	// to generate a representation that completely describes the type, so using
  1100  	// it here avoids duplicating that code.
  1101  	// See the comments in exprSwitch.checkDupCases.
  1102  	p := t.tconv(FmtLeft | FmtUnsigned)
  1103  
  1104  	// Using MD5 is overkill, but reduces accidental collisions.
  1105  	h := md5.Sum([]byte(p))
  1106  	return binary.LittleEndian.Uint32(h[:4])
  1107  }
  1108  
  1109  // ptrto returns the Type *t.
  1110  // The returned struct must not be modified.
  1111  func ptrto(t *Type) *Type {
  1112  	if Tptr == 0 {
  1113  		Fatalf("ptrto: no tptr")
  1114  	}
  1115  	if t == nil {
  1116  		Fatalf("ptrto: nil ptr")
  1117  	}
  1118  	return typPtr(t)
  1119  }
  1120  
  1121  func frame(context int) {
  1122  	if context != 0 {
  1123  		fmt.Printf("--- external frame ---\n")
  1124  		for _, n := range externdcl {
  1125  			printframenode(n)
  1126  		}
  1127  		return
  1128  	}
  1129  
  1130  	if Curfn != nil {
  1131  		fmt.Printf("--- %v frame ---\n", Curfn.Func.Nname.Sym)
  1132  		for _, ln := range Curfn.Func.Dcl {
  1133  			printframenode(ln)
  1134  		}
  1135  	}
  1136  }
  1137  
  1138  func printframenode(n *Node) {
  1139  	w := int64(-1)
  1140  	if n.Type != nil {
  1141  		w = n.Type.Width
  1142  	}
  1143  	switch n.Op {
  1144  	case ONAME:
  1145  		fmt.Printf("%v %v G%d %v width=%d\n", n.Op, n.Sym, n.Name.Vargen, n.Type, w)
  1146  	case OTYPE:
  1147  		fmt.Printf("%v %v width=%d\n", n.Op, n.Type, w)
  1148  	}
  1149  }
  1150  
  1151  // calculate sethi/ullman number
  1152  // roughly how many registers needed to
  1153  // compile a node. used to compile the
  1154  // hardest side first to minimize registers.
  1155  func ullmancalc(n *Node) {
  1156  	if n == nil {
  1157  		return
  1158  	}
  1159  
  1160  	var ul int
  1161  	var ur int
  1162  	if n.Ninit.Len() != 0 {
  1163  		ul = UINF
  1164  		goto out
  1165  	}
  1166  
  1167  	switch n.Op {
  1168  	case OLITERAL, ONAME:
  1169  		ul = 1
  1170  		if n.Class == PAUTOHEAP {
  1171  			ul++
  1172  		}
  1173  		goto out
  1174  
  1175  	case OCALL, OCALLFUNC, OCALLMETH, OCALLINTER, OASWB:
  1176  		ul = UINF
  1177  		goto out
  1178  
  1179  		// hard with instrumented code
  1180  	case OANDAND, OOROR:
  1181  		if instrumenting {
  1182  			ul = UINF
  1183  			goto out
  1184  		}
  1185  	}
  1186  
  1187  	ul = 1
  1188  	if n.Left != nil {
  1189  		ul = int(n.Left.Ullman)
  1190  	}
  1191  	ur = 1
  1192  	if n.Right != nil {
  1193  		ur = int(n.Right.Ullman)
  1194  	}
  1195  	if ul == ur {
  1196  		ul += 1
  1197  	}
  1198  	if ur > ul {
  1199  		ul = ur
  1200  	}
  1201  
  1202  out:
  1203  	if ul > 200 {
  1204  		ul = 200 // clamp to uchar with room to grow
  1205  	}
  1206  	n.Ullman = uint8(ul)
  1207  }
  1208  
  1209  func badtype(op Op, tl *Type, tr *Type) {
  1210  	fmt_ := ""
  1211  	if tl != nil {
  1212  		fmt_ += fmt.Sprintf("\n\t%v", tl)
  1213  	}
  1214  	if tr != nil {
  1215  		fmt_ += fmt.Sprintf("\n\t%v", tr)
  1216  	}
  1217  
  1218  	// common mistake: *struct and *interface.
  1219  	if tl != nil && tr != nil && tl.IsPtr() && tr.IsPtr() {
  1220  		if tl.Elem().IsStruct() && tr.Elem().IsInterface() {
  1221  			fmt_ += "\n\t(*struct vs *interface)"
  1222  		} else if tl.Elem().IsInterface() && tr.Elem().IsStruct() {
  1223  			fmt_ += "\n\t(*interface vs *struct)"
  1224  		}
  1225  	}
  1226  
  1227  	s := fmt_
  1228  	yyerror("illegal types for operand: %v%s", op, s)
  1229  }
  1230  
  1231  // brcom returns !(op).
  1232  // For example, brcom(==) is !=.
  1233  func brcom(op Op) Op {
  1234  	switch op {
  1235  	case OEQ:
  1236  		return ONE
  1237  	case ONE:
  1238  		return OEQ
  1239  	case OLT:
  1240  		return OGE
  1241  	case OGT:
  1242  		return OLE
  1243  	case OLE:
  1244  		return OGT
  1245  	case OGE:
  1246  		return OLT
  1247  	}
  1248  	Fatalf("brcom: no com for %v\n", op)
  1249  	return op
  1250  }
  1251  
  1252  // brrev returns reverse(op).
  1253  // For example, Brrev(<) is >.
  1254  func brrev(op Op) Op {
  1255  	switch op {
  1256  	case OEQ:
  1257  		return OEQ
  1258  	case ONE:
  1259  		return ONE
  1260  	case OLT:
  1261  		return OGT
  1262  	case OGT:
  1263  		return OLT
  1264  	case OLE:
  1265  		return OGE
  1266  	case OGE:
  1267  		return OLE
  1268  	}
  1269  	Fatalf("brrev: no rev for %v\n", op)
  1270  	return op
  1271  }
  1272  
  1273  // return side effect-free n, appending side effects to init.
  1274  // result is assignable if n is.
  1275  func safeexpr(n *Node, init *Nodes) *Node {
  1276  	if n == nil {
  1277  		return nil
  1278  	}
  1279  
  1280  	if n.Ninit.Len() != 0 {
  1281  		walkstmtlist(n.Ninit.Slice())
  1282  		init.AppendNodes(&n.Ninit)
  1283  	}
  1284  
  1285  	switch n.Op {
  1286  	case ONAME, OLITERAL:
  1287  		return n
  1288  
  1289  	case ODOT, OLEN, OCAP:
  1290  		l := safeexpr(n.Left, init)
  1291  		if l == n.Left {
  1292  			return n
  1293  		}
  1294  		r := nod(OXXX, nil, nil)
  1295  		*r = *n
  1296  		r.Left = l
  1297  		r = typecheck(r, Erv)
  1298  		r = walkexpr(r, init)
  1299  		return r
  1300  
  1301  	case ODOTPTR, OIND:
  1302  		l := safeexpr(n.Left, init)
  1303  		if l == n.Left {
  1304  			return n
  1305  		}
  1306  		a := nod(OXXX, nil, nil)
  1307  		*a = *n
  1308  		a.Left = l
  1309  		a = walkexpr(a, init)
  1310  		return a
  1311  
  1312  	case OINDEX, OINDEXMAP:
  1313  		l := safeexpr(n.Left, init)
  1314  		r := safeexpr(n.Right, init)
  1315  		if l == n.Left && r == n.Right {
  1316  			return n
  1317  		}
  1318  		a := nod(OXXX, nil, nil)
  1319  		*a = *n
  1320  		a.Left = l
  1321  		a.Right = r
  1322  		a = walkexpr(a, init)
  1323  		return a
  1324  
  1325  	case OSTRUCTLIT, OARRAYLIT, OSLICELIT:
  1326  		if isStaticCompositeLiteral(n) {
  1327  			return n
  1328  		}
  1329  	}
  1330  
  1331  	// make a copy; must not be used as an lvalue
  1332  	if islvalue(n) {
  1333  		Fatalf("missing lvalue case in safeexpr: %v", n)
  1334  	}
  1335  	return cheapexpr(n, init)
  1336  }
  1337  
  1338  func copyexpr(n *Node, t *Type, init *Nodes) *Node {
  1339  	l := temp(t)
  1340  	a := nod(OAS, l, n)
  1341  	a = typecheck(a, Etop)
  1342  	a = walkexpr(a, init)
  1343  	init.Append(a)
  1344  	return l
  1345  }
  1346  
  1347  // return side-effect free and cheap n, appending side effects to init.
  1348  // result may not be assignable.
  1349  func cheapexpr(n *Node, init *Nodes) *Node {
  1350  	switch n.Op {
  1351  	case ONAME, OLITERAL:
  1352  		return n
  1353  	}
  1354  
  1355  	return copyexpr(n, n.Type, init)
  1356  }
  1357  
  1358  // Code to resolve elided DOTs in embedded types.
  1359  
  1360  // A Dlist stores a pointer to a TFIELD Type embedded within
  1361  // a TSTRUCT or TINTER Type.
  1362  type Dlist struct {
  1363  	field *Field
  1364  }
  1365  
  1366  // dotlist is used by adddot1 to record the path of embedded fields
  1367  // used to access a target field or method.
  1368  // Must be non-nil so that dotpath returns a non-nil slice even if d is zero.
  1369  var dotlist = make([]Dlist, 10)
  1370  
  1371  // lookdot0 returns the number of fields or methods named s associated
  1372  // with Type t. If exactly one exists, it will be returned in *save
  1373  // (if save is not nil).
  1374  func lookdot0(s *Sym, t *Type, save **Field, ignorecase bool) int {
  1375  	u := t
  1376  	if u.IsPtr() {
  1377  		u = u.Elem()
  1378  	}
  1379  
  1380  	c := 0
  1381  	if u.IsStruct() || u.IsInterface() {
  1382  		for _, f := range u.Fields().Slice() {
  1383  			if f.Sym == s || (ignorecase && f.Type.Etype == TFUNC && f.Type.Recv() != nil && strings.EqualFold(f.Sym.Name, s.Name)) {
  1384  				if save != nil {
  1385  					*save = f
  1386  				}
  1387  				c++
  1388  			}
  1389  		}
  1390  	}
  1391  
  1392  	u = methtype(t)
  1393  	if u != nil {
  1394  		for _, f := range u.Methods().Slice() {
  1395  			if f.Embedded == 0 && (f.Sym == s || (ignorecase && strings.EqualFold(f.Sym.Name, s.Name))) {
  1396  				if save != nil {
  1397  					*save = f
  1398  				}
  1399  				c++
  1400  			}
  1401  		}
  1402  	}
  1403  
  1404  	return c
  1405  }
  1406  
  1407  // adddot1 returns the number of fields or methods named s at depth d in Type t.
  1408  // If exactly one exists, it will be returned in *save (if save is not nil),
  1409  // and dotlist will contain the path of embedded fields traversed to find it,
  1410  // in reverse order. If none exist, more will indicate whether t contains any
  1411  // embedded fields at depth d, so callers can decide whether to retry at
  1412  // a greater depth.
  1413  func adddot1(s *Sym, t *Type, d int, save **Field, ignorecase bool) (c int, more bool) {
  1414  	if t.Trecur != 0 {
  1415  		return
  1416  	}
  1417  	t.Trecur = 1
  1418  
  1419  	var u *Type
  1420  	d--
  1421  	if d < 0 {
  1422  		// We've reached our target depth. If t has any fields/methods
  1423  		// named s, then we're done. Otherwise, we still need to check
  1424  		// below for embedded fields.
  1425  		c = lookdot0(s, t, save, ignorecase)
  1426  		if c != 0 {
  1427  			goto out
  1428  		}
  1429  	}
  1430  
  1431  	u = t
  1432  	if u.IsPtr() {
  1433  		u = u.Elem()
  1434  	}
  1435  	if !u.IsStruct() && !u.IsInterface() {
  1436  		goto out
  1437  	}
  1438  
  1439  	for _, f := range u.Fields().Slice() {
  1440  		if f.Embedded == 0 || f.Sym == nil {
  1441  			continue
  1442  		}
  1443  		if d < 0 {
  1444  			// Found an embedded field at target depth.
  1445  			more = true
  1446  			goto out
  1447  		}
  1448  		a, more1 := adddot1(s, f.Type, d, save, ignorecase)
  1449  		if a != 0 && c == 0 {
  1450  			dotlist[d].field = f
  1451  		}
  1452  		c += a
  1453  		if more1 {
  1454  			more = true
  1455  		}
  1456  	}
  1457  
  1458  out:
  1459  	t.Trecur = 0
  1460  	return c, more
  1461  }
  1462  
  1463  // dotpath computes the unique shortest explicit selector path to fully qualify
  1464  // a selection expression x.f, where x is of type t and f is the symbol s.
  1465  // If no such path exists, dotpath returns nil.
  1466  // If there are multiple shortest paths to the same depth, ambig is true.
  1467  func dotpath(s *Sym, t *Type, save **Field, ignorecase bool) (path []Dlist, ambig bool) {
  1468  	// The embedding of types within structs imposes a tree structure onto
  1469  	// types: structs parent the types they embed, and types parent their
  1470  	// fields or methods. Our goal here is to find the shortest path to
  1471  	// a field or method named s in the subtree rooted at t. To accomplish
  1472  	// that, we iteratively perform depth-first searches of increasing depth
  1473  	// until we either find the named field/method or exhaust the tree.
  1474  	for d := 0; ; d++ {
  1475  		if d > len(dotlist) {
  1476  			dotlist = append(dotlist, Dlist{})
  1477  		}
  1478  		if c, more := adddot1(s, t, d, save, ignorecase); c == 1 {
  1479  			return dotlist[:d], false
  1480  		} else if c > 1 {
  1481  			return nil, true
  1482  		} else if !more {
  1483  			return nil, false
  1484  		}
  1485  	}
  1486  }
  1487  
  1488  // in T.field
  1489  // find missing fields that
  1490  // will give shortest unique addressing.
  1491  // modify the tree with missing type names.
  1492  func adddot(n *Node) *Node {
  1493  	n.Left = typecheck(n.Left, Etype|Erv)
  1494  	if n.Left.Diag {
  1495  		n.Diag = true
  1496  	}
  1497  	t := n.Left.Type
  1498  	if t == nil {
  1499  		return n
  1500  	}
  1501  
  1502  	if n.Left.Op == OTYPE {
  1503  		return n
  1504  	}
  1505  
  1506  	s := n.Sym
  1507  	if s == nil {
  1508  		return n
  1509  	}
  1510  
  1511  	switch path, ambig := dotpath(s, t, nil, false); {
  1512  	case path != nil:
  1513  		// rebuild elided dots
  1514  		for c := len(path) - 1; c >= 0; c-- {
  1515  			n.Left = nodSym(ODOT, n.Left, path[c].field.Sym)
  1516  			n.Left.Implicit = true
  1517  		}
  1518  	case ambig:
  1519  		yyerror("ambiguous selector %v", n)
  1520  		n.Left = nil
  1521  	}
  1522  
  1523  	return n
  1524  }
  1525  
  1526  // code to help generate trampoline
  1527  // functions for methods on embedded
  1528  // subtypes.
  1529  // these are approx the same as
  1530  // the corresponding adddot routines
  1531  // except that they expect to be called
  1532  // with unique tasks and they return
  1533  // the actual methods.
  1534  type Symlink struct {
  1535  	field     *Field
  1536  	followptr bool
  1537  }
  1538  
  1539  var slist []Symlink
  1540  
  1541  func expand0(t *Type, followptr bool) {
  1542  	u := t
  1543  	if u.IsPtr() {
  1544  		followptr = true
  1545  		u = u.Elem()
  1546  	}
  1547  
  1548  	if u.IsInterface() {
  1549  		for _, f := range u.Fields().Slice() {
  1550  			if f.Sym.Flags&SymUniq != 0 {
  1551  				continue
  1552  			}
  1553  			f.Sym.Flags |= SymUniq
  1554  			slist = append(slist, Symlink{field: f, followptr: followptr})
  1555  		}
  1556  
  1557  		return
  1558  	}
  1559  
  1560  	u = methtype(t)
  1561  	if u != nil {
  1562  		for _, f := range u.Methods().Slice() {
  1563  			if f.Sym.Flags&SymUniq != 0 {
  1564  				continue
  1565  			}
  1566  			f.Sym.Flags |= SymUniq
  1567  			slist = append(slist, Symlink{field: f, followptr: followptr})
  1568  		}
  1569  	}
  1570  }
  1571  
  1572  func expand1(t *Type, top, followptr bool) {
  1573  	if t.Trecur != 0 {
  1574  		return
  1575  	}
  1576  	t.Trecur = 1
  1577  
  1578  	if !top {
  1579  		expand0(t, followptr)
  1580  	}
  1581  
  1582  	u := t
  1583  	if u.IsPtr() {
  1584  		followptr = true
  1585  		u = u.Elem()
  1586  	}
  1587  
  1588  	if !u.IsStruct() && !u.IsInterface() {
  1589  		goto out
  1590  	}
  1591  
  1592  	for _, f := range u.Fields().Slice() {
  1593  		if f.Embedded == 0 {
  1594  			continue
  1595  		}
  1596  		if f.Sym == nil {
  1597  			continue
  1598  		}
  1599  		expand1(f.Type, false, followptr)
  1600  	}
  1601  
  1602  out:
  1603  	t.Trecur = 0
  1604  }
  1605  
  1606  func expandmeth(t *Type) {
  1607  	if t == nil || t.AllMethods().Len() != 0 {
  1608  		return
  1609  	}
  1610  
  1611  	// mark top-level method symbols
  1612  	// so that expand1 doesn't consider them.
  1613  	for _, f := range t.Methods().Slice() {
  1614  		f.Sym.Flags |= SymUniq
  1615  	}
  1616  
  1617  	// generate all reachable methods
  1618  	slist = slist[:0]
  1619  	expand1(t, true, false)
  1620  
  1621  	// check each method to be uniquely reachable
  1622  	var ms []*Field
  1623  	for i, sl := range slist {
  1624  		slist[i].field = nil
  1625  		sl.field.Sym.Flags &^= SymUniq
  1626  
  1627  		var f *Field
  1628  		if path, _ := dotpath(sl.field.Sym, t, &f, false); path == nil {
  1629  			continue
  1630  		}
  1631  
  1632  		// dotpath may have dug out arbitrary fields, we only want methods.
  1633  		if f.Type.Etype != TFUNC || f.Type.Recv() == nil {
  1634  			continue
  1635  		}
  1636  
  1637  		// add it to the base type method list
  1638  		f = f.Copy()
  1639  		f.Embedded = 1 // needs a trampoline
  1640  		if sl.followptr {
  1641  			f.Embedded = 2
  1642  		}
  1643  		ms = append(ms, f)
  1644  	}
  1645  
  1646  	for _, f := range t.Methods().Slice() {
  1647  		f.Sym.Flags &^= SymUniq
  1648  	}
  1649  
  1650  	ms = append(ms, t.Methods().Slice()...)
  1651  	t.AllMethods().Set(ms)
  1652  }
  1653  
  1654  // Given funarg struct list, return list of ODCLFIELD Node fn args.
  1655  func structargs(tl *Type, mustname bool) []*Node {
  1656  	var args []*Node
  1657  	gen := 0
  1658  	for _, t := range tl.Fields().Slice() {
  1659  		var n *Node
  1660  		if mustname && (t.Sym == nil || t.Sym.Name == "_") {
  1661  			// invent a name so that we can refer to it in the trampoline
  1662  			buf := fmt.Sprintf(".anon%d", gen)
  1663  			gen++
  1664  			n = newname(lookup(buf))
  1665  		} else if t.Sym != nil {
  1666  			n = newname(t.Sym)
  1667  		}
  1668  		a := nod(ODCLFIELD, n, typenod(t.Type))
  1669  		a.Isddd = t.Isddd
  1670  		if n != nil {
  1671  			n.Isddd = t.Isddd
  1672  		}
  1673  		args = append(args, a)
  1674  	}
  1675  
  1676  	return args
  1677  }
  1678  
  1679  // Generate a wrapper function to convert from
  1680  // a receiver of type T to a receiver of type U.
  1681  // That is,
  1682  //
  1683  //	func (t T) M() {
  1684  //		...
  1685  //	}
  1686  //
  1687  // already exists; this function generates
  1688  //
  1689  //	func (u U) M() {
  1690  //		u.M()
  1691  //	}
  1692  //
  1693  // where the types T and U are such that u.M() is valid
  1694  // and calls the T.M method.
  1695  // The resulting function is for use in method tables.
  1696  //
  1697  //	rcvr - U
  1698  //	method - M func (t T)(), a TFIELD type struct
  1699  //	newnam - the eventual mangled name of this function
  1700  
  1701  var genwrapper_linehistdone int = 0
  1702  
  1703  func genwrapper(rcvr *Type, method *Field, newnam *Sym, iface int) {
  1704  	if false && Debug['r'] != 0 {
  1705  		fmt.Printf("genwrapper rcvrtype=%v method=%v newnam=%v\n", rcvr, method, newnam)
  1706  	}
  1707  
  1708  	lexlineno++
  1709  	lineno = lexlineno
  1710  	if genwrapper_linehistdone == 0 {
  1711  		// All the wrappers can share the same linehist entry.
  1712  		linehistpush("<autogenerated>")
  1713  
  1714  		genwrapper_linehistdone = 1
  1715  	}
  1716  
  1717  	dclcontext = PEXTERN
  1718  	markdcl()
  1719  
  1720  	this := nod(ODCLFIELD, newname(lookup(".this")), typenod(rcvr))
  1721  	this.Left.Name.Param.Ntype = this.Right
  1722  	in := structargs(method.Type.Params(), true)
  1723  	out := structargs(method.Type.Results(), false)
  1724  
  1725  	t := nod(OTFUNC, nil, nil)
  1726  	l := []*Node{this}
  1727  	if iface != 0 && rcvr.Width < Types[Tptr].Width {
  1728  		// Building method for interface table and receiver
  1729  		// is smaller than the single pointer-sized word
  1730  		// that the interface call will pass in.
  1731  		// Add a dummy padding argument after the
  1732  		// receiver to make up the difference.
  1733  		tpad := typArray(Types[TUINT8], Types[Tptr].Width-rcvr.Width)
  1734  		pad := nod(ODCLFIELD, newname(lookup(".pad")), typenod(tpad))
  1735  		l = append(l, pad)
  1736  	}
  1737  
  1738  	t.List.Set(append(l, in...))
  1739  	t.Rlist.Set(out)
  1740  
  1741  	fn := nod(ODCLFUNC, nil, nil)
  1742  	fn.Func.Nname = newname(newnam)
  1743  	fn.Func.Nname.Name.Defn = fn
  1744  	fn.Func.Nname.Name.Param.Ntype = t
  1745  	declare(fn.Func.Nname, PFUNC)
  1746  	funchdr(fn)
  1747  
  1748  	// arg list
  1749  	var args []*Node
  1750  
  1751  	isddd := false
  1752  	for _, n := range in {
  1753  		args = append(args, n.Left)
  1754  		isddd = n.Left.Isddd
  1755  	}
  1756  
  1757  	methodrcvr := method.Type.Recv().Type
  1758  
  1759  	// generate nil pointer check for better error
  1760  	if rcvr.IsPtr() && rcvr.Elem() == methodrcvr {
  1761  		// generating wrapper from *T to T.
  1762  		n := nod(OIF, nil, nil)
  1763  
  1764  		n.Left = nod(OEQ, this.Left, nodnil())
  1765  
  1766  		// these strings are already in the reflect tables,
  1767  		// so no space cost to use them here.
  1768  		var l []*Node
  1769  
  1770  		var v Val
  1771  		v.U = rcvr.Elem().Sym.Pkg.Name // package name
  1772  		l = append(l, nodlit(v))
  1773  		v.U = rcvr.Elem().Sym.Name // type name
  1774  		l = append(l, nodlit(v))
  1775  		v.U = method.Sym.Name
  1776  		l = append(l, nodlit(v)) // method name
  1777  		call := nod(OCALL, syslook("panicwrap"), nil)
  1778  		call.List.Set(l)
  1779  		n.Nbody.Set1(call)
  1780  		fn.Nbody.Append(n)
  1781  	}
  1782  
  1783  	dot := adddot(nodSym(OXDOT, this.Left, method.Sym))
  1784  
  1785  	// generate call
  1786  	// It's not possible to use a tail call when dynamic linking on ppc64le. The
  1787  	// bad scenario is when a local call is made to the wrapper: the wrapper will
  1788  	// call the implementation, which might be in a different module and so set
  1789  	// the TOC to the appropriate value for that module. But if it returns
  1790  	// directly to the wrapper's caller, nothing will reset it to the correct
  1791  	// value for that function.
  1792  	if !instrumenting && rcvr.IsPtr() && methodrcvr.IsPtr() && method.Embedded != 0 && !isifacemethod(method.Type) && !(Thearch.LinkArch.Name == "ppc64le" && Ctxt.Flag_dynlink) {
  1793  		// generate tail call: adjust pointer receiver and jump to embedded method.
  1794  		dot = dot.Left // skip final .M
  1795  		// TODO(mdempsky): Remove dependency on dotlist.
  1796  		if !dotlist[0].field.Type.IsPtr() {
  1797  			dot = nod(OADDR, dot, nil)
  1798  		}
  1799  		as := nod(OAS, this.Left, nod(OCONVNOP, dot, nil))
  1800  		as.Right.Type = rcvr
  1801  		fn.Nbody.Append(as)
  1802  		n := nod(ORETJMP, nil, nil)
  1803  		n.Left = newname(methodsym(method.Sym, methodrcvr, 0))
  1804  		fn.Nbody.Append(n)
  1805  	} else {
  1806  		fn.Func.Wrapper = true // ignore frame for panic+recover matching
  1807  		call := nod(OCALL, dot, nil)
  1808  		call.List.Set(args)
  1809  		call.Isddd = isddd
  1810  		if method.Type.Results().NumFields() > 0 {
  1811  			n := nod(ORETURN, nil, nil)
  1812  			n.List.Set1(call)
  1813  			call = n
  1814  		}
  1815  
  1816  		fn.Nbody.Append(call)
  1817  	}
  1818  
  1819  	if false && Debug['r'] != 0 {
  1820  		dumplist("genwrapper body", fn.Nbody)
  1821  	}
  1822  
  1823  	funcbody(fn)
  1824  	Curfn = fn
  1825  	popdcl()
  1826  	testdclstack()
  1827  
  1828  	// wrappers where T is anonymous (struct or interface) can be duplicated.
  1829  	if rcvr.IsStruct() || rcvr.IsInterface() || rcvr.IsPtr() && rcvr.Elem().IsStruct() {
  1830  		fn.Func.Dupok = true
  1831  	}
  1832  	fn = typecheck(fn, Etop)
  1833  	typecheckslice(fn.Nbody.Slice(), Etop)
  1834  
  1835  	inlcalls(fn)
  1836  	escAnalyze([]*Node{fn}, false)
  1837  
  1838  	Curfn = nil
  1839  	funccompile(fn)
  1840  }
  1841  
  1842  func hashmem(t *Type) *Node {
  1843  	sym := Pkglookup("memhash", Runtimepkg)
  1844  
  1845  	n := newname(sym)
  1846  	n.Class = PFUNC
  1847  	tfn := nod(OTFUNC, nil, nil)
  1848  	tfn.List.Append(nod(ODCLFIELD, nil, typenod(ptrto(t))))
  1849  	tfn.List.Append(nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])))
  1850  	tfn.List.Append(nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])))
  1851  	tfn.Rlist.Append(nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])))
  1852  	tfn = typecheck(tfn, Etype)
  1853  	n.Type = tfn.Type
  1854  	return n
  1855  }
  1856  
  1857  func ifacelookdot(s *Sym, t *Type, followptr *bool, ignorecase bool) *Field {
  1858  	*followptr = false
  1859  
  1860  	if t == nil {
  1861  		return nil
  1862  	}
  1863  
  1864  	var m *Field
  1865  	path, ambig := dotpath(s, t, &m, ignorecase)
  1866  	if path == nil {
  1867  		if ambig {
  1868  			yyerror("%v.%v is ambiguous", t, s)
  1869  		}
  1870  		return nil
  1871  	}
  1872  
  1873  	for _, d := range path {
  1874  		if d.field.Type.IsPtr() {
  1875  			*followptr = true
  1876  			break
  1877  		}
  1878  	}
  1879  
  1880  	if m.Type.Etype != TFUNC || m.Type.Recv() == nil {
  1881  		yyerror("%v.%v is a field, not a method", t, s)
  1882  		return nil
  1883  	}
  1884  
  1885  	return m
  1886  }
  1887  
  1888  func implements(t, iface *Type, m, samename **Field, ptr *int) bool {
  1889  	t0 := t
  1890  	if t == nil {
  1891  		return false
  1892  	}
  1893  
  1894  	// if this is too slow,
  1895  	// could sort these first
  1896  	// and then do one loop.
  1897  
  1898  	if t.IsInterface() {
  1899  		for _, im := range iface.Fields().Slice() {
  1900  			for _, tm := range t.Fields().Slice() {
  1901  				if tm.Sym == im.Sym {
  1902  					if eqtype(tm.Type, im.Type) {
  1903  						goto found
  1904  					}
  1905  					*m = im
  1906  					*samename = tm
  1907  					*ptr = 0
  1908  					return false
  1909  				}
  1910  			}
  1911  
  1912  			*m = im
  1913  			*samename = nil
  1914  			*ptr = 0
  1915  			return false
  1916  		found:
  1917  		}
  1918  
  1919  		return true
  1920  	}
  1921  
  1922  	t = methtype(t)
  1923  	if t != nil {
  1924  		expandmeth(t)
  1925  	}
  1926  	for _, im := range iface.Fields().Slice() {
  1927  		if im.Broke {
  1928  			continue
  1929  		}
  1930  		var followptr bool
  1931  		tm := ifacelookdot(im.Sym, t, &followptr, false)
  1932  		if tm == nil || tm.Nointerface || !eqtype(tm.Type, im.Type) {
  1933  			if tm == nil {
  1934  				tm = ifacelookdot(im.Sym, t, &followptr, true)
  1935  			}
  1936  			*m = im
  1937  			*samename = tm
  1938  			*ptr = 0
  1939  			return false
  1940  		}
  1941  
  1942  		// if pointer receiver in method,
  1943  		// the method does not exist for value types.
  1944  		rcvr := tm.Type.Recv().Type
  1945  
  1946  		if rcvr.IsPtr() && !t0.IsPtr() && !followptr && !isifacemethod(tm.Type) {
  1947  			if false && Debug['r'] != 0 {
  1948  				yyerror("interface pointer mismatch")
  1949  			}
  1950  
  1951  			*m = im
  1952  			*samename = nil
  1953  			*ptr = 1
  1954  			return false
  1955  		}
  1956  	}
  1957  
  1958  	return true
  1959  }
  1960  
  1961  // even simpler simtype; get rid of ptr, bool.
  1962  // assuming that the front end has rejected
  1963  // all the invalid conversions (like ptr -> bool)
  1964  func Simsimtype(t *Type) EType {
  1965  	if t == nil {
  1966  		return 0
  1967  	}
  1968  
  1969  	et := simtype[t.Etype]
  1970  	switch et {
  1971  	case TPTR32:
  1972  		et = TUINT32
  1973  
  1974  	case TPTR64:
  1975  		et = TUINT64
  1976  
  1977  	case TBOOL:
  1978  		et = TUINT8
  1979  	}
  1980  
  1981  	return et
  1982  }
  1983  
  1984  func listtreecopy(l []*Node, lineno int32) []*Node {
  1985  	var out []*Node
  1986  	for _, n := range l {
  1987  		out = append(out, treecopy(n, lineno))
  1988  	}
  1989  	return out
  1990  }
  1991  
  1992  func liststmt(l []*Node) *Node {
  1993  	n := nod(OBLOCK, nil, nil)
  1994  	n.List.Set(l)
  1995  	if len(l) != 0 {
  1996  		n.Lineno = l[0].Lineno
  1997  	}
  1998  	return n
  1999  }
  2000  
  2001  // return power of 2 of the constant
  2002  // operand. -1 if it is not a power of 2.
  2003  // 1000+ if it is a -(power of 2)
  2004  func powtwo(n *Node) int {
  2005  	if n == nil || n.Op != OLITERAL || n.Type == nil {
  2006  		return -1
  2007  	}
  2008  	if !n.Type.IsInteger() {
  2009  		return -1
  2010  	}
  2011  
  2012  	v := uint64(n.Int64())
  2013  	b := uint64(1)
  2014  	for i := 0; i < 64; i++ {
  2015  		if b == v {
  2016  			return i
  2017  		}
  2018  		b = b << 1
  2019  	}
  2020  
  2021  	if !n.Type.IsSigned() {
  2022  		return -1
  2023  	}
  2024  
  2025  	v = -v
  2026  	b = 1
  2027  	for i := 0; i < 64; i++ {
  2028  		if b == v {
  2029  			return i + 1000
  2030  		}
  2031  		b = b << 1
  2032  	}
  2033  
  2034  	return -1
  2035  }
  2036  
  2037  func ngotype(n *Node) *Sym {
  2038  	if n.Type != nil {
  2039  		return typenamesym(n.Type)
  2040  	}
  2041  	return nil
  2042  }
  2043  
  2044  // Convert raw string to the prefix that will be used in the symbol
  2045  // table. All control characters, space, '%' and '"', as well as
  2046  // non-7-bit clean bytes turn into %xx. The period needs escaping
  2047  // only in the last segment of the path, and it makes for happier
  2048  // users if we escape that as little as possible.
  2049  //
  2050  // If you edit this, edit ../../debug/goobj/read.go:/importPathToPrefix too.
  2051  func pathtoprefix(s string) string {
  2052  	slash := strings.LastIndex(s, "/")
  2053  	for i := 0; i < len(s); i++ {
  2054  		c := s[i]
  2055  		if c <= ' ' || i >= slash && c == '.' || c == '%' || c == '"' || c >= 0x7F {
  2056  			var buf bytes.Buffer
  2057  			for i := 0; i < len(s); i++ {
  2058  				c := s[i]
  2059  				if c <= ' ' || i >= slash && c == '.' || c == '%' || c == '"' || c >= 0x7F {
  2060  					fmt.Fprintf(&buf, "%%%02x", c)
  2061  					continue
  2062  				}
  2063  				buf.WriteByte(c)
  2064  			}
  2065  			return buf.String()
  2066  		}
  2067  	}
  2068  	return s
  2069  }
  2070  
  2071  var pkgMap = make(map[string]*Pkg)
  2072  var pkgs []*Pkg
  2073  
  2074  func mkpkg(path string) *Pkg {
  2075  	if p := pkgMap[path]; p != nil {
  2076  		return p
  2077  	}
  2078  
  2079  	p := new(Pkg)
  2080  	p.Path = path
  2081  	p.Prefix = pathtoprefix(path)
  2082  	p.Syms = make(map[string]*Sym)
  2083  	pkgMap[path] = p
  2084  	pkgs = append(pkgs, p)
  2085  	return p
  2086  }
  2087  
  2088  // The result of addinit MUST be assigned back to n, e.g.
  2089  // 	n.Left = addinit(n.Left, init)
  2090  func addinit(n *Node, init []*Node) *Node {
  2091  	if len(init) == 0 {
  2092  		return n
  2093  	}
  2094  
  2095  	switch n.Op {
  2096  	// There may be multiple refs to this node;
  2097  	// introduce OCONVNOP to hold init list.
  2098  	case ONAME, OLITERAL:
  2099  		n = nod(OCONVNOP, n, nil)
  2100  		n.Type = n.Left.Type
  2101  		n.Typecheck = 1
  2102  	}
  2103  
  2104  	n.Ninit.Prepend(init...)
  2105  	n.Ullman = UINF
  2106  	return n
  2107  }
  2108  
  2109  var reservedimports = []string{
  2110  	"go",
  2111  	"type",
  2112  }
  2113  
  2114  func isbadimport(path string) bool {
  2115  	if strings.Contains(path, "\x00") {
  2116  		yyerror("import path contains NUL")
  2117  		return true
  2118  	}
  2119  
  2120  	for _, ri := range reservedimports {
  2121  		if path == ri {
  2122  			yyerror("import path %q is reserved and cannot be used", path)
  2123  			return true
  2124  		}
  2125  	}
  2126  
  2127  	for _, r := range path {
  2128  		if r == utf8.RuneError {
  2129  			yyerror("import path contains invalid UTF-8 sequence: %q", path)
  2130  			return true
  2131  		}
  2132  
  2133  		if r < 0x20 || r == 0x7f {
  2134  			yyerror("import path contains control character: %q", path)
  2135  			return true
  2136  		}
  2137  
  2138  		if r == '\\' {
  2139  			yyerror("import path contains backslash; use slash: %q", path)
  2140  			return true
  2141  		}
  2142  
  2143  		if unicode.IsSpace(r) {
  2144  			yyerror("import path contains space character: %q", path)
  2145  			return true
  2146  		}
  2147  
  2148  		if strings.ContainsRune("!\"#$%&'()*,:;<=>?[]^`{|}", r) {
  2149  			yyerror("import path contains invalid character '%c': %q", r, path)
  2150  			return true
  2151  		}
  2152  	}
  2153  
  2154  	return false
  2155  }
  2156  
  2157  func checknil(x *Node, init *Nodes) {
  2158  	x = walkexpr(x, nil) // caller has not done this yet
  2159  	if x.Type.IsInterface() {
  2160  		x = nod(OITAB, x, nil)
  2161  		x = typecheck(x, Erv)
  2162  	}
  2163  
  2164  	n := nod(OCHECKNIL, x, nil)
  2165  	n.Typecheck = 1
  2166  	init.Append(n)
  2167  }
  2168  
  2169  // Can this type be stored directly in an interface word?
  2170  // Yes, if the representation is a single pointer.
  2171  func isdirectiface(t *Type) bool {
  2172  	switch t.Etype {
  2173  	case TPTR32,
  2174  		TPTR64,
  2175  		TCHAN,
  2176  		TMAP,
  2177  		TFUNC,
  2178  		TUNSAFEPTR:
  2179  		return true
  2180  
  2181  	case TARRAY:
  2182  		// Array of 1 direct iface type can be direct.
  2183  		return t.NumElem() == 1 && isdirectiface(t.Elem())
  2184  
  2185  	case TSTRUCT:
  2186  		// Struct with 1 field of direct iface type can be direct.
  2187  		return t.NumFields() == 1 && isdirectiface(t.Field(0).Type)
  2188  	}
  2189  
  2190  	return false
  2191  }
  2192  
  2193  // itabType loads the _type field from a runtime.itab struct.
  2194  func itabType(itab *Node) *Node {
  2195  	typ := nodSym(ODOTPTR, itab, nil)
  2196  	typ.Type = ptrto(Types[TUINT8])
  2197  	typ.Typecheck = 1
  2198  	typ.Xoffset = int64(Widthptr) // offset of _type in runtime.itab
  2199  	typ.Bounded = true            // guaranteed not to fault
  2200  	return typ
  2201  }
  2202  
  2203  // ifaceData loads the data field from an interface.
  2204  // The concrete type must be known to have type t.
  2205  // It follows the pointer if !isdirectiface(t).
  2206  func ifaceData(n *Node, t *Type) *Node {
  2207  	ptr := nodSym(OIDATA, n, nil)
  2208  	if isdirectiface(t) {
  2209  		ptr.Type = t
  2210  		ptr.Typecheck = 1
  2211  		return ptr
  2212  	}
  2213  	ptr.Type = ptrto(t)
  2214  	ptr.Bounded = true
  2215  	ptr.Typecheck = 1
  2216  	ind := nod(OIND, ptr, nil)
  2217  	ind.Type = t
  2218  	ind.Typecheck = 1
  2219  	return ind
  2220  }
  2221  
  2222  // iet returns 'T' if t is a concrete type,
  2223  // 'I' if t is an interface type, and 'E' if t is an empty interface type.
  2224  // It is used to build calls to the conv* and assert* runtime routines.
  2225  func (t *Type) iet() byte {
  2226  	if t.IsEmptyInterface() {
  2227  		return 'E'
  2228  	}
  2229  	if t.IsInterface() {
  2230  		return 'I'
  2231  	}
  2232  	return 'T'
  2233  }