github.com/dannin/go@v0.0.0-20161031215817-d35dfd405eaa/src/net/http/server.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // HTTP server. See RFC 2616.
     6  
     7  package http
     8  
     9  import (
    10  	"bufio"
    11  	"bytes"
    12  	"context"
    13  	"crypto/tls"
    14  	"errors"
    15  	"fmt"
    16  	"io"
    17  	"io/ioutil"
    18  	"log"
    19  	"net"
    20  	"net/textproto"
    21  	"net/url"
    22  	"os"
    23  	"path"
    24  	"runtime"
    25  	"strconv"
    26  	"strings"
    27  	"sync"
    28  	"sync/atomic"
    29  	"time"
    30  
    31  	"golang_org/x/net/lex/httplex"
    32  )
    33  
    34  // Errors used by the HTTP server.
    35  var (
    36  	// ErrBodyNotAllowed is returned by ResponseWriter.Write calls
    37  	// when the HTTP method or response code does not permit a
    38  	// body.
    39  	ErrBodyNotAllowed = errors.New("http: request method or response status code does not allow body")
    40  
    41  	// ErrHijacked is returned by ResponseWriter.Write calls when
    42  	// the underlying connection has been hijacked using the
    43  	// Hijacker interface. A zero-byte write on a hijacked
    44  	// connection will return ErrHijacked without any other side
    45  	// effects.
    46  	ErrHijacked = errors.New("http: connection has been hijacked")
    47  
    48  	// ErrContentLength is returned by ResponseWriter.Write calls
    49  	// when a Handler set a Content-Length response header with a
    50  	// declared size and then attempted to write more bytes than
    51  	// declared.
    52  	ErrContentLength = errors.New("http: wrote more than the declared Content-Length")
    53  
    54  	// Deprecated: ErrWriteAfterFlush is no longer used.
    55  	ErrWriteAfterFlush = errors.New("unused")
    56  )
    57  
    58  // A Handler responds to an HTTP request.
    59  //
    60  // ServeHTTP should write reply headers and data to the ResponseWriter
    61  // and then return. Returning signals that the request is finished; it
    62  // is not valid to use the ResponseWriter or read from the
    63  // Request.Body after or concurrently with the completion of the
    64  // ServeHTTP call.
    65  //
    66  // Depending on the HTTP client software, HTTP protocol version, and
    67  // any intermediaries between the client and the Go server, it may not
    68  // be possible to read from the Request.Body after writing to the
    69  // ResponseWriter. Cautious handlers should read the Request.Body
    70  // first, and then reply.
    71  //
    72  // Except for reading the body, handlers should not modify the
    73  // provided Request.
    74  //
    75  // If ServeHTTP panics, the server (the caller of ServeHTTP) assumes
    76  // that the effect of the panic was isolated to the active request.
    77  // It recovers the panic, logs a stack trace to the server error log,
    78  // and hangs up the connection.
    79  type Handler interface {
    80  	ServeHTTP(ResponseWriter, *Request)
    81  }
    82  
    83  // A ResponseWriter interface is used by an HTTP handler to
    84  // construct an HTTP response.
    85  //
    86  // A ResponseWriter may not be used after the Handler.ServeHTTP method
    87  // has returned.
    88  type ResponseWriter interface {
    89  	// Header returns the header map that will be sent by
    90  	// WriteHeader. Changing the header after a call to
    91  	// WriteHeader (or Write) has no effect unless the modified
    92  	// headers were declared as trailers by setting the
    93  	// "Trailer" header before the call to WriteHeader (see example).
    94  	// To suppress implicit response headers, set their value to nil.
    95  	Header() Header
    96  
    97  	// Write writes the data to the connection as part of an HTTP reply.
    98  	//
    99  	// If WriteHeader has not yet been called, Write calls
   100  	// WriteHeader(http.StatusOK) before writing the data. If the Header
   101  	// does not contain a Content-Type line, Write adds a Content-Type set
   102  	// to the result of passing the initial 512 bytes of written data to
   103  	// DetectContentType.
   104  	//
   105  	// Depending on the HTTP protocol version and the client, calling
   106  	// Write or WriteHeader may prevent future reads on the
   107  	// Request.Body. For HTTP/1.x requests, handlers should read any
   108  	// needed request body data before writing the response. Once the
   109  	// headers have been flushed (due to either an explicit Flusher.Flush
   110  	// call or writing enough data to trigger a flush), the request body
   111  	// may be unavailable. For HTTP/2 requests, the Go HTTP server permits
   112  	// handlers to continue to read the request body while concurrently
   113  	// writing the response. However, such behavior may not be supported
   114  	// by all HTTP/2 clients. Handlers should read before writing if
   115  	// possible to maximize compatibility.
   116  	Write([]byte) (int, error)
   117  
   118  	// WriteHeader sends an HTTP response header with status code.
   119  	// If WriteHeader is not called explicitly, the first call to Write
   120  	// will trigger an implicit WriteHeader(http.StatusOK).
   121  	// Thus explicit calls to WriteHeader are mainly used to
   122  	// send error codes.
   123  	WriteHeader(int)
   124  }
   125  
   126  // The Flusher interface is implemented by ResponseWriters that allow
   127  // an HTTP handler to flush buffered data to the client.
   128  //
   129  // The default HTTP/1.x and HTTP/2 ResponseWriter implementations
   130  // support Flusher, but ResponseWriter wrappers may not. Handlers
   131  // should always test for this ability at runtime.
   132  //
   133  // Note that even for ResponseWriters that support Flush,
   134  // if the client is connected through an HTTP proxy,
   135  // the buffered data may not reach the client until the response
   136  // completes.
   137  type Flusher interface {
   138  	// Flush sends any buffered data to the client.
   139  	Flush()
   140  }
   141  
   142  // The Hijacker interface is implemented by ResponseWriters that allow
   143  // an HTTP handler to take over the connection.
   144  //
   145  // The default ResponseWriter for HTTP/1.x connections supports
   146  // Hijacker, but HTTP/2 connections intentionally do not.
   147  // ResponseWriter wrappers may also not support Hijacker. Handlers
   148  // should always test for this ability at runtime.
   149  type Hijacker interface {
   150  	// Hijack lets the caller take over the connection.
   151  	// After a call to Hijack(), the HTTP server library
   152  	// will not do anything else with the connection.
   153  	//
   154  	// It becomes the caller's responsibility to manage
   155  	// and close the connection.
   156  	//
   157  	// The returned net.Conn may have read or write deadlines
   158  	// already set, depending on the configuration of the
   159  	// Server. It is the caller's responsibility to set
   160  	// or clear those deadlines as needed.
   161  	Hijack() (net.Conn, *bufio.ReadWriter, error)
   162  }
   163  
   164  // The CloseNotifier interface is implemented by ResponseWriters which
   165  // allow detecting when the underlying connection has gone away.
   166  //
   167  // This mechanism can be used to cancel long operations on the server
   168  // if the client has disconnected before the response is ready.
   169  type CloseNotifier interface {
   170  	// CloseNotify returns a channel that receives at most a
   171  	// single value (true) when the client connection has gone
   172  	// away.
   173  	//
   174  	// CloseNotify may wait to notify until Request.Body has been
   175  	// fully read.
   176  	//
   177  	// After the Handler has returned, there is no guarantee
   178  	// that the channel receives a value.
   179  	//
   180  	// If the protocol is HTTP/1.1 and CloseNotify is called while
   181  	// processing an idempotent request (such a GET) while
   182  	// HTTP/1.1 pipelining is in use, the arrival of a subsequent
   183  	// pipelined request may cause a value to be sent on the
   184  	// returned channel. In practice HTTP/1.1 pipelining is not
   185  	// enabled in browsers and not seen often in the wild. If this
   186  	// is a problem, use HTTP/2 or only use CloseNotify on methods
   187  	// such as POST.
   188  	CloseNotify() <-chan bool
   189  }
   190  
   191  var (
   192  	// ServerContextKey is a context key. It can be used in HTTP
   193  	// handlers with context.WithValue to access the server that
   194  	// started the handler. The associated value will be of
   195  	// type *Server.
   196  	ServerContextKey = &contextKey{"http-server"}
   197  
   198  	// LocalAddrContextKey is a context key. It can be used in
   199  	// HTTP handlers with context.WithValue to access the address
   200  	// the local address the connection arrived on.
   201  	// The associated value will be of type net.Addr.
   202  	LocalAddrContextKey = &contextKey{"local-addr"}
   203  )
   204  
   205  // A conn represents the server side of an HTTP connection.
   206  type conn struct {
   207  	// server is the server on which the connection arrived.
   208  	// Immutable; never nil.
   209  	server *Server
   210  
   211  	// cancelCtx cancels the connection-level context.
   212  	cancelCtx context.CancelFunc
   213  
   214  	// rwc is the underlying network connection.
   215  	// This is never wrapped by other types and is the value given out
   216  	// to CloseNotifier callers. It is usually of type *net.TCPConn or
   217  	// *tls.Conn.
   218  	rwc net.Conn
   219  
   220  	// remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously
   221  	// inside the Listener's Accept goroutine, as some implementations block.
   222  	// It is populated immediately inside the (*conn).serve goroutine.
   223  	// This is the value of a Handler's (*Request).RemoteAddr.
   224  	remoteAddr string
   225  
   226  	// tlsState is the TLS connection state when using TLS.
   227  	// nil means not TLS.
   228  	tlsState *tls.ConnectionState
   229  
   230  	// werr is set to the first write error to rwc.
   231  	// It is set via checkConnErrorWriter{w}, where bufw writes.
   232  	werr error
   233  
   234  	// r is bufr's read source. It's a wrapper around rwc that provides
   235  	// io.LimitedReader-style limiting (while reading request headers)
   236  	// and functionality to support CloseNotifier. See *connReader docs.
   237  	r *connReader
   238  
   239  	// bufr reads from r.
   240  	bufr *bufio.Reader
   241  
   242  	// bufw writes to checkConnErrorWriter{c}, which populates werr on error.
   243  	bufw *bufio.Writer
   244  
   245  	// lastMethod is the method of the most recent request
   246  	// on this connection, if any.
   247  	lastMethod string
   248  
   249  	curReq atomic.Value // of *response (which has a Request in it)
   250  
   251  	// mu guards hijackedv
   252  	mu sync.Mutex
   253  
   254  	// hijackedv is whether this connection has been hijacked
   255  	// by a Handler with the Hijacker interface.
   256  	// It is guarded by mu.
   257  	hijackedv bool
   258  }
   259  
   260  func (c *conn) hijacked() bool {
   261  	c.mu.Lock()
   262  	defer c.mu.Unlock()
   263  	return c.hijackedv
   264  }
   265  
   266  // c.mu must be held.
   267  func (c *conn) hijackLocked() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
   268  	if c.hijackedv {
   269  		return nil, nil, ErrHijacked
   270  	}
   271  	c.r.abortPendingRead()
   272  
   273  	c.hijackedv = true
   274  	rwc = c.rwc
   275  	rwc.SetDeadline(time.Time{})
   276  
   277  	buf = bufio.NewReadWriter(c.bufr, bufio.NewWriter(rwc))
   278  	c.setState(rwc, StateHijacked)
   279  	return
   280  }
   281  
   282  // This should be >= 512 bytes for DetectContentType,
   283  // but otherwise it's somewhat arbitrary.
   284  const bufferBeforeChunkingSize = 2048
   285  
   286  // chunkWriter writes to a response's conn buffer, and is the writer
   287  // wrapped by the response.bufw buffered writer.
   288  //
   289  // chunkWriter also is responsible for finalizing the Header, including
   290  // conditionally setting the Content-Type and setting a Content-Length
   291  // in cases where the handler's final output is smaller than the buffer
   292  // size. It also conditionally adds chunk headers, when in chunking mode.
   293  //
   294  // See the comment above (*response).Write for the entire write flow.
   295  type chunkWriter struct {
   296  	res *response
   297  
   298  	// header is either nil or a deep clone of res.handlerHeader
   299  	// at the time of res.WriteHeader, if res.WriteHeader is
   300  	// called and extra buffering is being done to calculate
   301  	// Content-Type and/or Content-Length.
   302  	header Header
   303  
   304  	// wroteHeader tells whether the header's been written to "the
   305  	// wire" (or rather: w.conn.buf). this is unlike
   306  	// (*response).wroteHeader, which tells only whether it was
   307  	// logically written.
   308  	wroteHeader bool
   309  
   310  	// set by the writeHeader method:
   311  	chunking bool // using chunked transfer encoding for reply body
   312  }
   313  
   314  var (
   315  	crlf       = []byte("\r\n")
   316  	colonSpace = []byte(": ")
   317  )
   318  
   319  func (cw *chunkWriter) Write(p []byte) (n int, err error) {
   320  	if !cw.wroteHeader {
   321  		cw.writeHeader(p)
   322  	}
   323  	if cw.res.req.Method == "HEAD" {
   324  		// Eat writes.
   325  		return len(p), nil
   326  	}
   327  	if cw.chunking {
   328  		_, err = fmt.Fprintf(cw.res.conn.bufw, "%x\r\n", len(p))
   329  		if err != nil {
   330  			cw.res.conn.rwc.Close()
   331  			return
   332  		}
   333  	}
   334  	n, err = cw.res.conn.bufw.Write(p)
   335  	if cw.chunking && err == nil {
   336  		_, err = cw.res.conn.bufw.Write(crlf)
   337  	}
   338  	if err != nil {
   339  		cw.res.conn.rwc.Close()
   340  	}
   341  	return
   342  }
   343  
   344  func (cw *chunkWriter) flush() {
   345  	if !cw.wroteHeader {
   346  		cw.writeHeader(nil)
   347  	}
   348  	cw.res.conn.bufw.Flush()
   349  }
   350  
   351  func (cw *chunkWriter) close() {
   352  	if !cw.wroteHeader {
   353  		cw.writeHeader(nil)
   354  	}
   355  	if cw.chunking {
   356  		bw := cw.res.conn.bufw // conn's bufio writer
   357  		// zero chunk to mark EOF
   358  		bw.WriteString("0\r\n")
   359  		if len(cw.res.trailers) > 0 {
   360  			trailers := make(Header)
   361  			for _, h := range cw.res.trailers {
   362  				if vv := cw.res.handlerHeader[h]; len(vv) > 0 {
   363  					trailers[h] = vv
   364  				}
   365  			}
   366  			trailers.Write(bw) // the writer handles noting errors
   367  		}
   368  		// final blank line after the trailers (whether
   369  		// present or not)
   370  		bw.WriteString("\r\n")
   371  	}
   372  }
   373  
   374  // A response represents the server side of an HTTP response.
   375  type response struct {
   376  	conn             *conn
   377  	req              *Request // request for this response
   378  	reqBody          io.ReadCloser
   379  	cancelCtx        context.CancelFunc // when ServeHTTP exits
   380  	wroteHeader      bool               // reply header has been (logically) written
   381  	wroteContinue    bool               // 100 Continue response was written
   382  	wants10KeepAlive bool               // HTTP/1.0 w/ Connection "keep-alive"
   383  	wantsClose       bool               // HTTP request has Connection "close"
   384  
   385  	w  *bufio.Writer // buffers output in chunks to chunkWriter
   386  	cw chunkWriter
   387  
   388  	// handlerHeader is the Header that Handlers get access to,
   389  	// which may be retained and mutated even after WriteHeader.
   390  	// handlerHeader is copied into cw.header at WriteHeader
   391  	// time, and privately mutated thereafter.
   392  	handlerHeader Header
   393  	calledHeader  bool // handler accessed handlerHeader via Header
   394  
   395  	written       int64 // number of bytes written in body
   396  	contentLength int64 // explicitly-declared Content-Length; or -1
   397  	status        int   // status code passed to WriteHeader
   398  
   399  	// close connection after this reply.  set on request and
   400  	// updated after response from handler if there's a
   401  	// "Connection: keep-alive" response header and a
   402  	// Content-Length.
   403  	closeAfterReply bool
   404  
   405  	// requestBodyLimitHit is set by requestTooLarge when
   406  	// maxBytesReader hits its max size. It is checked in
   407  	// WriteHeader, to make sure we don't consume the
   408  	// remaining request body to try to advance to the next HTTP
   409  	// request. Instead, when this is set, we stop reading
   410  	// subsequent requests on this connection and stop reading
   411  	// input from it.
   412  	requestBodyLimitHit bool
   413  
   414  	// trailers are the headers to be sent after the handler
   415  	// finishes writing the body. This field is initialized from
   416  	// the Trailer response header when the response header is
   417  	// written.
   418  	trailers []string
   419  
   420  	handlerDone atomicBool // set true when the handler exits
   421  
   422  	// Buffers for Date and Content-Length
   423  	dateBuf [len(TimeFormat)]byte
   424  	clenBuf [10]byte
   425  
   426  	// closeNotifyCh is the channel returned by CloseNotify.
   427  	// TODO(bradfitz): this is currently (for Go 1.8) always
   428  	// non-nil. Make this lazily-created again as it used to be?
   429  	closeNotifyCh  chan bool
   430  	didCloseNotify int32 // atomic (only 0->1 winner should send)
   431  }
   432  
   433  type atomicBool int32
   434  
   435  func (b *atomicBool) isSet() bool { return atomic.LoadInt32((*int32)(b)) != 0 }
   436  func (b *atomicBool) setTrue()    { atomic.StoreInt32((*int32)(b), 1) }
   437  
   438  // declareTrailer is called for each Trailer header when the
   439  // response header is written. It notes that a header will need to be
   440  // written in the trailers at the end of the response.
   441  func (w *response) declareTrailer(k string) {
   442  	k = CanonicalHeaderKey(k)
   443  	switch k {
   444  	case "Transfer-Encoding", "Content-Length", "Trailer":
   445  		// Forbidden by RFC 2616 14.40.
   446  		return
   447  	}
   448  	w.trailers = append(w.trailers, k)
   449  }
   450  
   451  // requestTooLarge is called by maxBytesReader when too much input has
   452  // been read from the client.
   453  func (w *response) requestTooLarge() {
   454  	w.closeAfterReply = true
   455  	w.requestBodyLimitHit = true
   456  	if !w.wroteHeader {
   457  		w.Header().Set("Connection", "close")
   458  	}
   459  }
   460  
   461  // needsSniff reports whether a Content-Type still needs to be sniffed.
   462  func (w *response) needsSniff() bool {
   463  	_, haveType := w.handlerHeader["Content-Type"]
   464  	return !w.cw.wroteHeader && !haveType && w.written < sniffLen
   465  }
   466  
   467  // writerOnly hides an io.Writer value's optional ReadFrom method
   468  // from io.Copy.
   469  type writerOnly struct {
   470  	io.Writer
   471  }
   472  
   473  func srcIsRegularFile(src io.Reader) (isRegular bool, err error) {
   474  	switch v := src.(type) {
   475  	case *os.File:
   476  		fi, err := v.Stat()
   477  		if err != nil {
   478  			return false, err
   479  		}
   480  		return fi.Mode().IsRegular(), nil
   481  	case *io.LimitedReader:
   482  		return srcIsRegularFile(v.R)
   483  	default:
   484  		return
   485  	}
   486  }
   487  
   488  // ReadFrom is here to optimize copying from an *os.File regular file
   489  // to a *net.TCPConn with sendfile.
   490  func (w *response) ReadFrom(src io.Reader) (n int64, err error) {
   491  	// Our underlying w.conn.rwc is usually a *TCPConn (with its
   492  	// own ReadFrom method). If not, or if our src isn't a regular
   493  	// file, just fall back to the normal copy method.
   494  	rf, ok := w.conn.rwc.(io.ReaderFrom)
   495  	regFile, err := srcIsRegularFile(src)
   496  	if err != nil {
   497  		return 0, err
   498  	}
   499  	if !ok || !regFile {
   500  		bufp := copyBufPool.Get().(*[]byte)
   501  		defer copyBufPool.Put(bufp)
   502  		return io.CopyBuffer(writerOnly{w}, src, *bufp)
   503  	}
   504  
   505  	// sendfile path:
   506  
   507  	if !w.wroteHeader {
   508  		w.WriteHeader(StatusOK)
   509  	}
   510  
   511  	if w.needsSniff() {
   512  		n0, err := io.Copy(writerOnly{w}, io.LimitReader(src, sniffLen))
   513  		n += n0
   514  		if err != nil {
   515  			return n, err
   516  		}
   517  	}
   518  
   519  	w.w.Flush()  // get rid of any previous writes
   520  	w.cw.flush() // make sure Header is written; flush data to rwc
   521  
   522  	// Now that cw has been flushed, its chunking field is guaranteed initialized.
   523  	if !w.cw.chunking && w.bodyAllowed() {
   524  		n0, err := rf.ReadFrom(src)
   525  		n += n0
   526  		w.written += n0
   527  		return n, err
   528  	}
   529  
   530  	n0, err := io.Copy(writerOnly{w}, src)
   531  	n += n0
   532  	return n, err
   533  }
   534  
   535  // debugServerConnections controls whether all server connections are wrapped
   536  // with a verbose logging wrapper.
   537  const debugServerConnections = false
   538  
   539  // Create new connection from rwc.
   540  func (srv *Server) newConn(rwc net.Conn) *conn {
   541  	c := &conn{
   542  		server: srv,
   543  		rwc:    rwc,
   544  	}
   545  	if debugServerConnections {
   546  		c.rwc = newLoggingConn("server", c.rwc)
   547  	}
   548  	return c
   549  }
   550  
   551  type readResult struct {
   552  	n   int
   553  	err error
   554  	b   byte // byte read, if n == 1
   555  }
   556  
   557  // connReader is the io.Reader wrapper used by *conn. It combines a
   558  // selectively-activated io.LimitedReader (to bound request header
   559  // read sizes) with support for selectively keeping an io.Reader.Read
   560  // call blocked in a background goroutine to wait for activity and
   561  // trigger a CloseNotifier channel.
   562  type connReader struct {
   563  	conn *conn
   564  
   565  	mu      sync.Mutex // guards following
   566  	hasByte bool
   567  	byteBuf [1]byte
   568  	bgErr   error // non-nil means error happened on background read
   569  	cond    *sync.Cond
   570  	inRead  bool
   571  	aborted bool  // set true before conn.rwc deadline is set to past
   572  	remain  int64 // bytes remaining
   573  }
   574  
   575  func (cr *connReader) lock() {
   576  	cr.mu.Lock()
   577  	if cr.cond == nil {
   578  		cr.cond = sync.NewCond(&cr.mu)
   579  	}
   580  }
   581  
   582  func (cr *connReader) unlock() { cr.mu.Unlock() }
   583  
   584  func (cr *connReader) startBackgroundRead() {
   585  	cr.lock()
   586  	defer cr.unlock()
   587  	if cr.inRead {
   588  		panic("invalid concurrent Body.Read call")
   589  	}
   590  	cr.inRead = true
   591  	go cr.backgroundRead()
   592  }
   593  
   594  func (cr *connReader) backgroundRead() {
   595  	n, err := cr.conn.rwc.Read(cr.byteBuf[:])
   596  	cr.lock()
   597  	if n == 1 {
   598  		cr.hasByte = true
   599  		// We were at EOF already (since we wouldn't be in a
   600  		// background read otherwise), so this is a pipelined
   601  		// HTTP request.
   602  		cr.closeNotifyFromPipelinedRequest()
   603  	}
   604  	if ne, ok := err.(net.Error); ok && cr.aborted && ne.Timeout() {
   605  		// Ignore this error. It's the expected error from
   606  		// another goroutine calling abortPendingRead.
   607  	} else if err != nil {
   608  		cr.handleReadError(err)
   609  	}
   610  	cr.aborted = false
   611  	cr.inRead = false
   612  	cr.unlock()
   613  	cr.cond.Broadcast()
   614  }
   615  
   616  func (cr *connReader) abortPendingRead() {
   617  	cr.lock()
   618  	defer cr.unlock()
   619  	if !cr.inRead {
   620  		return
   621  	}
   622  	cr.aborted = true
   623  	cr.conn.rwc.SetReadDeadline(aLongTimeAgo)
   624  	for cr.inRead {
   625  		cr.cond.Wait()
   626  	}
   627  	cr.conn.rwc.SetReadDeadline(time.Time{})
   628  }
   629  
   630  func (cr *connReader) setReadLimit(remain int64) { cr.remain = remain }
   631  func (cr *connReader) setInfiniteReadLimit()     { cr.remain = maxInt64 }
   632  func (cr *connReader) hitReadLimit() bool        { return cr.remain <= 0 }
   633  
   634  // may be called from multiple goroutines.
   635  func (cr *connReader) handleReadError(err error) {
   636  	cr.conn.cancelCtx()
   637  	cr.closeNotify()
   638  }
   639  
   640  // closeNotifyFromPipelinedRequest simply calls closeNotify.
   641  //
   642  // This method wrapper is here for documentation. The callers are the
   643  // cases where we send on the closenotify channel because of a
   644  // pipelined HTTP request, per the previous Go behavior and
   645  // documentation (that this "MAY" happen).
   646  //
   647  // TODO: consider changing this behavior and making context
   648  // cancelation and closenotify work the same.
   649  func (cr *connReader) closeNotifyFromPipelinedRequest() {
   650  	cr.closeNotify()
   651  }
   652  
   653  // may be called from multiple goroutines.
   654  func (cr *connReader) closeNotify() {
   655  	res, _ := cr.conn.curReq.Load().(*response)
   656  	if res != nil {
   657  		if atomic.CompareAndSwapInt32(&res.didCloseNotify, 0, 1) {
   658  			res.closeNotifyCh <- true
   659  		}
   660  	}
   661  }
   662  
   663  func (cr *connReader) Read(p []byte) (n int, err error) {
   664  	cr.lock()
   665  	if cr.inRead {
   666  		cr.unlock()
   667  		panic("invalid concurrent Body.Read call")
   668  	}
   669  	if cr.hitReadLimit() {
   670  		cr.unlock()
   671  		return 0, io.EOF
   672  	}
   673  	if cr.bgErr != nil {
   674  		err = cr.bgErr
   675  		cr.unlock()
   676  		return 0, err
   677  	}
   678  	if len(p) == 0 {
   679  		cr.unlock()
   680  		return 0, nil
   681  	}
   682  	if int64(len(p)) > cr.remain {
   683  		p = p[:cr.remain]
   684  	}
   685  	if cr.hasByte {
   686  		p[0] = cr.byteBuf[0]
   687  		cr.hasByte = false
   688  		cr.unlock()
   689  		return 1, nil
   690  	}
   691  	cr.inRead = true
   692  	cr.unlock()
   693  	n, err = cr.conn.rwc.Read(p)
   694  
   695  	cr.lock()
   696  	cr.inRead = false
   697  	if err != nil {
   698  		cr.handleReadError(err)
   699  	}
   700  	cr.remain -= int64(n)
   701  	cr.unlock()
   702  
   703  	cr.cond.Broadcast()
   704  	return n, err
   705  }
   706  
   707  var (
   708  	bufioReaderPool   sync.Pool
   709  	bufioWriter2kPool sync.Pool
   710  	bufioWriter4kPool sync.Pool
   711  )
   712  
   713  var copyBufPool = sync.Pool{
   714  	New: func() interface{} {
   715  		b := make([]byte, 32*1024)
   716  		return &b
   717  	},
   718  }
   719  
   720  func bufioWriterPool(size int) *sync.Pool {
   721  	switch size {
   722  	case 2 << 10:
   723  		return &bufioWriter2kPool
   724  	case 4 << 10:
   725  		return &bufioWriter4kPool
   726  	}
   727  	return nil
   728  }
   729  
   730  func newBufioReader(r io.Reader) *bufio.Reader {
   731  	if v := bufioReaderPool.Get(); v != nil {
   732  		br := v.(*bufio.Reader)
   733  		br.Reset(r)
   734  		return br
   735  	}
   736  	// Note: if this reader size is ever changed, update
   737  	// TestHandlerBodyClose's assumptions.
   738  	return bufio.NewReader(r)
   739  }
   740  
   741  func putBufioReader(br *bufio.Reader) {
   742  	br.Reset(nil)
   743  	bufioReaderPool.Put(br)
   744  }
   745  
   746  func newBufioWriterSize(w io.Writer, size int) *bufio.Writer {
   747  	pool := bufioWriterPool(size)
   748  	if pool != nil {
   749  		if v := pool.Get(); v != nil {
   750  			bw := v.(*bufio.Writer)
   751  			bw.Reset(w)
   752  			return bw
   753  		}
   754  	}
   755  	return bufio.NewWriterSize(w, size)
   756  }
   757  
   758  func putBufioWriter(bw *bufio.Writer) {
   759  	bw.Reset(nil)
   760  	if pool := bufioWriterPool(bw.Available()); pool != nil {
   761  		pool.Put(bw)
   762  	}
   763  }
   764  
   765  // DefaultMaxHeaderBytes is the maximum permitted size of the headers
   766  // in an HTTP request.
   767  // This can be overridden by setting Server.MaxHeaderBytes.
   768  const DefaultMaxHeaderBytes = 1 << 20 // 1 MB
   769  
   770  func (srv *Server) maxHeaderBytes() int {
   771  	if srv.MaxHeaderBytes > 0 {
   772  		return srv.MaxHeaderBytes
   773  	}
   774  	return DefaultMaxHeaderBytes
   775  }
   776  
   777  func (srv *Server) initialReadLimitSize() int64 {
   778  	return int64(srv.maxHeaderBytes()) + 4096 // bufio slop
   779  }
   780  
   781  // wrapper around io.ReaderCloser which on first read, sends an
   782  // HTTP/1.1 100 Continue header
   783  type expectContinueReader struct {
   784  	resp       *response
   785  	readCloser io.ReadCloser
   786  	closed     bool
   787  	sawEOF     bool
   788  }
   789  
   790  func (ecr *expectContinueReader) Read(p []byte) (n int, err error) {
   791  	if ecr.closed {
   792  		return 0, ErrBodyReadAfterClose
   793  	}
   794  	if !ecr.resp.wroteContinue && !ecr.resp.conn.hijacked() {
   795  		ecr.resp.wroteContinue = true
   796  		ecr.resp.conn.bufw.WriteString("HTTP/1.1 100 Continue\r\n\r\n")
   797  		ecr.resp.conn.bufw.Flush()
   798  	}
   799  	n, err = ecr.readCloser.Read(p)
   800  	if err == io.EOF {
   801  		ecr.sawEOF = true
   802  	}
   803  	return
   804  }
   805  
   806  func (ecr *expectContinueReader) Close() error {
   807  	ecr.closed = true
   808  	return ecr.readCloser.Close()
   809  }
   810  
   811  // TimeFormat is the time format to use when generating times in HTTP
   812  // headers. It is like time.RFC1123 but hard-codes GMT as the time
   813  // zone. The time being formatted must be in UTC for Format to
   814  // generate the correct format.
   815  //
   816  // For parsing this time format, see ParseTime.
   817  const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT"
   818  
   819  // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat))
   820  func appendTime(b []byte, t time.Time) []byte {
   821  	const days = "SunMonTueWedThuFriSat"
   822  	const months = "JanFebMarAprMayJunJulAugSepOctNovDec"
   823  
   824  	t = t.UTC()
   825  	yy, mm, dd := t.Date()
   826  	hh, mn, ss := t.Clock()
   827  	day := days[3*t.Weekday():]
   828  	mon := months[3*(mm-1):]
   829  
   830  	return append(b,
   831  		day[0], day[1], day[2], ',', ' ',
   832  		byte('0'+dd/10), byte('0'+dd%10), ' ',
   833  		mon[0], mon[1], mon[2], ' ',
   834  		byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ',
   835  		byte('0'+hh/10), byte('0'+hh%10), ':',
   836  		byte('0'+mn/10), byte('0'+mn%10), ':',
   837  		byte('0'+ss/10), byte('0'+ss%10), ' ',
   838  		'G', 'M', 'T')
   839  }
   840  
   841  var errTooLarge = errors.New("http: request too large")
   842  
   843  // Read next request from connection.
   844  func (c *conn) readRequest(ctx context.Context) (w *response, err error) {
   845  	if c.hijacked() {
   846  		return nil, ErrHijacked
   847  	}
   848  
   849  	var (
   850  		wholeReqDeadline time.Time // or zero if none
   851  		hdrDeadline      time.Time // or zero if none
   852  	)
   853  	t0 := time.Now()
   854  	if d := c.server.readHeaderTimeout(); d != 0 {
   855  		hdrDeadline = t0.Add(d)
   856  	}
   857  	if d := c.server.ReadTimeout; d != 0 {
   858  		wholeReqDeadline = t0.Add(d)
   859  	}
   860  	c.rwc.SetReadDeadline(hdrDeadline)
   861  	if d := c.server.WriteTimeout; d != 0 {
   862  		defer func() {
   863  			c.rwc.SetWriteDeadline(time.Now().Add(d))
   864  		}()
   865  	}
   866  
   867  	c.r.setReadLimit(c.server.initialReadLimitSize())
   868  	if c.lastMethod == "POST" {
   869  		// RFC 2616 section 4.1 tolerance for old buggy clients.
   870  		peek, _ := c.bufr.Peek(4) // ReadRequest will get err below
   871  		c.bufr.Discard(numLeadingCRorLF(peek))
   872  	}
   873  	req, err := readRequest(c.bufr, keepHostHeader)
   874  	if err != nil {
   875  		if c.r.hitReadLimit() {
   876  			return nil, errTooLarge
   877  		}
   878  		return nil, err
   879  	}
   880  
   881  	if !http1ServerSupportsRequest(req) {
   882  		return nil, badRequestError("unsupported protocol version")
   883  	}
   884  
   885  	c.lastMethod = req.Method
   886  	c.r.setInfiniteReadLimit()
   887  
   888  	hosts, haveHost := req.Header["Host"]
   889  	isH2Upgrade := req.isH2Upgrade()
   890  	if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade {
   891  		return nil, badRequestError("missing required Host header")
   892  	}
   893  	if len(hosts) > 1 {
   894  		return nil, badRequestError("too many Host headers")
   895  	}
   896  	if len(hosts) == 1 && !httplex.ValidHostHeader(hosts[0]) {
   897  		return nil, badRequestError("malformed Host header")
   898  	}
   899  	for k, vv := range req.Header {
   900  		if !httplex.ValidHeaderFieldName(k) {
   901  			return nil, badRequestError("invalid header name")
   902  		}
   903  		for _, v := range vv {
   904  			if !httplex.ValidHeaderFieldValue(v) {
   905  				return nil, badRequestError("invalid header value")
   906  			}
   907  		}
   908  	}
   909  	delete(req.Header, "Host")
   910  
   911  	ctx, cancelCtx := context.WithCancel(ctx)
   912  	req.ctx = ctx
   913  	req.RemoteAddr = c.remoteAddr
   914  	req.TLS = c.tlsState
   915  	if body, ok := req.Body.(*body); ok {
   916  		body.doEarlyClose = true
   917  	}
   918  
   919  	// Adjust the read deadline if necessary.
   920  	if !hdrDeadline.Equal(wholeReqDeadline) {
   921  		c.rwc.SetReadDeadline(wholeReqDeadline)
   922  	}
   923  
   924  	w = &response{
   925  		conn:          c,
   926  		cancelCtx:     cancelCtx,
   927  		req:           req,
   928  		reqBody:       req.Body,
   929  		handlerHeader: make(Header),
   930  		contentLength: -1,
   931  		closeNotifyCh: make(chan bool, 1),
   932  
   933  		// We populate these ahead of time so we're not
   934  		// reading from req.Header after their Handler starts
   935  		// and maybe mutates it (Issue 14940)
   936  		wants10KeepAlive: req.wantsHttp10KeepAlive(),
   937  		wantsClose:       req.wantsClose(),
   938  	}
   939  	if isH2Upgrade {
   940  		w.closeAfterReply = true
   941  	}
   942  	w.cw.res = w
   943  	w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
   944  	return w, nil
   945  }
   946  
   947  // http1ServerSupportsRequest reports whether Go's HTTP/1.x server
   948  // supports the given request.
   949  func http1ServerSupportsRequest(req *Request) bool {
   950  	if req.ProtoMajor == 1 {
   951  		return true
   952  	}
   953  	// Accept "PRI * HTTP/2.0" upgrade requests, so Handlers can
   954  	// wire up their own HTTP/2 upgrades.
   955  	if req.ProtoMajor == 2 && req.ProtoMinor == 0 &&
   956  		req.Method == "PRI" && req.RequestURI == "*" {
   957  		return true
   958  	}
   959  	// Reject HTTP/0.x, and all other HTTP/2+ requests (which
   960  	// aren't encoded in ASCII anyway).
   961  	return false
   962  }
   963  
   964  func (w *response) Header() Header {
   965  	if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader {
   966  		// Accessing the header between logically writing it
   967  		// and physically writing it means we need to allocate
   968  		// a clone to snapshot the logically written state.
   969  		w.cw.header = w.handlerHeader.clone()
   970  	}
   971  	w.calledHeader = true
   972  	return w.handlerHeader
   973  }
   974  
   975  // maxPostHandlerReadBytes is the max number of Request.Body bytes not
   976  // consumed by a handler that the server will read from the client
   977  // in order to keep a connection alive. If there are more bytes than
   978  // this then the server to be paranoid instead sends a "Connection:
   979  // close" response.
   980  //
   981  // This number is approximately what a typical machine's TCP buffer
   982  // size is anyway.  (if we have the bytes on the machine, we might as
   983  // well read them)
   984  const maxPostHandlerReadBytes = 256 << 10
   985  
   986  func (w *response) WriteHeader(code int) {
   987  	if w.conn.hijacked() {
   988  		w.conn.server.logf("http: response.WriteHeader on hijacked connection")
   989  		return
   990  	}
   991  	if w.wroteHeader {
   992  		w.conn.server.logf("http: multiple response.WriteHeader calls")
   993  		return
   994  	}
   995  	w.wroteHeader = true
   996  	w.status = code
   997  
   998  	if w.calledHeader && w.cw.header == nil {
   999  		w.cw.header = w.handlerHeader.clone()
  1000  	}
  1001  
  1002  	if cl := w.handlerHeader.get("Content-Length"); cl != "" {
  1003  		v, err := strconv.ParseInt(cl, 10, 64)
  1004  		if err == nil && v >= 0 {
  1005  			w.contentLength = v
  1006  		} else {
  1007  			w.conn.server.logf("http: invalid Content-Length of %q", cl)
  1008  			w.handlerHeader.Del("Content-Length")
  1009  		}
  1010  	}
  1011  }
  1012  
  1013  // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader.
  1014  // This type is used to avoid extra allocations from cloning and/or populating
  1015  // the response Header map and all its 1-element slices.
  1016  type extraHeader struct {
  1017  	contentType      string
  1018  	connection       string
  1019  	transferEncoding string
  1020  	date             []byte // written if not nil
  1021  	contentLength    []byte // written if not nil
  1022  }
  1023  
  1024  // Sorted the same as extraHeader.Write's loop.
  1025  var extraHeaderKeys = [][]byte{
  1026  	[]byte("Content-Type"),
  1027  	[]byte("Connection"),
  1028  	[]byte("Transfer-Encoding"),
  1029  }
  1030  
  1031  var (
  1032  	headerContentLength = []byte("Content-Length: ")
  1033  	headerDate          = []byte("Date: ")
  1034  )
  1035  
  1036  // Write writes the headers described in h to w.
  1037  //
  1038  // This method has a value receiver, despite the somewhat large size
  1039  // of h, because it prevents an allocation. The escape analysis isn't
  1040  // smart enough to realize this function doesn't mutate h.
  1041  func (h extraHeader) Write(w *bufio.Writer) {
  1042  	if h.date != nil {
  1043  		w.Write(headerDate)
  1044  		w.Write(h.date)
  1045  		w.Write(crlf)
  1046  	}
  1047  	if h.contentLength != nil {
  1048  		w.Write(headerContentLength)
  1049  		w.Write(h.contentLength)
  1050  		w.Write(crlf)
  1051  	}
  1052  	for i, v := range []string{h.contentType, h.connection, h.transferEncoding} {
  1053  		if v != "" {
  1054  			w.Write(extraHeaderKeys[i])
  1055  			w.Write(colonSpace)
  1056  			w.WriteString(v)
  1057  			w.Write(crlf)
  1058  		}
  1059  	}
  1060  }
  1061  
  1062  // writeHeader finalizes the header sent to the client and writes it
  1063  // to cw.res.conn.bufw.
  1064  //
  1065  // p is not written by writeHeader, but is the first chunk of the body
  1066  // that will be written. It is sniffed for a Content-Type if none is
  1067  // set explicitly. It's also used to set the Content-Length, if the
  1068  // total body size was small and the handler has already finished
  1069  // running.
  1070  func (cw *chunkWriter) writeHeader(p []byte) {
  1071  	if cw.wroteHeader {
  1072  		return
  1073  	}
  1074  	cw.wroteHeader = true
  1075  
  1076  	w := cw.res
  1077  	keepAlivesEnabled := w.conn.server.doKeepAlives()
  1078  	isHEAD := w.req.Method == "HEAD"
  1079  
  1080  	// header is written out to w.conn.buf below. Depending on the
  1081  	// state of the handler, we either own the map or not. If we
  1082  	// don't own it, the exclude map is created lazily for
  1083  	// WriteSubset to remove headers. The setHeader struct holds
  1084  	// headers we need to add.
  1085  	header := cw.header
  1086  	owned := header != nil
  1087  	if !owned {
  1088  		header = w.handlerHeader
  1089  	}
  1090  	var excludeHeader map[string]bool
  1091  	delHeader := func(key string) {
  1092  		if owned {
  1093  			header.Del(key)
  1094  			return
  1095  		}
  1096  		if _, ok := header[key]; !ok {
  1097  			return
  1098  		}
  1099  		if excludeHeader == nil {
  1100  			excludeHeader = make(map[string]bool)
  1101  		}
  1102  		excludeHeader[key] = true
  1103  	}
  1104  	var setHeader extraHeader
  1105  
  1106  	trailers := false
  1107  	for _, v := range cw.header["Trailer"] {
  1108  		trailers = true
  1109  		foreachHeaderElement(v, cw.res.declareTrailer)
  1110  	}
  1111  
  1112  	te := header.get("Transfer-Encoding")
  1113  	hasTE := te != ""
  1114  
  1115  	// If the handler is done but never sent a Content-Length
  1116  	// response header and this is our first (and last) write, set
  1117  	// it, even to zero. This helps HTTP/1.0 clients keep their
  1118  	// "keep-alive" connections alive.
  1119  	// Exceptions: 304/204/1xx responses never get Content-Length, and if
  1120  	// it was a HEAD request, we don't know the difference between
  1121  	// 0 actual bytes and 0 bytes because the handler noticed it
  1122  	// was a HEAD request and chose not to write anything. So for
  1123  	// HEAD, the handler should either write the Content-Length or
  1124  	// write non-zero bytes. If it's actually 0 bytes and the
  1125  	// handler never looked at the Request.Method, we just don't
  1126  	// send a Content-Length header.
  1127  	// Further, we don't send an automatic Content-Length if they
  1128  	// set a Transfer-Encoding, because they're generally incompatible.
  1129  	if w.handlerDone.isSet() && !trailers && !hasTE && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) {
  1130  		w.contentLength = int64(len(p))
  1131  		setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10)
  1132  	}
  1133  
  1134  	// If this was an HTTP/1.0 request with keep-alive and we sent a
  1135  	// Content-Length back, we can make this a keep-alive response ...
  1136  	if w.wants10KeepAlive && keepAlivesEnabled {
  1137  		sentLength := header.get("Content-Length") != ""
  1138  		if sentLength && header.get("Connection") == "keep-alive" {
  1139  			w.closeAfterReply = false
  1140  		}
  1141  	}
  1142  
  1143  	// Check for a explicit (and valid) Content-Length header.
  1144  	hasCL := w.contentLength != -1
  1145  
  1146  	if w.wants10KeepAlive && (isHEAD || hasCL || !bodyAllowedForStatus(w.status)) {
  1147  		_, connectionHeaderSet := header["Connection"]
  1148  		if !connectionHeaderSet {
  1149  			setHeader.connection = "keep-alive"
  1150  		}
  1151  	} else if !w.req.ProtoAtLeast(1, 1) || w.wantsClose {
  1152  		w.closeAfterReply = true
  1153  	}
  1154  
  1155  	if header.get("Connection") == "close" || !keepAlivesEnabled {
  1156  		w.closeAfterReply = true
  1157  	}
  1158  
  1159  	// If the client wanted a 100-continue but we never sent it to
  1160  	// them (or, more strictly: we never finished reading their
  1161  	// request body), don't reuse this connection because it's now
  1162  	// in an unknown state: we might be sending this response at
  1163  	// the same time the client is now sending its request body
  1164  	// after a timeout.  (Some HTTP clients send Expect:
  1165  	// 100-continue but knowing that some servers don't support
  1166  	// it, the clients set a timer and send the body later anyway)
  1167  	// If we haven't seen EOF, we can't skip over the unread body
  1168  	// because we don't know if the next bytes on the wire will be
  1169  	// the body-following-the-timer or the subsequent request.
  1170  	// See Issue 11549.
  1171  	if ecr, ok := w.req.Body.(*expectContinueReader); ok && !ecr.sawEOF {
  1172  		w.closeAfterReply = true
  1173  	}
  1174  
  1175  	// Per RFC 2616, we should consume the request body before
  1176  	// replying, if the handler hasn't already done so. But we
  1177  	// don't want to do an unbounded amount of reading here for
  1178  	// DoS reasons, so we only try up to a threshold.
  1179  	// TODO(bradfitz): where does RFC 2616 say that? See Issue 15527
  1180  	// about HTTP/1.x Handlers concurrently reading and writing, like
  1181  	// HTTP/2 handlers can do. Maybe this code should be relaxed?
  1182  	if w.req.ContentLength != 0 && !w.closeAfterReply {
  1183  		var discard, tooBig bool
  1184  
  1185  		switch bdy := w.req.Body.(type) {
  1186  		case *expectContinueReader:
  1187  			if bdy.resp.wroteContinue {
  1188  				discard = true
  1189  			}
  1190  		case *body:
  1191  			bdy.mu.Lock()
  1192  			switch {
  1193  			case bdy.closed:
  1194  				if !bdy.sawEOF {
  1195  					// Body was closed in handler with non-EOF error.
  1196  					w.closeAfterReply = true
  1197  				}
  1198  			case bdy.unreadDataSizeLocked() >= maxPostHandlerReadBytes:
  1199  				tooBig = true
  1200  			default:
  1201  				discard = true
  1202  			}
  1203  			bdy.mu.Unlock()
  1204  		default:
  1205  			discard = true
  1206  		}
  1207  
  1208  		if discard {
  1209  			_, err := io.CopyN(ioutil.Discard, w.reqBody, maxPostHandlerReadBytes+1)
  1210  			switch err {
  1211  			case nil:
  1212  				// There must be even more data left over.
  1213  				tooBig = true
  1214  			case ErrBodyReadAfterClose:
  1215  				// Body was already consumed and closed.
  1216  			case io.EOF:
  1217  				// The remaining body was just consumed, close it.
  1218  				err = w.reqBody.Close()
  1219  				if err != nil {
  1220  					w.closeAfterReply = true
  1221  				}
  1222  			default:
  1223  				// Some other kind of error occurred, like a read timeout, or
  1224  				// corrupt chunked encoding. In any case, whatever remains
  1225  				// on the wire must not be parsed as another HTTP request.
  1226  				w.closeAfterReply = true
  1227  			}
  1228  		}
  1229  
  1230  		if tooBig {
  1231  			w.requestTooLarge()
  1232  			delHeader("Connection")
  1233  			setHeader.connection = "close"
  1234  		}
  1235  	}
  1236  
  1237  	code := w.status
  1238  	if bodyAllowedForStatus(code) {
  1239  		// If no content type, apply sniffing algorithm to body.
  1240  		_, haveType := header["Content-Type"]
  1241  		if !haveType && !hasTE {
  1242  			setHeader.contentType = DetectContentType(p)
  1243  		}
  1244  	} else {
  1245  		for _, k := range suppressedHeaders(code) {
  1246  			delHeader(k)
  1247  		}
  1248  	}
  1249  
  1250  	if _, ok := header["Date"]; !ok {
  1251  		setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now())
  1252  	}
  1253  
  1254  	if hasCL && hasTE && te != "identity" {
  1255  		// TODO: return an error if WriteHeader gets a return parameter
  1256  		// For now just ignore the Content-Length.
  1257  		w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d",
  1258  			te, w.contentLength)
  1259  		delHeader("Content-Length")
  1260  		hasCL = false
  1261  	}
  1262  
  1263  	if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) {
  1264  		// do nothing
  1265  	} else if code == StatusNoContent {
  1266  		delHeader("Transfer-Encoding")
  1267  	} else if hasCL {
  1268  		delHeader("Transfer-Encoding")
  1269  	} else if w.req.ProtoAtLeast(1, 1) {
  1270  		// HTTP/1.1 or greater: Transfer-Encoding has been set to identity,  and no
  1271  		// content-length has been provided. The connection must be closed after the
  1272  		// reply is written, and no chunking is to be done. This is the setup
  1273  		// recommended in the Server-Sent Events candidate recommendation 11,
  1274  		// section 8.
  1275  		if hasTE && te == "identity" {
  1276  			cw.chunking = false
  1277  			w.closeAfterReply = true
  1278  		} else {
  1279  			// HTTP/1.1 or greater: use chunked transfer encoding
  1280  			// to avoid closing the connection at EOF.
  1281  			cw.chunking = true
  1282  			setHeader.transferEncoding = "chunked"
  1283  			if hasTE && te == "chunked" {
  1284  				// We will send the chunked Transfer-Encoding header later.
  1285  				delHeader("Transfer-Encoding")
  1286  			}
  1287  		}
  1288  	} else {
  1289  		// HTTP version < 1.1: cannot do chunked transfer
  1290  		// encoding and we don't know the Content-Length so
  1291  		// signal EOF by closing connection.
  1292  		w.closeAfterReply = true
  1293  		delHeader("Transfer-Encoding") // in case already set
  1294  	}
  1295  
  1296  	// Cannot use Content-Length with non-identity Transfer-Encoding.
  1297  	if cw.chunking {
  1298  		delHeader("Content-Length")
  1299  	}
  1300  	if !w.req.ProtoAtLeast(1, 0) {
  1301  		return
  1302  	}
  1303  
  1304  	if w.closeAfterReply && (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) {
  1305  		delHeader("Connection")
  1306  		if w.req.ProtoAtLeast(1, 1) {
  1307  			setHeader.connection = "close"
  1308  		}
  1309  	}
  1310  
  1311  	w.conn.bufw.WriteString(statusLine(w.req, code))
  1312  	cw.header.WriteSubset(w.conn.bufw, excludeHeader)
  1313  	setHeader.Write(w.conn.bufw)
  1314  	w.conn.bufw.Write(crlf)
  1315  }
  1316  
  1317  // foreachHeaderElement splits v according to the "#rule" construction
  1318  // in RFC 2616 section 2.1 and calls fn for each non-empty element.
  1319  func foreachHeaderElement(v string, fn func(string)) {
  1320  	v = textproto.TrimString(v)
  1321  	if v == "" {
  1322  		return
  1323  	}
  1324  	if !strings.Contains(v, ",") {
  1325  		fn(v)
  1326  		return
  1327  	}
  1328  	for _, f := range strings.Split(v, ",") {
  1329  		if f = textproto.TrimString(f); f != "" {
  1330  			fn(f)
  1331  		}
  1332  	}
  1333  }
  1334  
  1335  // statusLines is a cache of Status-Line strings, keyed by code (for
  1336  // HTTP/1.1) or negative code (for HTTP/1.0). This is faster than a
  1337  // map keyed by struct of two fields. This map's max size is bounded
  1338  // by 2*len(statusText), two protocol types for each known official
  1339  // status code in the statusText map.
  1340  var (
  1341  	statusMu    sync.RWMutex
  1342  	statusLines = make(map[int]string)
  1343  )
  1344  
  1345  // statusLine returns a response Status-Line (RFC 2616 Section 6.1)
  1346  // for the given request and response status code.
  1347  func statusLine(req *Request, code int) string {
  1348  	// Fast path:
  1349  	key := code
  1350  	proto11 := req.ProtoAtLeast(1, 1)
  1351  	if !proto11 {
  1352  		key = -key
  1353  	}
  1354  	statusMu.RLock()
  1355  	line, ok := statusLines[key]
  1356  	statusMu.RUnlock()
  1357  	if ok {
  1358  		return line
  1359  	}
  1360  
  1361  	// Slow path:
  1362  	proto := "HTTP/1.0"
  1363  	if proto11 {
  1364  		proto = "HTTP/1.1"
  1365  	}
  1366  	codestring := fmt.Sprintf("%03d", code)
  1367  	text, ok := statusText[code]
  1368  	if !ok {
  1369  		text = "status code " + codestring
  1370  	}
  1371  	line = proto + " " + codestring + " " + text + "\r\n"
  1372  	if ok {
  1373  		statusMu.Lock()
  1374  		defer statusMu.Unlock()
  1375  		statusLines[key] = line
  1376  	}
  1377  	return line
  1378  }
  1379  
  1380  // bodyAllowed reports whether a Write is allowed for this response type.
  1381  // It's illegal to call this before the header has been flushed.
  1382  func (w *response) bodyAllowed() bool {
  1383  	if !w.wroteHeader {
  1384  		panic("")
  1385  	}
  1386  	return bodyAllowedForStatus(w.status)
  1387  }
  1388  
  1389  // The Life Of A Write is like this:
  1390  //
  1391  // Handler starts. No header has been sent. The handler can either
  1392  // write a header, or just start writing. Writing before sending a header
  1393  // sends an implicitly empty 200 OK header.
  1394  //
  1395  // If the handler didn't declare a Content-Length up front, we either
  1396  // go into chunking mode or, if the handler finishes running before
  1397  // the chunking buffer size, we compute a Content-Length and send that
  1398  // in the header instead.
  1399  //
  1400  // Likewise, if the handler didn't set a Content-Type, we sniff that
  1401  // from the initial chunk of output.
  1402  //
  1403  // The Writers are wired together like:
  1404  //
  1405  // 1. *response (the ResponseWriter) ->
  1406  // 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes
  1407  // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type)
  1408  //    and which writes the chunk headers, if needed.
  1409  // 4. conn.buf, a bufio.Writer of default (4kB) bytes, writing to ->
  1410  // 5. checkConnErrorWriter{c}, which notes any non-nil error on Write
  1411  //    and populates c.werr with it if so. but otherwise writes to:
  1412  // 6. the rwc, the net.Conn.
  1413  //
  1414  // TODO(bradfitz): short-circuit some of the buffering when the
  1415  // initial header contains both a Content-Type and Content-Length.
  1416  // Also short-circuit in (1) when the header's been sent and not in
  1417  // chunking mode, writing directly to (4) instead, if (2) has no
  1418  // buffered data. More generally, we could short-circuit from (1) to
  1419  // (3) even in chunking mode if the write size from (1) is over some
  1420  // threshold and nothing is in (2).  The answer might be mostly making
  1421  // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal
  1422  // with this instead.
  1423  func (w *response) Write(data []byte) (n int, err error) {
  1424  	return w.write(len(data), data, "")
  1425  }
  1426  
  1427  func (w *response) WriteString(data string) (n int, err error) {
  1428  	return w.write(len(data), nil, data)
  1429  }
  1430  
  1431  // either dataB or dataS is non-zero.
  1432  func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) {
  1433  	if w.conn.hijacked() {
  1434  		if lenData > 0 {
  1435  			w.conn.server.logf("http: response.Write on hijacked connection")
  1436  		}
  1437  		return 0, ErrHijacked
  1438  	}
  1439  	if !w.wroteHeader {
  1440  		w.WriteHeader(StatusOK)
  1441  	}
  1442  	if lenData == 0 {
  1443  		return 0, nil
  1444  	}
  1445  	if !w.bodyAllowed() {
  1446  		return 0, ErrBodyNotAllowed
  1447  	}
  1448  
  1449  	w.written += int64(lenData) // ignoring errors, for errorKludge
  1450  	if w.contentLength != -1 && w.written > w.contentLength {
  1451  		return 0, ErrContentLength
  1452  	}
  1453  	if dataB != nil {
  1454  		return w.w.Write(dataB)
  1455  	} else {
  1456  		return w.w.WriteString(dataS)
  1457  	}
  1458  }
  1459  
  1460  func (w *response) finishRequest() {
  1461  	w.handlerDone.setTrue()
  1462  
  1463  	if !w.wroteHeader {
  1464  		w.WriteHeader(StatusOK)
  1465  	}
  1466  
  1467  	w.w.Flush()
  1468  	putBufioWriter(w.w)
  1469  	w.cw.close()
  1470  	w.conn.bufw.Flush()
  1471  
  1472  	w.conn.r.abortPendingRead()
  1473  
  1474  	// Close the body (regardless of w.closeAfterReply) so we can
  1475  	// re-use its bufio.Reader later safely.
  1476  	w.reqBody.Close()
  1477  
  1478  	if w.req.MultipartForm != nil {
  1479  		w.req.MultipartForm.RemoveAll()
  1480  	}
  1481  }
  1482  
  1483  // shouldReuseConnection reports whether the underlying TCP connection can be reused.
  1484  // It must only be called after the handler is done executing.
  1485  func (w *response) shouldReuseConnection() bool {
  1486  	if w.closeAfterReply {
  1487  		// The request or something set while executing the
  1488  		// handler indicated we shouldn't reuse this
  1489  		// connection.
  1490  		return false
  1491  	}
  1492  
  1493  	if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written {
  1494  		// Did not write enough. Avoid getting out of sync.
  1495  		return false
  1496  	}
  1497  
  1498  	// There was some error writing to the underlying connection
  1499  	// during the request, so don't re-use this conn.
  1500  	if w.conn.werr != nil {
  1501  		return false
  1502  	}
  1503  
  1504  	if w.closedRequestBodyEarly() {
  1505  		return false
  1506  	}
  1507  
  1508  	return true
  1509  }
  1510  
  1511  func (w *response) closedRequestBodyEarly() bool {
  1512  	body, ok := w.req.Body.(*body)
  1513  	return ok && body.didEarlyClose()
  1514  }
  1515  
  1516  func (w *response) Flush() {
  1517  	if !w.wroteHeader {
  1518  		w.WriteHeader(StatusOK)
  1519  	}
  1520  	w.w.Flush()
  1521  	w.cw.flush()
  1522  }
  1523  
  1524  func (c *conn) finalFlush() {
  1525  	if c.bufr != nil {
  1526  		// Steal the bufio.Reader (~4KB worth of memory) and its associated
  1527  		// reader for a future connection.
  1528  		putBufioReader(c.bufr)
  1529  		c.bufr = nil
  1530  	}
  1531  
  1532  	if c.bufw != nil {
  1533  		c.bufw.Flush()
  1534  		// Steal the bufio.Writer (~4KB worth of memory) and its associated
  1535  		// writer for a future connection.
  1536  		putBufioWriter(c.bufw)
  1537  		c.bufw = nil
  1538  	}
  1539  }
  1540  
  1541  // Close the connection.
  1542  func (c *conn) close() {
  1543  	c.finalFlush()
  1544  	c.rwc.Close()
  1545  }
  1546  
  1547  // rstAvoidanceDelay is the amount of time we sleep after closing the
  1548  // write side of a TCP connection before closing the entire socket.
  1549  // By sleeping, we increase the chances that the client sees our FIN
  1550  // and processes its final data before they process the subsequent RST
  1551  // from closing a connection with known unread data.
  1552  // This RST seems to occur mostly on BSD systems. (And Windows?)
  1553  // This timeout is somewhat arbitrary (~latency around the planet).
  1554  const rstAvoidanceDelay = 500 * time.Millisecond
  1555  
  1556  type closeWriter interface {
  1557  	CloseWrite() error
  1558  }
  1559  
  1560  var _ closeWriter = (*net.TCPConn)(nil)
  1561  
  1562  // closeWrite flushes any outstanding data and sends a FIN packet (if
  1563  // client is connected via TCP), signalling that we're done. We then
  1564  // pause for a bit, hoping the client processes it before any
  1565  // subsequent RST.
  1566  //
  1567  // See https://golang.org/issue/3595
  1568  func (c *conn) closeWriteAndWait() {
  1569  	c.finalFlush()
  1570  	if tcp, ok := c.rwc.(closeWriter); ok {
  1571  		tcp.CloseWrite()
  1572  	}
  1573  	time.Sleep(rstAvoidanceDelay)
  1574  }
  1575  
  1576  // validNPN reports whether the proto is not a blacklisted Next
  1577  // Protocol Negotiation protocol. Empty and built-in protocol types
  1578  // are blacklisted and can't be overridden with alternate
  1579  // implementations.
  1580  func validNPN(proto string) bool {
  1581  	switch proto {
  1582  	case "", "http/1.1", "http/1.0":
  1583  		return false
  1584  	}
  1585  	return true
  1586  }
  1587  
  1588  func (c *conn) setState(nc net.Conn, state ConnState) {
  1589  	if hook := c.server.ConnState; hook != nil {
  1590  		hook(nc, state)
  1591  	}
  1592  }
  1593  
  1594  // badRequestError is a literal string (used by in the server in HTML,
  1595  // unescaped) to tell the user why their request was bad. It should
  1596  // be plain text without user info or other embedded errors.
  1597  type badRequestError string
  1598  
  1599  func (e badRequestError) Error() string { return "Bad Request: " + string(e) }
  1600  
  1601  // Serve a new connection.
  1602  func (c *conn) serve(ctx context.Context) {
  1603  	c.remoteAddr = c.rwc.RemoteAddr().String()
  1604  	defer func() {
  1605  		if err := recover(); err != nil {
  1606  			const size = 64 << 10
  1607  			buf := make([]byte, size)
  1608  			buf = buf[:runtime.Stack(buf, false)]
  1609  			c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
  1610  		}
  1611  		if !c.hijacked() {
  1612  			c.close()
  1613  			c.setState(c.rwc, StateClosed)
  1614  		}
  1615  	}()
  1616  
  1617  	if tlsConn, ok := c.rwc.(*tls.Conn); ok {
  1618  		if d := c.server.ReadTimeout; d != 0 {
  1619  			c.rwc.SetReadDeadline(time.Now().Add(d))
  1620  		}
  1621  		if d := c.server.WriteTimeout; d != 0 {
  1622  			c.rwc.SetWriteDeadline(time.Now().Add(d))
  1623  		}
  1624  		if err := tlsConn.Handshake(); err != nil {
  1625  			c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
  1626  			return
  1627  		}
  1628  		c.tlsState = new(tls.ConnectionState)
  1629  		*c.tlsState = tlsConn.ConnectionState()
  1630  		if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
  1631  			if fn := c.server.TLSNextProto[proto]; fn != nil {
  1632  				h := initNPNRequest{tlsConn, serverHandler{c.server}}
  1633  				fn(c.server, tlsConn, h)
  1634  			}
  1635  			return
  1636  		}
  1637  	}
  1638  
  1639  	// HTTP/1.x from here on.
  1640  
  1641  	ctx, cancelCtx := context.WithCancel(ctx)
  1642  	c.cancelCtx = cancelCtx
  1643  	defer cancelCtx()
  1644  
  1645  	c.r = &connReader{conn: c}
  1646  	c.bufr = newBufioReader(c.r)
  1647  	c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
  1648  
  1649  	for {
  1650  		w, err := c.readRequest(ctx)
  1651  		if c.r.remain != c.server.initialReadLimitSize() {
  1652  			// If we read any bytes off the wire, we're active.
  1653  			c.setState(c.rwc, StateActive)
  1654  		}
  1655  		if err != nil {
  1656  			if err == errTooLarge {
  1657  				// Their HTTP client may or may not be
  1658  				// able to read this if we're
  1659  				// responding to them and hanging up
  1660  				// while they're still writing their
  1661  				// request. Undefined behavior.
  1662  				io.WriteString(c.rwc, "HTTP/1.1 431 Request Header Fields Too Large\r\nContent-Type: text/plain\r\nConnection: close\r\n\r\n431 Request Header Fields Too Large")
  1663  				c.closeWriteAndWait()
  1664  				return
  1665  			}
  1666  			if err == io.EOF {
  1667  				return // don't reply
  1668  			}
  1669  			if neterr, ok := err.(net.Error); ok && neterr.Timeout() {
  1670  				return // don't reply
  1671  			}
  1672  			var publicErr string
  1673  			if v, ok := err.(badRequestError); ok {
  1674  				publicErr = ": " + string(v)
  1675  			}
  1676  			io.WriteString(c.rwc, "HTTP/1.1 400 Bad Request\r\nContent-Type: text/plain\r\nConnection: close\r\n\r\n400 Bad Request"+publicErr)
  1677  			return
  1678  		}
  1679  
  1680  		// Expect 100 Continue support
  1681  		req := w.req
  1682  		if req.expectsContinue() {
  1683  			if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
  1684  				// Wrap the Body reader with one that replies on the connection
  1685  				req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
  1686  			}
  1687  		} else if req.Header.get("Expect") != "" {
  1688  			w.sendExpectationFailed()
  1689  			return
  1690  		}
  1691  
  1692  		c.curReq.Store(w)
  1693  
  1694  		if requestBodyRemains(req.Body) {
  1695  			registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
  1696  		} else {
  1697  			if w.conn.bufr.Buffered() > 0 {
  1698  				w.conn.r.closeNotifyFromPipelinedRequest()
  1699  			}
  1700  			w.conn.r.startBackgroundRead()
  1701  		}
  1702  
  1703  		// HTTP cannot have multiple simultaneous active requests.[*]
  1704  		// Until the server replies to this request, it can't read another,
  1705  		// so we might as well run the handler in this goroutine.
  1706  		// [*] Not strictly true: HTTP pipelining. We could let them all process
  1707  		// in parallel even if their responses need to be serialized.
  1708  		// But we're not going to implement HTTP pipelining because it
  1709  		// was never deployed in the wild and the answer is HTTP/2.
  1710  		serverHandler{c.server}.ServeHTTP(w, w.req)
  1711  		w.cancelCtx()
  1712  		if c.hijacked() {
  1713  			return
  1714  		}
  1715  		w.finishRequest()
  1716  		if !w.shouldReuseConnection() {
  1717  			if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
  1718  				c.closeWriteAndWait()
  1719  			}
  1720  			return
  1721  		}
  1722  		c.setState(c.rwc, StateIdle)
  1723  		c.curReq.Store((*response)(nil))
  1724  
  1725  		if d := c.server.idleTimeout(); d != 0 {
  1726  			c.rwc.SetReadDeadline(time.Now().Add(d))
  1727  			if _, err := c.bufr.Peek(4); err != nil {
  1728  				return
  1729  			}
  1730  		}
  1731  		c.rwc.SetReadDeadline(time.Time{})
  1732  	}
  1733  }
  1734  
  1735  func (w *response) sendExpectationFailed() {
  1736  	// TODO(bradfitz): let ServeHTTP handlers handle
  1737  	// requests with non-standard expectation[s]? Seems
  1738  	// theoretical at best, and doesn't fit into the
  1739  	// current ServeHTTP model anyway. We'd need to
  1740  	// make the ResponseWriter an optional
  1741  	// "ExpectReplier" interface or something.
  1742  	//
  1743  	// For now we'll just obey RFC 2616 14.20 which says
  1744  	// "If a server receives a request containing an
  1745  	// Expect field that includes an expectation-
  1746  	// extension that it does not support, it MUST
  1747  	// respond with a 417 (Expectation Failed) status."
  1748  	w.Header().Set("Connection", "close")
  1749  	w.WriteHeader(StatusExpectationFailed)
  1750  	w.finishRequest()
  1751  }
  1752  
  1753  // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter
  1754  // and a Hijacker.
  1755  func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
  1756  	if w.handlerDone.isSet() {
  1757  		panic("net/http: Hijack called after ServeHTTP finished")
  1758  	}
  1759  	if w.wroteHeader {
  1760  		w.cw.flush()
  1761  	}
  1762  
  1763  	c := w.conn
  1764  	c.mu.Lock()
  1765  	defer c.mu.Unlock()
  1766  
  1767  	// Release the bufioWriter that writes to the chunk writer, it is not
  1768  	// used after a connection has been hijacked.
  1769  	rwc, buf, err = c.hijackLocked()
  1770  	if err == nil {
  1771  		putBufioWriter(w.w)
  1772  		w.w = nil
  1773  	}
  1774  	return rwc, buf, err
  1775  }
  1776  
  1777  func (w *response) CloseNotify() <-chan bool {
  1778  	if w.handlerDone.isSet() {
  1779  		panic("net/http: CloseNotify called after ServeHTTP finished")
  1780  	}
  1781  	return w.closeNotifyCh
  1782  }
  1783  
  1784  func registerOnHitEOF(rc io.ReadCloser, fn func()) {
  1785  	switch v := rc.(type) {
  1786  	case *expectContinueReader:
  1787  		registerOnHitEOF(v.readCloser, fn)
  1788  	case *body:
  1789  		v.registerOnHitEOF(fn)
  1790  	default:
  1791  		panic("unexpected type " + fmt.Sprintf("%T", rc))
  1792  	}
  1793  }
  1794  
  1795  // requestBodyRemains reports whether future calls to Read
  1796  // on rc might yield more data.
  1797  func requestBodyRemains(rc io.ReadCloser) bool {
  1798  	if rc == NoBody {
  1799  		return false
  1800  	}
  1801  	switch v := rc.(type) {
  1802  	case *expectContinueReader:
  1803  		return requestBodyRemains(v.readCloser)
  1804  	case *body:
  1805  		return v.bodyRemains()
  1806  	default:
  1807  		panic("unexpected type " + fmt.Sprintf("%T", rc))
  1808  	}
  1809  }
  1810  
  1811  // The HandlerFunc type is an adapter to allow the use of
  1812  // ordinary functions as HTTP handlers. If f is a function
  1813  // with the appropriate signature, HandlerFunc(f) is a
  1814  // Handler that calls f.
  1815  type HandlerFunc func(ResponseWriter, *Request)
  1816  
  1817  // ServeHTTP calls f(w, r).
  1818  func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
  1819  	f(w, r)
  1820  }
  1821  
  1822  // Helper handlers
  1823  
  1824  // Error replies to the request with the specified error message and HTTP code.
  1825  // It does not otherwise end the request; the caller should ensure no further
  1826  // writes are done to w.
  1827  // The error message should be plain text.
  1828  func Error(w ResponseWriter, error string, code int) {
  1829  	w.Header().Set("Content-Type", "text/plain; charset=utf-8")
  1830  	w.Header().Set("X-Content-Type-Options", "nosniff")
  1831  	w.WriteHeader(code)
  1832  	fmt.Fprintln(w, error)
  1833  }
  1834  
  1835  // NotFound replies to the request with an HTTP 404 not found error.
  1836  func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) }
  1837  
  1838  // NotFoundHandler returns a simple request handler
  1839  // that replies to each request with a ``404 page not found'' reply.
  1840  func NotFoundHandler() Handler { return HandlerFunc(NotFound) }
  1841  
  1842  // StripPrefix returns a handler that serves HTTP requests
  1843  // by removing the given prefix from the request URL's Path
  1844  // and invoking the handler h. StripPrefix handles a
  1845  // request for a path that doesn't begin with prefix by
  1846  // replying with an HTTP 404 not found error.
  1847  func StripPrefix(prefix string, h Handler) Handler {
  1848  	if prefix == "" {
  1849  		return h
  1850  	}
  1851  	return HandlerFunc(func(w ResponseWriter, r *Request) {
  1852  		if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) {
  1853  			r.URL.Path = p
  1854  			h.ServeHTTP(w, r)
  1855  		} else {
  1856  			NotFound(w, r)
  1857  		}
  1858  	})
  1859  }
  1860  
  1861  // Redirect replies to the request with a redirect to url,
  1862  // which may be a path relative to the request path.
  1863  //
  1864  // The provided code should be in the 3xx range and is usually
  1865  // StatusMovedPermanently, StatusFound or StatusSeeOther.
  1866  func Redirect(w ResponseWriter, r *Request, urlStr string, code int) {
  1867  	if u, err := url.Parse(urlStr); err == nil {
  1868  		// If url was relative, make absolute by
  1869  		// combining with request path.
  1870  		// The browser would probably do this for us,
  1871  		// but doing it ourselves is more reliable.
  1872  
  1873  		// NOTE(rsc): RFC 2616 says that the Location
  1874  		// line must be an absolute URI, like
  1875  		// "http://www.google.com/redirect/",
  1876  		// not a path like "/redirect/".
  1877  		// Unfortunately, we don't know what to
  1878  		// put in the host name section to get the
  1879  		// client to connect to us again, so we can't
  1880  		// know the right absolute URI to send back.
  1881  		// Because of this problem, no one pays attention
  1882  		// to the RFC; they all send back just a new path.
  1883  		// So do we.
  1884  		if u.Scheme == "" && u.Host == "" {
  1885  			oldpath := r.URL.Path
  1886  			if oldpath == "" { // should not happen, but avoid a crash if it does
  1887  				oldpath = "/"
  1888  			}
  1889  
  1890  			// no leading http://server
  1891  			if urlStr == "" || urlStr[0] != '/' {
  1892  				// make relative path absolute
  1893  				olddir, _ := path.Split(oldpath)
  1894  				urlStr = olddir + urlStr
  1895  			}
  1896  
  1897  			var query string
  1898  			if i := strings.Index(urlStr, "?"); i != -1 {
  1899  				urlStr, query = urlStr[:i], urlStr[i:]
  1900  			}
  1901  
  1902  			// clean up but preserve trailing slash
  1903  			trailing := strings.HasSuffix(urlStr, "/")
  1904  			urlStr = path.Clean(urlStr)
  1905  			if trailing && !strings.HasSuffix(urlStr, "/") {
  1906  				urlStr += "/"
  1907  			}
  1908  			urlStr += query
  1909  		}
  1910  	}
  1911  
  1912  	w.Header().Set("Location", hexEscapeNonASCII(urlStr))
  1913  	w.WriteHeader(code)
  1914  
  1915  	// RFC 2616 recommends that a short note "SHOULD" be included in the
  1916  	// response because older user agents may not understand 301/307.
  1917  	// Shouldn't send the response for POST or HEAD; that leaves GET.
  1918  	if r.Method == "GET" {
  1919  		note := "<a href=\"" + htmlEscape(urlStr) + "\">" + statusText[code] + "</a>.\n"
  1920  		fmt.Fprintln(w, note)
  1921  	}
  1922  }
  1923  
  1924  var htmlReplacer = strings.NewReplacer(
  1925  	"&", "&amp;",
  1926  	"<", "&lt;",
  1927  	">", "&gt;",
  1928  	// "&#34;" is shorter than "&quot;".
  1929  	`"`, "&#34;",
  1930  	// "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
  1931  	"'", "&#39;",
  1932  )
  1933  
  1934  func htmlEscape(s string) string {
  1935  	return htmlReplacer.Replace(s)
  1936  }
  1937  
  1938  // Redirect to a fixed URL
  1939  type redirectHandler struct {
  1940  	url  string
  1941  	code int
  1942  }
  1943  
  1944  func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1945  	Redirect(w, r, rh.url, rh.code)
  1946  }
  1947  
  1948  // RedirectHandler returns a request handler that redirects
  1949  // each request it receives to the given url using the given
  1950  // status code.
  1951  //
  1952  // The provided code should be in the 3xx range and is usually
  1953  // StatusMovedPermanently, StatusFound or StatusSeeOther.
  1954  func RedirectHandler(url string, code int) Handler {
  1955  	return &redirectHandler{url, code}
  1956  }
  1957  
  1958  // ServeMux is an HTTP request multiplexer.
  1959  // It matches the URL of each incoming request against a list of registered
  1960  // patterns and calls the handler for the pattern that
  1961  // most closely matches the URL.
  1962  //
  1963  // Patterns name fixed, rooted paths, like "/favicon.ico",
  1964  // or rooted subtrees, like "/images/" (note the trailing slash).
  1965  // Longer patterns take precedence over shorter ones, so that
  1966  // if there are handlers registered for both "/images/"
  1967  // and "/images/thumbnails/", the latter handler will be
  1968  // called for paths beginning "/images/thumbnails/" and the
  1969  // former will receive requests for any other paths in the
  1970  // "/images/" subtree.
  1971  //
  1972  // Note that since a pattern ending in a slash names a rooted subtree,
  1973  // the pattern "/" matches all paths not matched by other registered
  1974  // patterns, not just the URL with Path == "/".
  1975  //
  1976  // If a subtree has been registered and a request is received naming the
  1977  // subtree root without its trailing slash, ServeMux redirects that
  1978  // request to the subtree root (adding the trailing slash). This behavior can
  1979  // be overridden with a separate registration for the path without
  1980  // the trailing slash. For example, registering "/images/" causes ServeMux
  1981  // to redirect a request for "/images" to "/images/", unless "/images" has
  1982  // been registered separately.
  1983  //
  1984  // Patterns may optionally begin with a host name, restricting matches to
  1985  // URLs on that host only. Host-specific patterns take precedence over
  1986  // general patterns, so that a handler might register for the two patterns
  1987  // "/codesearch" and "codesearch.google.com/" without also taking over
  1988  // requests for "http://www.google.com/".
  1989  //
  1990  // ServeMux also takes care of sanitizing the URL request path,
  1991  // redirecting any request containing . or .. elements or repeated slashes
  1992  // to an equivalent, cleaner URL.
  1993  type ServeMux struct {
  1994  	mu    sync.RWMutex
  1995  	m     map[string]muxEntry
  1996  	hosts bool // whether any patterns contain hostnames
  1997  }
  1998  
  1999  type muxEntry struct {
  2000  	explicit bool
  2001  	h        Handler
  2002  	pattern  string
  2003  }
  2004  
  2005  // NewServeMux allocates and returns a new ServeMux.
  2006  func NewServeMux() *ServeMux { return new(ServeMux) }
  2007  
  2008  // DefaultServeMux is the default ServeMux used by Serve.
  2009  var DefaultServeMux = &defaultServeMux
  2010  
  2011  var defaultServeMux ServeMux
  2012  
  2013  // Does path match pattern?
  2014  func pathMatch(pattern, path string) bool {
  2015  	if len(pattern) == 0 {
  2016  		// should not happen
  2017  		return false
  2018  	}
  2019  	n := len(pattern)
  2020  	if pattern[n-1] != '/' {
  2021  		return pattern == path
  2022  	}
  2023  	return len(path) >= n && path[0:n] == pattern
  2024  }
  2025  
  2026  // Return the canonical path for p, eliminating . and .. elements.
  2027  func cleanPath(p string) string {
  2028  	if p == "" {
  2029  		return "/"
  2030  	}
  2031  	if p[0] != '/' {
  2032  		p = "/" + p
  2033  	}
  2034  	np := path.Clean(p)
  2035  	// path.Clean removes trailing slash except for root;
  2036  	// put the trailing slash back if necessary.
  2037  	if p[len(p)-1] == '/' && np != "/" {
  2038  		np += "/"
  2039  	}
  2040  	return np
  2041  }
  2042  
  2043  // Find a handler on a handler map given a path string
  2044  // Most-specific (longest) pattern wins
  2045  func (mux *ServeMux) match(path string) (h Handler, pattern string) {
  2046  	var n = 0
  2047  	for k, v := range mux.m {
  2048  		if !pathMatch(k, path) {
  2049  			continue
  2050  		}
  2051  		if h == nil || len(k) > n {
  2052  			n = len(k)
  2053  			h = v.h
  2054  			pattern = v.pattern
  2055  		}
  2056  	}
  2057  	return
  2058  }
  2059  
  2060  // Handler returns the handler to use for the given request,
  2061  // consulting r.Method, r.Host, and r.URL.Path. It always returns
  2062  // a non-nil handler. If the path is not in its canonical form, the
  2063  // handler will be an internally-generated handler that redirects
  2064  // to the canonical path.
  2065  //
  2066  // Handler also returns the registered pattern that matches the
  2067  // request or, in the case of internally-generated redirects,
  2068  // the pattern that will match after following the redirect.
  2069  //
  2070  // If there is no registered handler that applies to the request,
  2071  // Handler returns a ``page not found'' handler and an empty pattern.
  2072  func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
  2073  	if r.Method != "CONNECT" {
  2074  		if p := cleanPath(r.URL.Path); p != r.URL.Path {
  2075  			_, pattern = mux.handler(r.Host, p)
  2076  			url := *r.URL
  2077  			url.Path = p
  2078  			return RedirectHandler(url.String(), StatusMovedPermanently), pattern
  2079  		}
  2080  	}
  2081  
  2082  	return mux.handler(r.Host, r.URL.Path)
  2083  }
  2084  
  2085  // handler is the main implementation of Handler.
  2086  // The path is known to be in canonical form, except for CONNECT methods.
  2087  func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
  2088  	mux.mu.RLock()
  2089  	defer mux.mu.RUnlock()
  2090  
  2091  	// Host-specific pattern takes precedence over generic ones
  2092  	if mux.hosts {
  2093  		h, pattern = mux.match(host + path)
  2094  	}
  2095  	if h == nil {
  2096  		h, pattern = mux.match(path)
  2097  	}
  2098  	if h == nil {
  2099  		h, pattern = NotFoundHandler(), ""
  2100  	}
  2101  	return
  2102  }
  2103  
  2104  // ServeHTTP dispatches the request to the handler whose
  2105  // pattern most closely matches the request URL.
  2106  func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
  2107  	if r.RequestURI == "*" {
  2108  		if r.ProtoAtLeast(1, 1) {
  2109  			w.Header().Set("Connection", "close")
  2110  		}
  2111  		w.WriteHeader(StatusBadRequest)
  2112  		return
  2113  	}
  2114  	h, _ := mux.Handler(r)
  2115  	h.ServeHTTP(w, r)
  2116  }
  2117  
  2118  // Handle registers the handler for the given pattern.
  2119  // If a handler already exists for pattern, Handle panics.
  2120  func (mux *ServeMux) Handle(pattern string, handler Handler) {
  2121  	mux.mu.Lock()
  2122  	defer mux.mu.Unlock()
  2123  
  2124  	if pattern == "" {
  2125  		panic("http: invalid pattern " + pattern)
  2126  	}
  2127  	if handler == nil {
  2128  		panic("http: nil handler")
  2129  	}
  2130  	if mux.m[pattern].explicit {
  2131  		panic("http: multiple registrations for " + pattern)
  2132  	}
  2133  
  2134  	if mux.m == nil {
  2135  		mux.m = make(map[string]muxEntry)
  2136  	}
  2137  	mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern}
  2138  
  2139  	if pattern[0] != '/' {
  2140  		mux.hosts = true
  2141  	}
  2142  
  2143  	// Helpful behavior:
  2144  	// If pattern is /tree/, insert an implicit permanent redirect for /tree.
  2145  	// It can be overridden by an explicit registration.
  2146  	n := len(pattern)
  2147  	if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
  2148  		// If pattern contains a host name, strip it and use remaining
  2149  		// path for redirect.
  2150  		path := pattern
  2151  		if pattern[0] != '/' {
  2152  			// In pattern, at least the last character is a '/', so
  2153  			// strings.Index can't be -1.
  2154  			path = pattern[strings.Index(pattern, "/"):]
  2155  		}
  2156  		url := &url.URL{Path: path}
  2157  		mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(url.String(), StatusMovedPermanently), pattern: pattern}
  2158  	}
  2159  }
  2160  
  2161  // HandleFunc registers the handler function for the given pattern.
  2162  func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  2163  	mux.Handle(pattern, HandlerFunc(handler))
  2164  }
  2165  
  2166  // Handle registers the handler for the given pattern
  2167  // in the DefaultServeMux.
  2168  // The documentation for ServeMux explains how patterns are matched.
  2169  func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
  2170  
  2171  // HandleFunc registers the handler function for the given pattern
  2172  // in the DefaultServeMux.
  2173  // The documentation for ServeMux explains how patterns are matched.
  2174  func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  2175  	DefaultServeMux.HandleFunc(pattern, handler)
  2176  }
  2177  
  2178  // Serve accepts incoming HTTP connections on the listener l,
  2179  // creating a new service goroutine for each. The service goroutines
  2180  // read requests and then call handler to reply to them.
  2181  // Handler is typically nil, in which case the DefaultServeMux is used.
  2182  func Serve(l net.Listener, handler Handler) error {
  2183  	srv := &Server{Handler: handler}
  2184  	return srv.Serve(l)
  2185  }
  2186  
  2187  // A Server defines parameters for running an HTTP server.
  2188  // The zero value for Server is a valid configuration.
  2189  type Server struct {
  2190  	Addr      string      // TCP address to listen on, ":http" if empty
  2191  	Handler   Handler     // handler to invoke, http.DefaultServeMux if nil
  2192  	TLSConfig *tls.Config // optional TLS config, used by ListenAndServeTLS
  2193  
  2194  	// ReadTimeout is the maximum duration for reading the entire
  2195  	// request, including the body.
  2196  	//
  2197  	// Because ReadTimeout does not let Handlers make per-request
  2198  	// decisions on each request body's acceptable deadline or
  2199  	// upload rate, most users will prefer to use
  2200  	// ReadHeaderTimeout. It is valid to use them both.
  2201  	ReadTimeout time.Duration
  2202  
  2203  	// ReadHeaderTimeout is the amount of time allowed to read
  2204  	// request headers. The connection's read deadline is reset
  2205  	// after reading the headers and the Handler can decide what
  2206  	// is considered too slow for the body.
  2207  	ReadHeaderTimeout time.Duration
  2208  
  2209  	// WriteTimeout is the maximum duration before timing out
  2210  	// writes of the response. It is reset whenever a new
  2211  	// request's header is read. Like ReadTimeout, it does not
  2212  	// let Handlers make decisions on a per-request basis.
  2213  	WriteTimeout time.Duration
  2214  
  2215  	// IdleTimeout is the maximum amount of time to wait for the
  2216  	// next request when keep-alives are enabled. If IdleTimeout
  2217  	// is zero, the value of ReadTimeout is used. If both are
  2218  	// zero, there is no timeout.
  2219  	IdleTimeout time.Duration
  2220  
  2221  	// MaxHeaderBytes controls the maximum number of bytes the
  2222  	// server will read parsing the request header's keys and
  2223  	// values, including the request line. It does not limit the
  2224  	// size of the request body.
  2225  	// If zero, DefaultMaxHeaderBytes is used.
  2226  	MaxHeaderBytes int
  2227  
  2228  	// TLSNextProto optionally specifies a function to take over
  2229  	// ownership of the provided TLS connection when an NPN/ALPN
  2230  	// protocol upgrade has occurred. The map key is the protocol
  2231  	// name negotiated. The Handler argument should be used to
  2232  	// handle HTTP requests and will initialize the Request's TLS
  2233  	// and RemoteAddr if not already set. The connection is
  2234  	// automatically closed when the function returns.
  2235  	// If TLSNextProto is nil, HTTP/2 support is enabled automatically.
  2236  	TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
  2237  
  2238  	// ConnState specifies an optional callback function that is
  2239  	// called when a client connection changes state. See the
  2240  	// ConnState type and associated constants for details.
  2241  	ConnState func(net.Conn, ConnState)
  2242  
  2243  	// ErrorLog specifies an optional logger for errors accepting
  2244  	// connections and unexpected behavior from handlers.
  2245  	// If nil, logging goes to os.Stderr via the log package's
  2246  	// standard logger.
  2247  	ErrorLog *log.Logger
  2248  
  2249  	disableKeepAlives int32     // accessed atomically.
  2250  	nextProtoOnce     sync.Once // guards setupHTTP2_* init
  2251  	nextProtoErr      error     // result of http2.ConfigureServer if used
  2252  }
  2253  
  2254  // A ConnState represents the state of a client connection to a server.
  2255  // It's used by the optional Server.ConnState hook.
  2256  type ConnState int
  2257  
  2258  const (
  2259  	// StateNew represents a new connection that is expected to
  2260  	// send a request immediately. Connections begin at this
  2261  	// state and then transition to either StateActive or
  2262  	// StateClosed.
  2263  	StateNew ConnState = iota
  2264  
  2265  	// StateActive represents a connection that has read 1 or more
  2266  	// bytes of a request. The Server.ConnState hook for
  2267  	// StateActive fires before the request has entered a handler
  2268  	// and doesn't fire again until the request has been
  2269  	// handled. After the request is handled, the state
  2270  	// transitions to StateClosed, StateHijacked, or StateIdle.
  2271  	// For HTTP/2, StateActive fires on the transition from zero
  2272  	// to one active request, and only transitions away once all
  2273  	// active requests are complete. That means that ConnState
  2274  	// cannot be used to do per-request work; ConnState only notes
  2275  	// the overall state of the connection.
  2276  	StateActive
  2277  
  2278  	// StateIdle represents a connection that has finished
  2279  	// handling a request and is in the keep-alive state, waiting
  2280  	// for a new request. Connections transition from StateIdle
  2281  	// to either StateActive or StateClosed.
  2282  	StateIdle
  2283  
  2284  	// StateHijacked represents a hijacked connection.
  2285  	// This is a terminal state. It does not transition to StateClosed.
  2286  	StateHijacked
  2287  
  2288  	// StateClosed represents a closed connection.
  2289  	// This is a terminal state. Hijacked connections do not
  2290  	// transition to StateClosed.
  2291  	StateClosed
  2292  )
  2293  
  2294  var stateName = map[ConnState]string{
  2295  	StateNew:      "new",
  2296  	StateActive:   "active",
  2297  	StateIdle:     "idle",
  2298  	StateHijacked: "hijacked",
  2299  	StateClosed:   "closed",
  2300  }
  2301  
  2302  func (c ConnState) String() string {
  2303  	return stateName[c]
  2304  }
  2305  
  2306  // serverHandler delegates to either the server's Handler or
  2307  // DefaultServeMux and also handles "OPTIONS *" requests.
  2308  type serverHandler struct {
  2309  	srv *Server
  2310  }
  2311  
  2312  func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
  2313  	handler := sh.srv.Handler
  2314  	if handler == nil {
  2315  		handler = DefaultServeMux
  2316  	}
  2317  	if req.RequestURI == "*" && req.Method == "OPTIONS" {
  2318  		handler = globalOptionsHandler{}
  2319  	}
  2320  	handler.ServeHTTP(rw, req)
  2321  }
  2322  
  2323  // ListenAndServe listens on the TCP network address srv.Addr and then
  2324  // calls Serve to handle requests on incoming connections.
  2325  // Accepted connections are configured to enable TCP keep-alives.
  2326  // If srv.Addr is blank, ":http" is used.
  2327  // ListenAndServe always returns a non-nil error.
  2328  func (srv *Server) ListenAndServe() error {
  2329  	addr := srv.Addr
  2330  	if addr == "" {
  2331  		addr = ":http"
  2332  	}
  2333  	ln, err := net.Listen("tcp", addr)
  2334  	if err != nil {
  2335  		return err
  2336  	}
  2337  	return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
  2338  }
  2339  
  2340  var testHookServerServe func(*Server, net.Listener) // used if non-nil
  2341  
  2342  // shouldDoServeHTTP2 reports whether Server.Serve should configure
  2343  // automatic HTTP/2. (which sets up the srv.TLSNextProto map)
  2344  func (srv *Server) shouldConfigureHTTP2ForServe() bool {
  2345  	if srv.TLSConfig == nil {
  2346  		// Compatibility with Go 1.6:
  2347  		// If there's no TLSConfig, it's possible that the user just
  2348  		// didn't set it on the http.Server, but did pass it to
  2349  		// tls.NewListener and passed that listener to Serve.
  2350  		// So we should configure HTTP/2 (to set up srv.TLSNextProto)
  2351  		// in case the listener returns an "h2" *tls.Conn.
  2352  		return true
  2353  	}
  2354  	// The user specified a TLSConfig on their http.Server.
  2355  	// In this, case, only configure HTTP/2 if their tls.Config
  2356  	// explicitly mentions "h2". Otherwise http2.ConfigureServer
  2357  	// would modify the tls.Config to add it, but they probably already
  2358  	// passed this tls.Config to tls.NewListener. And if they did,
  2359  	// it's too late anyway to fix it. It would only be potentially racy.
  2360  	// See Issue 15908.
  2361  	return strSliceContains(srv.TLSConfig.NextProtos, http2NextProtoTLS)
  2362  }
  2363  
  2364  // Serve accepts incoming connections on the Listener l, creating a
  2365  // new service goroutine for each. The service goroutines read requests and
  2366  // then call srv.Handler to reply to them.
  2367  //
  2368  // For HTTP/2 support, srv.TLSConfig should be initialized to the
  2369  // provided listener's TLS Config before calling Serve. If
  2370  // srv.TLSConfig is non-nil and doesn't include the string "h2" in
  2371  // Config.NextProtos, HTTP/2 support is not enabled.
  2372  //
  2373  // Serve always returns a non-nil error.
  2374  func (srv *Server) Serve(l net.Listener) error {
  2375  	defer l.Close()
  2376  	if fn := testHookServerServe; fn != nil {
  2377  		fn(srv, l)
  2378  	}
  2379  	var tempDelay time.Duration // how long to sleep on accept failure
  2380  
  2381  	if err := srv.setupHTTP2_Serve(); err != nil {
  2382  		return err
  2383  	}
  2384  
  2385  	baseCtx := context.Background() // base is always background, per Issue 16220
  2386  	ctx := context.WithValue(baseCtx, ServerContextKey, srv)
  2387  	ctx = context.WithValue(ctx, LocalAddrContextKey, l.Addr())
  2388  	for {
  2389  		rw, e := l.Accept()
  2390  		if e != nil {
  2391  			if ne, ok := e.(net.Error); ok && ne.Temporary() {
  2392  				if tempDelay == 0 {
  2393  					tempDelay = 5 * time.Millisecond
  2394  				} else {
  2395  					tempDelay *= 2
  2396  				}
  2397  				if max := 1 * time.Second; tempDelay > max {
  2398  					tempDelay = max
  2399  				}
  2400  				srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
  2401  				time.Sleep(tempDelay)
  2402  				continue
  2403  			}
  2404  			return e
  2405  		}
  2406  		tempDelay = 0
  2407  		c := srv.newConn(rw)
  2408  		c.setState(c.rwc, StateNew) // before Serve can return
  2409  		go c.serve(ctx)
  2410  	}
  2411  }
  2412  
  2413  func (s *Server) idleTimeout() time.Duration {
  2414  	if s.IdleTimeout != 0 {
  2415  		return s.IdleTimeout
  2416  	}
  2417  	return s.ReadTimeout
  2418  }
  2419  
  2420  func (s *Server) readHeaderTimeout() time.Duration {
  2421  	if s.ReadHeaderTimeout != 0 {
  2422  		return s.ReadHeaderTimeout
  2423  	}
  2424  	return s.ReadTimeout
  2425  }
  2426  
  2427  func (s *Server) doKeepAlives() bool {
  2428  	return atomic.LoadInt32(&s.disableKeepAlives) == 0
  2429  }
  2430  
  2431  // SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled.
  2432  // By default, keep-alives are always enabled. Only very
  2433  // resource-constrained environments or servers in the process of
  2434  // shutting down should disable them.
  2435  func (srv *Server) SetKeepAlivesEnabled(v bool) {
  2436  	if v {
  2437  		atomic.StoreInt32(&srv.disableKeepAlives, 0)
  2438  	} else {
  2439  		atomic.StoreInt32(&srv.disableKeepAlives, 1)
  2440  	}
  2441  }
  2442  
  2443  func (s *Server) logf(format string, args ...interface{}) {
  2444  	if s.ErrorLog != nil {
  2445  		s.ErrorLog.Printf(format, args...)
  2446  	} else {
  2447  		log.Printf(format, args...)
  2448  	}
  2449  }
  2450  
  2451  // ListenAndServe listens on the TCP network address addr
  2452  // and then calls Serve with handler to handle requests
  2453  // on incoming connections.
  2454  // Accepted connections are configured to enable TCP keep-alives.
  2455  // Handler is typically nil, in which case the DefaultServeMux is
  2456  // used.
  2457  //
  2458  // A trivial example server is:
  2459  //
  2460  //	package main
  2461  //
  2462  //	import (
  2463  //		"io"
  2464  //		"net/http"
  2465  //		"log"
  2466  //	)
  2467  //
  2468  //	// hello world, the web server
  2469  //	func HelloServer(w http.ResponseWriter, req *http.Request) {
  2470  //		io.WriteString(w, "hello, world!\n")
  2471  //	}
  2472  //
  2473  //	func main() {
  2474  //		http.HandleFunc("/hello", HelloServer)
  2475  //		log.Fatal(http.ListenAndServe(":12345", nil))
  2476  //	}
  2477  //
  2478  // ListenAndServe always returns a non-nil error.
  2479  func ListenAndServe(addr string, handler Handler) error {
  2480  	server := &Server{Addr: addr, Handler: handler}
  2481  	return server.ListenAndServe()
  2482  }
  2483  
  2484  // ListenAndServeTLS acts identically to ListenAndServe, except that it
  2485  // expects HTTPS connections. Additionally, files containing a certificate and
  2486  // matching private key for the server must be provided. If the certificate
  2487  // is signed by a certificate authority, the certFile should be the concatenation
  2488  // of the server's certificate, any intermediates, and the CA's certificate.
  2489  //
  2490  // A trivial example server is:
  2491  //
  2492  //	import (
  2493  //		"log"
  2494  //		"net/http"
  2495  //	)
  2496  //
  2497  //	func handler(w http.ResponseWriter, req *http.Request) {
  2498  //		w.Header().Set("Content-Type", "text/plain")
  2499  //		w.Write([]byte("This is an example server.\n"))
  2500  //	}
  2501  //
  2502  //	func main() {
  2503  //		http.HandleFunc("/", handler)
  2504  //		log.Printf("About to listen on 10443. Go to https://127.0.0.1:10443/")
  2505  //		err := http.ListenAndServeTLS(":10443", "cert.pem", "key.pem", nil)
  2506  //		log.Fatal(err)
  2507  //	}
  2508  //
  2509  // One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem.
  2510  //
  2511  // ListenAndServeTLS always returns a non-nil error.
  2512  func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error {
  2513  	server := &Server{Addr: addr, Handler: handler}
  2514  	return server.ListenAndServeTLS(certFile, keyFile)
  2515  }
  2516  
  2517  // ListenAndServeTLS listens on the TCP network address srv.Addr and
  2518  // then calls Serve to handle requests on incoming TLS connections.
  2519  // Accepted connections are configured to enable TCP keep-alives.
  2520  //
  2521  // Filenames containing a certificate and matching private key for the
  2522  // server must be provided if neither the Server's TLSConfig.Certificates
  2523  // nor TLSConfig.GetCertificate are populated. If the certificate is
  2524  // signed by a certificate authority, the certFile should be the
  2525  // concatenation of the server's certificate, any intermediates, and
  2526  // the CA's certificate.
  2527  //
  2528  // If srv.Addr is blank, ":https" is used.
  2529  //
  2530  // ListenAndServeTLS always returns a non-nil error.
  2531  func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error {
  2532  	addr := srv.Addr
  2533  	if addr == "" {
  2534  		addr = ":https"
  2535  	}
  2536  
  2537  	// Setup HTTP/2 before srv.Serve, to initialize srv.TLSConfig
  2538  	// before we clone it and create the TLS Listener.
  2539  	if err := srv.setupHTTP2_ListenAndServeTLS(); err != nil {
  2540  		return err
  2541  	}
  2542  
  2543  	config := cloneTLSConfig(srv.TLSConfig)
  2544  	if !strSliceContains(config.NextProtos, "http/1.1") {
  2545  		config.NextProtos = append(config.NextProtos, "http/1.1")
  2546  	}
  2547  
  2548  	configHasCert := len(config.Certificates) > 0 || config.GetCertificate != nil
  2549  	if !configHasCert || certFile != "" || keyFile != "" {
  2550  		var err error
  2551  		config.Certificates = make([]tls.Certificate, 1)
  2552  		config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile)
  2553  		if err != nil {
  2554  			return err
  2555  		}
  2556  	}
  2557  
  2558  	ln, err := net.Listen("tcp", addr)
  2559  	if err != nil {
  2560  		return err
  2561  	}
  2562  
  2563  	tlsListener := tls.NewListener(tcpKeepAliveListener{ln.(*net.TCPListener)}, config)
  2564  	return srv.Serve(tlsListener)
  2565  }
  2566  
  2567  // setupHTTP2_ListenAndServeTLS conditionally configures HTTP/2 on
  2568  // srv and returns whether there was an error setting it up. If it is
  2569  // not configured for policy reasons, nil is returned.
  2570  func (srv *Server) setupHTTP2_ListenAndServeTLS() error {
  2571  	srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults)
  2572  	return srv.nextProtoErr
  2573  }
  2574  
  2575  // setupHTTP2_Serve is called from (*Server).Serve and conditionally
  2576  // configures HTTP/2 on srv using a more conservative policy than
  2577  // setupHTTP2_ListenAndServeTLS because Serve may be called
  2578  // concurrently.
  2579  //
  2580  // The tests named TestTransportAutomaticHTTP2* and
  2581  // TestConcurrentServerServe in server_test.go demonstrate some
  2582  // of the supported use cases and motivations.
  2583  func (srv *Server) setupHTTP2_Serve() error {
  2584  	srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults_Serve)
  2585  	return srv.nextProtoErr
  2586  }
  2587  
  2588  func (srv *Server) onceSetNextProtoDefaults_Serve() {
  2589  	if srv.shouldConfigureHTTP2ForServe() {
  2590  		srv.onceSetNextProtoDefaults()
  2591  	}
  2592  }
  2593  
  2594  // onceSetNextProtoDefaults configures HTTP/2, if the user hasn't
  2595  // configured otherwise. (by setting srv.TLSNextProto non-nil)
  2596  // It must only be called via srv.nextProtoOnce (use srv.setupHTTP2_*).
  2597  func (srv *Server) onceSetNextProtoDefaults() {
  2598  	if strings.Contains(os.Getenv("GODEBUG"), "http2server=0") {
  2599  		return
  2600  	}
  2601  	// Enable HTTP/2 by default if the user hasn't otherwise
  2602  	// configured their TLSNextProto map.
  2603  	if srv.TLSNextProto == nil {
  2604  		srv.nextProtoErr = http2ConfigureServer(srv, nil)
  2605  	}
  2606  }
  2607  
  2608  // TimeoutHandler returns a Handler that runs h with the given time limit.
  2609  //
  2610  // The new Handler calls h.ServeHTTP to handle each request, but if a
  2611  // call runs for longer than its time limit, the handler responds with
  2612  // a 503 Service Unavailable error and the given message in its body.
  2613  // (If msg is empty, a suitable default message will be sent.)
  2614  // After such a timeout, writes by h to its ResponseWriter will return
  2615  // ErrHandlerTimeout.
  2616  //
  2617  // TimeoutHandler buffers all Handler writes to memory and does not
  2618  // support the Hijacker or Flusher interfaces.
  2619  func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler {
  2620  	return &timeoutHandler{
  2621  		handler: h,
  2622  		body:    msg,
  2623  		dt:      dt,
  2624  	}
  2625  }
  2626  
  2627  // ErrHandlerTimeout is returned on ResponseWriter Write calls
  2628  // in handlers which have timed out.
  2629  var ErrHandlerTimeout = errors.New("http: Handler timeout")
  2630  
  2631  type timeoutHandler struct {
  2632  	handler Handler
  2633  	body    string
  2634  	dt      time.Duration
  2635  
  2636  	// When set, no timer will be created and this channel will
  2637  	// be used instead.
  2638  	testTimeout <-chan time.Time
  2639  }
  2640  
  2641  func (h *timeoutHandler) errorBody() string {
  2642  	if h.body != "" {
  2643  		return h.body
  2644  	}
  2645  	return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>"
  2646  }
  2647  
  2648  func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) {
  2649  	var t *time.Timer
  2650  	timeout := h.testTimeout
  2651  	if timeout == nil {
  2652  		t = time.NewTimer(h.dt)
  2653  		timeout = t.C
  2654  	}
  2655  	done := make(chan struct{})
  2656  	tw := &timeoutWriter{
  2657  		w: w,
  2658  		h: make(Header),
  2659  	}
  2660  	go func() {
  2661  		h.handler.ServeHTTP(tw, r)
  2662  		close(done)
  2663  	}()
  2664  	select {
  2665  	case <-done:
  2666  		tw.mu.Lock()
  2667  		defer tw.mu.Unlock()
  2668  		dst := w.Header()
  2669  		for k, vv := range tw.h {
  2670  			dst[k] = vv
  2671  		}
  2672  		if !tw.wroteHeader {
  2673  			tw.code = StatusOK
  2674  		}
  2675  		w.WriteHeader(tw.code)
  2676  		w.Write(tw.wbuf.Bytes())
  2677  		if t != nil {
  2678  			t.Stop()
  2679  		}
  2680  	case <-timeout:
  2681  		tw.mu.Lock()
  2682  		defer tw.mu.Unlock()
  2683  		w.WriteHeader(StatusServiceUnavailable)
  2684  		io.WriteString(w, h.errorBody())
  2685  		tw.timedOut = true
  2686  		return
  2687  	}
  2688  }
  2689  
  2690  type timeoutWriter struct {
  2691  	w    ResponseWriter
  2692  	h    Header
  2693  	wbuf bytes.Buffer
  2694  
  2695  	mu          sync.Mutex
  2696  	timedOut    bool
  2697  	wroteHeader bool
  2698  	code        int
  2699  }
  2700  
  2701  func (tw *timeoutWriter) Header() Header { return tw.h }
  2702  
  2703  func (tw *timeoutWriter) Write(p []byte) (int, error) {
  2704  	tw.mu.Lock()
  2705  	defer tw.mu.Unlock()
  2706  	if tw.timedOut {
  2707  		return 0, ErrHandlerTimeout
  2708  	}
  2709  	if !tw.wroteHeader {
  2710  		tw.writeHeader(StatusOK)
  2711  	}
  2712  	return tw.wbuf.Write(p)
  2713  }
  2714  
  2715  func (tw *timeoutWriter) WriteHeader(code int) {
  2716  	tw.mu.Lock()
  2717  	defer tw.mu.Unlock()
  2718  	if tw.timedOut || tw.wroteHeader {
  2719  		return
  2720  	}
  2721  	tw.writeHeader(code)
  2722  }
  2723  
  2724  func (tw *timeoutWriter) writeHeader(code int) {
  2725  	tw.wroteHeader = true
  2726  	tw.code = code
  2727  }
  2728  
  2729  // tcpKeepAliveListener sets TCP keep-alive timeouts on accepted
  2730  // connections. It's used by ListenAndServe and ListenAndServeTLS so
  2731  // dead TCP connections (e.g. closing laptop mid-download) eventually
  2732  // go away.
  2733  type tcpKeepAliveListener struct {
  2734  	*net.TCPListener
  2735  }
  2736  
  2737  func (ln tcpKeepAliveListener) Accept() (c net.Conn, err error) {
  2738  	tc, err := ln.AcceptTCP()
  2739  	if err != nil {
  2740  		return
  2741  	}
  2742  	tc.SetKeepAlive(true)
  2743  	tc.SetKeepAlivePeriod(3 * time.Minute)
  2744  	return tc, nil
  2745  }
  2746  
  2747  // globalOptionsHandler responds to "OPTIONS *" requests.
  2748  type globalOptionsHandler struct{}
  2749  
  2750  func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) {
  2751  	w.Header().Set("Content-Length", "0")
  2752  	if r.ContentLength != 0 {
  2753  		// Read up to 4KB of OPTIONS body (as mentioned in the
  2754  		// spec as being reserved for future use), but anything
  2755  		// over that is considered a waste of server resources
  2756  		// (or an attack) and we abort and close the connection,
  2757  		// courtesy of MaxBytesReader's EOF behavior.
  2758  		mb := MaxBytesReader(w, r.Body, 4<<10)
  2759  		io.Copy(ioutil.Discard, mb)
  2760  	}
  2761  }
  2762  
  2763  // initNPNRequest is an HTTP handler that initializes certain
  2764  // uninitialized fields in its *Request. Such partially-initialized
  2765  // Requests come from NPN protocol handlers.
  2766  type initNPNRequest struct {
  2767  	c *tls.Conn
  2768  	h serverHandler
  2769  }
  2770  
  2771  func (h initNPNRequest) ServeHTTP(rw ResponseWriter, req *Request) {
  2772  	if req.TLS == nil {
  2773  		req.TLS = &tls.ConnectionState{}
  2774  		*req.TLS = h.c.ConnectionState()
  2775  	}
  2776  	if req.Body == nil {
  2777  		req.Body = NoBody
  2778  	}
  2779  	if req.RemoteAddr == "" {
  2780  		req.RemoteAddr = h.c.RemoteAddr().String()
  2781  	}
  2782  	h.h.ServeHTTP(rw, req)
  2783  }
  2784  
  2785  // loggingConn is used for debugging.
  2786  type loggingConn struct {
  2787  	name string
  2788  	net.Conn
  2789  }
  2790  
  2791  var (
  2792  	uniqNameMu   sync.Mutex
  2793  	uniqNameNext = make(map[string]int)
  2794  )
  2795  
  2796  func newLoggingConn(baseName string, c net.Conn) net.Conn {
  2797  	uniqNameMu.Lock()
  2798  	defer uniqNameMu.Unlock()
  2799  	uniqNameNext[baseName]++
  2800  	return &loggingConn{
  2801  		name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]),
  2802  		Conn: c,
  2803  	}
  2804  }
  2805  
  2806  func (c *loggingConn) Write(p []byte) (n int, err error) {
  2807  	log.Printf("%s.Write(%d) = ....", c.name, len(p))
  2808  	n, err = c.Conn.Write(p)
  2809  	log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err)
  2810  	return
  2811  }
  2812  
  2813  func (c *loggingConn) Read(p []byte) (n int, err error) {
  2814  	log.Printf("%s.Read(%d) = ....", c.name, len(p))
  2815  	n, err = c.Conn.Read(p)
  2816  	log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err)
  2817  	return
  2818  }
  2819  
  2820  func (c *loggingConn) Close() (err error) {
  2821  	log.Printf("%s.Close() = ...", c.name)
  2822  	err = c.Conn.Close()
  2823  	log.Printf("%s.Close() = %v", c.name, err)
  2824  	return
  2825  }
  2826  
  2827  // checkConnErrorWriter writes to c.rwc and records any write errors to c.werr.
  2828  // It only contains one field (and a pointer field at that), so it
  2829  // fits in an interface value without an extra allocation.
  2830  type checkConnErrorWriter struct {
  2831  	c *conn
  2832  }
  2833  
  2834  func (w checkConnErrorWriter) Write(p []byte) (n int, err error) {
  2835  	n, err = w.c.rwc.Write(p)
  2836  	if err != nil && w.c.werr == nil {
  2837  		w.c.werr = err
  2838  		w.c.cancelCtx()
  2839  	}
  2840  	return
  2841  }
  2842  
  2843  func numLeadingCRorLF(v []byte) (n int) {
  2844  	for _, b := range v {
  2845  		if b == '\r' || b == '\n' {
  2846  			n++
  2847  			continue
  2848  		}
  2849  		break
  2850  	}
  2851  	return
  2852  
  2853  }
  2854  
  2855  func strSliceContains(ss []string, s string) bool {
  2856  	for _, v := range ss {
  2857  		if v == s {
  2858  			return true
  2859  		}
  2860  	}
  2861  	return false
  2862  }