github.com/dannin/go@v0.0.0-20161031215817-d35dfd405eaa/src/runtime/os_linux.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package runtime
     6  
     7  import (
     8  	"runtime/internal/sys"
     9  	"unsafe"
    10  )
    11  
    12  type mOS struct{}
    13  
    14  //go:noescape
    15  func futex(addr unsafe.Pointer, op int32, val uint32, ts, addr2 unsafe.Pointer, val3 uint32) int32
    16  
    17  // Linux futex.
    18  //
    19  //	futexsleep(uint32 *addr, uint32 val)
    20  //	futexwakeup(uint32 *addr)
    21  //
    22  // Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
    23  // Futexwakeup wakes up threads sleeping on addr.
    24  // Futexsleep is allowed to wake up spuriously.
    25  
    26  const (
    27  	_FUTEX_WAIT = 0
    28  	_FUTEX_WAKE = 1
    29  )
    30  
    31  // Atomically,
    32  //	if(*addr == val) sleep
    33  // Might be woken up spuriously; that's allowed.
    34  // Don't sleep longer than ns; ns < 0 means forever.
    35  //go:nosplit
    36  func futexsleep(addr *uint32, val uint32, ns int64) {
    37  	var ts timespec
    38  
    39  	// Some Linux kernels have a bug where futex of
    40  	// FUTEX_WAIT returns an internal error code
    41  	// as an errno. Libpthread ignores the return value
    42  	// here, and so can we: as it says a few lines up,
    43  	// spurious wakeups are allowed.
    44  	if ns < 0 {
    45  		futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, nil, nil, 0)
    46  		return
    47  	}
    48  
    49  	// It's difficult to live within the no-split stack limits here.
    50  	// On ARM and 386, a 64-bit divide invokes a general software routine
    51  	// that needs more stack than we can afford. So we use timediv instead.
    52  	// But on real 64-bit systems, where words are larger but the stack limit
    53  	// is not, even timediv is too heavy, and we really need to use just an
    54  	// ordinary machine instruction.
    55  	if sys.PtrSize == 8 {
    56  		ts.set_sec(ns / 1000000000)
    57  		ts.set_nsec(int32(ns % 1000000000))
    58  	} else {
    59  		ts.tv_nsec = 0
    60  		ts.set_sec(int64(timediv(ns, 1000000000, (*int32)(unsafe.Pointer(&ts.tv_nsec)))))
    61  	}
    62  	futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, unsafe.Pointer(&ts), nil, 0)
    63  }
    64  
    65  // If any procs are sleeping on addr, wake up at most cnt.
    66  //go:nosplit
    67  func futexwakeup(addr *uint32, cnt uint32) {
    68  	ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE, cnt, nil, nil, 0)
    69  	if ret >= 0 {
    70  		return
    71  	}
    72  
    73  	// I don't know that futex wakeup can return
    74  	// EAGAIN or EINTR, but if it does, it would be
    75  	// safe to loop and call futex again.
    76  	systemstack(func() {
    77  		print("futexwakeup addr=", addr, " returned ", ret, "\n")
    78  	})
    79  
    80  	*(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006
    81  }
    82  
    83  func getproccount() int32 {
    84  	// This buffer is huge (8 kB) but we are on the system stack
    85  	// and there should be plenty of space (64 kB).
    86  	// Also this is a leaf, so we're not holding up the memory for long.
    87  	// See golang.org/issue/11823.
    88  	// The suggested behavior here is to keep trying with ever-larger
    89  	// buffers, but we don't have a dynamic memory allocator at the
    90  	// moment, so that's a bit tricky and seems like overkill.
    91  	const maxCPUs = 64 * 1024
    92  	var buf [maxCPUs / (sys.PtrSize * 8)]uintptr
    93  	r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0])
    94  	n := int32(0)
    95  	for _, v := range buf[:r/sys.PtrSize] {
    96  		for v != 0 {
    97  			n += int32(v & 1)
    98  			v >>= 1
    99  		}
   100  	}
   101  	if n == 0 {
   102  		n = 1
   103  	}
   104  	return n
   105  }
   106  
   107  // Clone, the Linux rfork.
   108  const (
   109  	_CLONE_VM             = 0x100
   110  	_CLONE_FS             = 0x200
   111  	_CLONE_FILES          = 0x400
   112  	_CLONE_SIGHAND        = 0x800
   113  	_CLONE_PTRACE         = 0x2000
   114  	_CLONE_VFORK          = 0x4000
   115  	_CLONE_PARENT         = 0x8000
   116  	_CLONE_THREAD         = 0x10000
   117  	_CLONE_NEWNS          = 0x20000
   118  	_CLONE_SYSVSEM        = 0x40000
   119  	_CLONE_SETTLS         = 0x80000
   120  	_CLONE_PARENT_SETTID  = 0x100000
   121  	_CLONE_CHILD_CLEARTID = 0x200000
   122  	_CLONE_UNTRACED       = 0x800000
   123  	_CLONE_CHILD_SETTID   = 0x1000000
   124  	_CLONE_STOPPED        = 0x2000000
   125  	_CLONE_NEWUTS         = 0x4000000
   126  	_CLONE_NEWIPC         = 0x8000000
   127  
   128  	cloneFlags = _CLONE_VM | /* share memory */
   129  		_CLONE_FS | /* share cwd, etc */
   130  		_CLONE_FILES | /* share fd table */
   131  		_CLONE_SIGHAND | /* share sig handler table */
   132  		_CLONE_THREAD /* revisit - okay for now */
   133  )
   134  
   135  //go:noescape
   136  func clone(flags int32, stk, mp, gp, fn unsafe.Pointer) int32
   137  
   138  // May run with m.p==nil, so write barriers are not allowed.
   139  //go:nowritebarrier
   140  func newosproc(mp *m, stk unsafe.Pointer) {
   141  	/*
   142  	 * note: strace gets confused if we use CLONE_PTRACE here.
   143  	 */
   144  	if false {
   145  		print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", funcPC(clone), " id=", mp.id, " ostk=", &mp, "\n")
   146  	}
   147  
   148  	// Disable signals during clone, so that the new thread starts
   149  	// with signals disabled. It will enable them in minit.
   150  	var oset sigset
   151  	sigprocmask(_SIG_SETMASK, &sigset_all, &oset)
   152  	ret := clone(cloneFlags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(funcPC(mstart)))
   153  	sigprocmask(_SIG_SETMASK, &oset, nil)
   154  
   155  	if ret < 0 {
   156  		print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -ret, ")\n")
   157  		if ret == -_EAGAIN {
   158  			println("runtime: may need to increase max user processes (ulimit -u)")
   159  		}
   160  		throw("newosproc")
   161  	}
   162  }
   163  
   164  // Version of newosproc that doesn't require a valid G.
   165  //go:nosplit
   166  func newosproc0(stacksize uintptr, fn unsafe.Pointer) {
   167  	stack := sysAlloc(stacksize, &memstats.stacks_sys)
   168  	if stack == nil {
   169  		write(2, unsafe.Pointer(&failallocatestack[0]), int32(len(failallocatestack)))
   170  		exit(1)
   171  	}
   172  	ret := clone(cloneFlags, unsafe.Pointer(uintptr(stack)+stacksize), nil, nil, fn)
   173  	if ret < 0 {
   174  		write(2, unsafe.Pointer(&failthreadcreate[0]), int32(len(failthreadcreate)))
   175  		exit(1)
   176  	}
   177  }
   178  
   179  var failallocatestack = []byte("runtime: failed to allocate stack for the new OS thread\n")
   180  var failthreadcreate = []byte("runtime: failed to create new OS thread\n")
   181  
   182  const (
   183  	_AT_NULL   = 0  // End of vector
   184  	_AT_PAGESZ = 6  // System physical page size
   185  	_AT_HWCAP  = 16 // hardware capability bit vector
   186  	_AT_RANDOM = 25 // introduced in 2.6.29
   187  )
   188  
   189  func sysargs(argc int32, argv **byte) {
   190  	n := argc + 1
   191  
   192  	// skip over argv, envp to get to auxv
   193  	for argv_index(argv, n) != nil {
   194  		n++
   195  	}
   196  
   197  	// skip NULL separator
   198  	n++
   199  
   200  	// now argv+n is auxv
   201  	auxv := (*[1 << 28]uintptr)(add(unsafe.Pointer(argv), uintptr(n)*sys.PtrSize))
   202  	for i := 0; auxv[i] != _AT_NULL; i += 2 {
   203  		tag, val := auxv[i], auxv[i+1]
   204  		switch tag {
   205  		case _AT_RANDOM:
   206  			// The kernel provides a pointer to 16-bytes
   207  			// worth of random data.
   208  			startupRandomData = (*[16]byte)(unsafe.Pointer(val))[:]
   209  
   210  		case _AT_PAGESZ:
   211  			physPageSize = val
   212  		}
   213  
   214  		archauxv(tag, val)
   215  	}
   216  }
   217  
   218  func osinit() {
   219  	ncpu = getproccount()
   220  }
   221  
   222  var urandom_dev = []byte("/dev/urandom\x00")
   223  
   224  func getRandomData(r []byte) {
   225  	if startupRandomData != nil {
   226  		n := copy(r, startupRandomData)
   227  		extendRandom(r, n)
   228  		return
   229  	}
   230  	fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
   231  	n := read(fd, unsafe.Pointer(&r[0]), int32(len(r)))
   232  	closefd(fd)
   233  	extendRandom(r, int(n))
   234  }
   235  
   236  func goenvs() {
   237  	goenvs_unix()
   238  }
   239  
   240  // Called to do synchronous initialization of Go code built with
   241  // -buildmode=c-archive or -buildmode=c-shared.
   242  // None of the Go runtime is initialized.
   243  //go:nosplit
   244  //go:nowritebarrierrec
   245  func libpreinit() {
   246  	initsig(true)
   247  }
   248  
   249  // Called to initialize a new m (including the bootstrap m).
   250  // Called on the parent thread (main thread in case of bootstrap), can allocate memory.
   251  func mpreinit(mp *m) {
   252  	mp.gsignal = malg(32 * 1024) // Linux wants >= 2K
   253  	mp.gsignal.m = mp
   254  }
   255  
   256  func gettid() uint32
   257  
   258  // Called to initialize a new m (including the bootstrap m).
   259  // Called on the new thread, cannot allocate memory.
   260  func minit() {
   261  	minitSignals()
   262  
   263  	// for debuggers, in case cgo created the thread
   264  	getg().m.procid = uint64(gettid())
   265  }
   266  
   267  // Called from dropm to undo the effect of an minit.
   268  //go:nosplit
   269  func unminit() {
   270  	unminitSignals()
   271  }
   272  
   273  func memlimit() uintptr {
   274  	/*
   275  		TODO: Convert to Go when something actually uses the result.
   276  
   277  		Rlimit rl;
   278  		extern byte runtime·text[], runtime·end[];
   279  		uintptr used;
   280  
   281  		if(runtime·getrlimit(RLIMIT_AS, &rl) != 0)
   282  			return 0;
   283  		if(rl.rlim_cur >= 0x7fffffff)
   284  			return 0;
   285  
   286  		// Estimate our VM footprint excluding the heap.
   287  		// Not an exact science: use size of binary plus
   288  		// some room for thread stacks.
   289  		used = runtime·end - runtime·text + (64<<20);
   290  		if(used >= rl.rlim_cur)
   291  			return 0;
   292  
   293  		// If there's not at least 16 MB left, we're probably
   294  		// not going to be able to do much. Treat as no limit.
   295  		rl.rlim_cur -= used;
   296  		if(rl.rlim_cur < (16<<20))
   297  			return 0;
   298  
   299  		return rl.rlim_cur - used;
   300  	*/
   301  
   302  	return 0
   303  }
   304  
   305  //#ifdef GOARCH_386
   306  //#define sa_handler k_sa_handler
   307  //#endif
   308  
   309  func sigreturn()
   310  func sigtramp(sig uint32, info *siginfo, ctx unsafe.Pointer)
   311  func cgoSigtramp()
   312  
   313  //go:noescape
   314  func rt_sigaction(sig uintptr, new, old *sigactiont, size uintptr) int32
   315  
   316  //go:noescape
   317  func sigaltstack(new, old *stackt)
   318  
   319  //go:noescape
   320  func setitimer(mode int32, new, old *itimerval)
   321  
   322  //go:noescape
   323  func rtsigprocmask(how int32, new, old *sigset, size int32)
   324  
   325  //go:nosplit
   326  //go:nowritebarrierrec
   327  func sigprocmask(how int32, new, old *sigset) {
   328  	rtsigprocmask(how, new, old, int32(unsafe.Sizeof(*new)))
   329  }
   330  
   331  //go:noescape
   332  func getrlimit(kind int32, limit unsafe.Pointer) int32
   333  func raise(sig uint32)
   334  func raiseproc(sig uint32)
   335  
   336  //go:noescape
   337  func sched_getaffinity(pid, len uintptr, buf *uintptr) int32
   338  func osyield()
   339  
   340  //go:nosplit
   341  //go:nowritebarrierrec
   342  func setsig(i uint32, fn uintptr) {
   343  	var sa sigactiont
   344  	sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER | _SA_RESTART
   345  	sigfillset(&sa.sa_mask)
   346  	// Although Linux manpage says "sa_restorer element is obsolete and
   347  	// should not be used". x86_64 kernel requires it. Only use it on
   348  	// x86.
   349  	if GOARCH == "386" || GOARCH == "amd64" {
   350  		sa.sa_restorer = funcPC(sigreturn)
   351  	}
   352  	if fn == funcPC(sighandler) {
   353  		if iscgo {
   354  			fn = funcPC(cgoSigtramp)
   355  		} else {
   356  			fn = funcPC(sigtramp)
   357  		}
   358  	}
   359  	sa.sa_handler = fn
   360  	rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask))
   361  }
   362  
   363  //go:nosplit
   364  //go:nowritebarrierrec
   365  func setsigstack(i uint32) {
   366  	var sa sigactiont
   367  	rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask))
   368  	if sa.sa_flags&_SA_ONSTACK != 0 {
   369  		return
   370  	}
   371  	sa.sa_flags |= _SA_ONSTACK
   372  	rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask))
   373  }
   374  
   375  //go:nosplit
   376  //go:nowritebarrierrec
   377  func getsig(i uint32) uintptr {
   378  	var sa sigactiont
   379  	if rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) != 0 {
   380  		throw("rt_sigaction read failure")
   381  	}
   382  	return sa.sa_handler
   383  }
   384  
   385  // setSignaltstackSP sets the ss_sp field of a stackt.
   386  //go:nosplit
   387  func setSignalstackSP(s *stackt, sp uintptr) {
   388  	*(*uintptr)(unsafe.Pointer(&s.ss_sp)) = sp
   389  }
   390  
   391  func (c *sigctxt) fixsigcode(sig uint32) {
   392  }