github.com/dannin/go@v0.0.0-20161031215817-d35dfd405eaa/src/runtime/pprof/pprof.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package pprof writes runtime profiling data in the format expected 6 // by the pprof visualization tool. 7 // 8 // Profiling a Go program 9 // 10 // The first step to profiling a Go program is to enable profiling. 11 // Support for profiling benchmarks built with the standard testing 12 // package is built into go test. For example, the following command 13 // runs benchmarks in the current directory and writes the CPU and 14 // memory profiles to cpu.prof and mem.prof: 15 // 16 // go test -cpuprofile cpu.prof -memprofile mem.prof -bench . 17 // 18 // To add equivalent profiling support to a standalone program, add 19 // code like the following to your main function: 20 // 21 // var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`") 22 // var memprofile = flag.String("memprofile", "", "write memory profile to `file`") 23 // 24 // func main() { 25 // flag.Parse() 26 // if *cpuprofile != "" { 27 // f, err := os.Create(*cpuprofile) 28 // if err != nil { 29 // log.Fatal("could not create CPU profile: ", err) 30 // } 31 // if err := pprof.StartCPUProfile(f); err != nil { 32 // log.Fatal("could not start CPU profile: ", err) 33 // } 34 // defer pprof.StopCPUProfile() 35 // } 36 // ... 37 // if *memprofile != "" { 38 // f, err := os.Create(*memprofile) 39 // if err != nil { 40 // log.Fatal("could not create memory profile: ", err) 41 // } 42 // runtime.GC() // get up-to-date statistics 43 // if err := pprof.WriteHeapProfile(f); err != nil { 44 // log.Fatal("could not write memory profile: ", err) 45 // } 46 // f.Close() 47 // } 48 // } 49 // 50 // There is also a standard HTTP interface to profiling data. Adding 51 // the following line will install handlers under the /debug/pprof/ 52 // URL to download live profiles: 53 // 54 // import _ "net/http/pprof" 55 // 56 // See the net/http/pprof package for more details. 57 // 58 // Profiles can then be visualized with the pprof tool: 59 // 60 // go tool pprof cpu.prof 61 // 62 // There are many commands available from the pprof command line. 63 // Commonly used commands include "top", which prints a summary of the 64 // top program hot-spots, and "web", which opens an interactive graph 65 // of hot-spots and their call graphs. Use "help" for information on 66 // all pprof commands. 67 // 68 // For more information about pprof, see 69 // https://github.com/google/pprof/blob/master/doc/pprof.md. 70 package pprof 71 72 import ( 73 "bufio" 74 "bytes" 75 "fmt" 76 "io" 77 "os" 78 "runtime" 79 "sort" 80 "strings" 81 "sync" 82 "text/tabwriter" 83 ) 84 85 // BUG(rsc): Profiles are only as good as the kernel support used to generate them. 86 // See https://golang.org/issue/13841 for details about known problems. 87 88 // A Profile is a collection of stack traces showing the call sequences 89 // that led to instances of a particular event, such as allocation. 90 // Packages can create and maintain their own profiles; the most common 91 // use is for tracking resources that must be explicitly closed, such as files 92 // or network connections. 93 // 94 // A Profile's methods can be called from multiple goroutines simultaneously. 95 // 96 // Each Profile has a unique name. A few profiles are predefined: 97 // 98 // goroutine - stack traces of all current goroutines 99 // heap - a sampling of all heap allocations 100 // threadcreate - stack traces that led to the creation of new OS threads 101 // block - stack traces that led to blocking on synchronization primitives 102 // mutex - stack traces of holders of contended mutexes 103 // 104 // These predefined profiles maintain themselves and panic on an explicit 105 // Add or Remove method call. 106 // 107 // The heap profile reports statistics as of the most recently completed 108 // garbage collection; it elides more recent allocation to avoid skewing 109 // the profile away from live data and toward garbage. 110 // If there has been no garbage collection at all, the heap profile reports 111 // all known allocations. This exception helps mainly in programs running 112 // without garbage collection enabled, usually for debugging purposes. 113 // 114 // The CPU profile is not available as a Profile. It has a special API, 115 // the StartCPUProfile and StopCPUProfile functions, because it streams 116 // output to a writer during profiling. 117 // 118 type Profile struct { 119 name string 120 mu sync.Mutex 121 m map[interface{}][]uintptr 122 count func() int 123 write func(io.Writer, int) error 124 } 125 126 // profiles records all registered profiles. 127 var profiles struct { 128 mu sync.Mutex 129 m map[string]*Profile 130 } 131 132 var goroutineProfile = &Profile{ 133 name: "goroutine", 134 count: countGoroutine, 135 write: writeGoroutine, 136 } 137 138 var threadcreateProfile = &Profile{ 139 name: "threadcreate", 140 count: countThreadCreate, 141 write: writeThreadCreate, 142 } 143 144 var heapProfile = &Profile{ 145 name: "heap", 146 count: countHeap, 147 write: writeHeap, 148 } 149 150 var blockProfile = &Profile{ 151 name: "block", 152 count: countBlock, 153 write: writeBlock, 154 } 155 156 var mutexProfile = &Profile{ 157 name: "mutex", 158 count: countMutex, 159 write: writeMutex, 160 } 161 162 func lockProfiles() { 163 profiles.mu.Lock() 164 if profiles.m == nil { 165 // Initial built-in profiles. 166 profiles.m = map[string]*Profile{ 167 "goroutine": goroutineProfile, 168 "threadcreate": threadcreateProfile, 169 "heap": heapProfile, 170 "block": blockProfile, 171 "mutex": mutexProfile, 172 } 173 } 174 } 175 176 func unlockProfiles() { 177 profiles.mu.Unlock() 178 } 179 180 // NewProfile creates a new profile with the given name. 181 // If a profile with that name already exists, NewProfile panics. 182 // The convention is to use a 'import/path.' prefix to create 183 // separate name spaces for each package. 184 func NewProfile(name string) *Profile { 185 lockProfiles() 186 defer unlockProfiles() 187 if name == "" { 188 panic("pprof: NewProfile with empty name") 189 } 190 if profiles.m[name] != nil { 191 panic("pprof: NewProfile name already in use: " + name) 192 } 193 p := &Profile{ 194 name: name, 195 m: map[interface{}][]uintptr{}, 196 } 197 profiles.m[name] = p 198 return p 199 } 200 201 // Lookup returns the profile with the given name, or nil if no such profile exists. 202 func Lookup(name string) *Profile { 203 lockProfiles() 204 defer unlockProfiles() 205 return profiles.m[name] 206 } 207 208 // Profiles returns a slice of all the known profiles, sorted by name. 209 func Profiles() []*Profile { 210 lockProfiles() 211 defer unlockProfiles() 212 213 all := make([]*Profile, 0, len(profiles.m)) 214 for _, p := range profiles.m { 215 all = append(all, p) 216 } 217 218 sort.Slice(all, func(i, j int) bool { return all[i].name < all[j].name }) 219 return all 220 } 221 222 // Name returns this profile's name, which can be passed to Lookup to reobtain the profile. 223 func (p *Profile) Name() string { 224 return p.name 225 } 226 227 // Count returns the number of execution stacks currently in the profile. 228 func (p *Profile) Count() int { 229 p.mu.Lock() 230 defer p.mu.Unlock() 231 if p.count != nil { 232 return p.count() 233 } 234 return len(p.m) 235 } 236 237 // Add adds the current execution stack to the profile, associated with value. 238 // Add stores value in an internal map, so value must be suitable for use as 239 // a map key and will not be garbage collected until the corresponding 240 // call to Remove. Add panics if the profile already contains a stack for value. 241 // 242 // The skip parameter has the same meaning as runtime.Caller's skip 243 // and controls where the stack trace begins. Passing skip=0 begins the 244 // trace in the function calling Add. For example, given this 245 // execution stack: 246 // 247 // Add 248 // called from rpc.NewClient 249 // called from mypkg.Run 250 // called from main.main 251 // 252 // Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient. 253 // Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run. 254 // 255 func (p *Profile) Add(value interface{}, skip int) { 256 if p.name == "" { 257 panic("pprof: use of uninitialized Profile") 258 } 259 if p.write != nil { 260 panic("pprof: Add called on built-in Profile " + p.name) 261 } 262 263 stk := make([]uintptr, 32) 264 n := runtime.Callers(skip+1, stk[:]) 265 266 p.mu.Lock() 267 defer p.mu.Unlock() 268 if p.m[value] != nil { 269 panic("pprof: Profile.Add of duplicate value") 270 } 271 p.m[value] = stk[:n] 272 } 273 274 // Remove removes the execution stack associated with value from the profile. 275 // It is a no-op if the value is not in the profile. 276 func (p *Profile) Remove(value interface{}) { 277 p.mu.Lock() 278 defer p.mu.Unlock() 279 delete(p.m, value) 280 } 281 282 // WriteTo writes a pprof-formatted snapshot of the profile to w. 283 // If a write to w returns an error, WriteTo returns that error. 284 // Otherwise, WriteTo returns nil. 285 // 286 // The debug parameter enables additional output. 287 // Passing debug=0 prints only the hexadecimal addresses that pprof needs. 288 // Passing debug=1 adds comments translating addresses to function names 289 // and line numbers, so that a programmer can read the profile without tools. 290 // 291 // The predefined profiles may assign meaning to other debug values; 292 // for example, when printing the "goroutine" profile, debug=2 means to 293 // print the goroutine stacks in the same form that a Go program uses 294 // when dying due to an unrecovered panic. 295 func (p *Profile) WriteTo(w io.Writer, debug int) error { 296 if p.name == "" { 297 panic("pprof: use of zero Profile") 298 } 299 if p.write != nil { 300 return p.write(w, debug) 301 } 302 303 // Obtain consistent snapshot under lock; then process without lock. 304 all := make([][]uintptr, 0, len(p.m)) 305 p.mu.Lock() 306 for _, stk := range p.m { 307 all = append(all, stk) 308 } 309 p.mu.Unlock() 310 311 // Map order is non-deterministic; make output deterministic. 312 sort.Sort(stackProfile(all)) 313 314 return printCountProfile(w, debug, p.name, stackProfile(all)) 315 } 316 317 type stackProfile [][]uintptr 318 319 func (x stackProfile) Len() int { return len(x) } 320 func (x stackProfile) Stack(i int) []uintptr { return x[i] } 321 func (x stackProfile) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 322 func (x stackProfile) Less(i, j int) bool { 323 t, u := x[i], x[j] 324 for k := 0; k < len(t) && k < len(u); k++ { 325 if t[k] != u[k] { 326 return t[k] < u[k] 327 } 328 } 329 return len(t) < len(u) 330 } 331 332 // A countProfile is a set of stack traces to be printed as counts 333 // grouped by stack trace. There are multiple implementations: 334 // all that matters is that we can find out how many traces there are 335 // and obtain each trace in turn. 336 type countProfile interface { 337 Len() int 338 Stack(i int) []uintptr 339 } 340 341 // printCountProfile prints a countProfile at the specified debug level. 342 func printCountProfile(w io.Writer, debug int, name string, p countProfile) error { 343 b := bufio.NewWriter(w) 344 var tw *tabwriter.Writer 345 w = b 346 if debug > 0 { 347 tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 348 w = tw 349 } 350 351 fmt.Fprintf(w, "%s profile: total %d\n", name, p.Len()) 352 353 // Build count of each stack. 354 var buf bytes.Buffer 355 key := func(stk []uintptr) string { 356 buf.Reset() 357 fmt.Fprintf(&buf, "@") 358 for _, pc := range stk { 359 fmt.Fprintf(&buf, " %#x", pc) 360 } 361 return buf.String() 362 } 363 count := map[string]int{} 364 index := map[string]int{} 365 var keys []string 366 n := p.Len() 367 for i := 0; i < n; i++ { 368 k := key(p.Stack(i)) 369 if count[k] == 0 { 370 index[k] = i 371 keys = append(keys, k) 372 } 373 count[k]++ 374 } 375 376 sort.Sort(&keysByCount{keys, count}) 377 378 for _, k := range keys { 379 fmt.Fprintf(w, "%d %s\n", count[k], k) 380 if debug > 0 { 381 printStackRecord(w, p.Stack(index[k]), false) 382 } 383 } 384 385 if tw != nil { 386 tw.Flush() 387 } 388 return b.Flush() 389 } 390 391 // keysByCount sorts keys with higher counts first, breaking ties by key string order. 392 type keysByCount struct { 393 keys []string 394 count map[string]int 395 } 396 397 func (x *keysByCount) Len() int { return len(x.keys) } 398 func (x *keysByCount) Swap(i, j int) { x.keys[i], x.keys[j] = x.keys[j], x.keys[i] } 399 func (x *keysByCount) Less(i, j int) bool { 400 ki, kj := x.keys[i], x.keys[j] 401 ci, cj := x.count[ki], x.count[kj] 402 if ci != cj { 403 return ci > cj 404 } 405 return ki < kj 406 } 407 408 // printStackRecord prints the function + source line information 409 // for a single stack trace. 410 func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) { 411 show := allFrames 412 frames := runtime.CallersFrames(stk) 413 for { 414 frame, more := frames.Next() 415 name := frame.Function 416 if name == "" { 417 show = true 418 fmt.Fprintf(w, "#\t%#x\n", frame.PC) 419 } else if name != "runtime.goexit" && (show || !strings.HasPrefix(name, "runtime.")) { 420 // Hide runtime.goexit and any runtime functions at the beginning. 421 // This is useful mainly for allocation traces. 422 show = true 423 fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", frame.PC, name, frame.PC-frame.Entry, frame.File, frame.Line) 424 } 425 if !more { 426 break 427 } 428 } 429 if !show { 430 // We didn't print anything; do it again, 431 // and this time include runtime functions. 432 printStackRecord(w, stk, true) 433 return 434 } 435 fmt.Fprintf(w, "\n") 436 } 437 438 // Interface to system profiles. 439 440 // WriteHeapProfile is shorthand for Lookup("heap").WriteTo(w, 0). 441 // It is preserved for backwards compatibility. 442 func WriteHeapProfile(w io.Writer) error { 443 return writeHeap(w, 0) 444 } 445 446 // countHeap returns the number of records in the heap profile. 447 func countHeap() int { 448 n, _ := runtime.MemProfile(nil, true) 449 return n 450 } 451 452 // writeHeap writes the current runtime heap profile to w. 453 func writeHeap(w io.Writer, debug int) error { 454 // Find out how many records there are (MemProfile(nil, true)), 455 // allocate that many records, and get the data. 456 // There's a race—more records might be added between 457 // the two calls—so allocate a few extra records for safety 458 // and also try again if we're very unlucky. 459 // The loop should only execute one iteration in the common case. 460 var p []runtime.MemProfileRecord 461 n, ok := runtime.MemProfile(nil, true) 462 for { 463 // Allocate room for a slightly bigger profile, 464 // in case a few more entries have been added 465 // since the call to MemProfile. 466 p = make([]runtime.MemProfileRecord, n+50) 467 n, ok = runtime.MemProfile(p, true) 468 if ok { 469 p = p[0:n] 470 break 471 } 472 // Profile grew; try again. 473 } 474 475 sort.Slice(p, func(i, j int) bool { return p[i].InUseBytes() > p[j].InUseBytes() }) 476 477 b := bufio.NewWriter(w) 478 var tw *tabwriter.Writer 479 w = b 480 if debug > 0 { 481 tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 482 w = tw 483 } 484 485 var total runtime.MemProfileRecord 486 for i := range p { 487 r := &p[i] 488 total.AllocBytes += r.AllocBytes 489 total.AllocObjects += r.AllocObjects 490 total.FreeBytes += r.FreeBytes 491 total.FreeObjects += r.FreeObjects 492 } 493 494 // Technically the rate is MemProfileRate not 2*MemProfileRate, 495 // but early versions of the C++ heap profiler reported 2*MemProfileRate, 496 // so that's what pprof has come to expect. 497 fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n", 498 total.InUseObjects(), total.InUseBytes(), 499 total.AllocObjects, total.AllocBytes, 500 2*runtime.MemProfileRate) 501 502 for i := range p { 503 r := &p[i] 504 fmt.Fprintf(w, "%d: %d [%d: %d] @", 505 r.InUseObjects(), r.InUseBytes(), 506 r.AllocObjects, r.AllocBytes) 507 for _, pc := range r.Stack() { 508 fmt.Fprintf(w, " %#x", pc) 509 } 510 fmt.Fprintf(w, "\n") 511 if debug > 0 { 512 printStackRecord(w, r.Stack(), false) 513 } 514 } 515 516 // Print memstats information too. 517 // Pprof will ignore, but useful for people 518 s := new(runtime.MemStats) 519 runtime.ReadMemStats(s) 520 fmt.Fprintf(w, "\n# runtime.MemStats\n") 521 fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc) 522 fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc) 523 fmt.Fprintf(w, "# Sys = %d\n", s.Sys) 524 fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups) 525 fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs) 526 fmt.Fprintf(w, "# Frees = %d\n", s.Frees) 527 528 fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc) 529 fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys) 530 fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle) 531 fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse) 532 fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased) 533 fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects) 534 535 fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys) 536 fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys) 537 fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys) 538 fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys) 539 fmt.Fprintf(w, "# GCSys = %d\n", s.GCSys) 540 fmt.Fprintf(w, "# OtherSys = %d\n", s.OtherSys) 541 542 fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC) 543 fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs) 544 fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC) 545 fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC) 546 547 if tw != nil { 548 tw.Flush() 549 } 550 return b.Flush() 551 } 552 553 // countThreadCreate returns the size of the current ThreadCreateProfile. 554 func countThreadCreate() int { 555 n, _ := runtime.ThreadCreateProfile(nil) 556 return n 557 } 558 559 // writeThreadCreate writes the current runtime ThreadCreateProfile to w. 560 func writeThreadCreate(w io.Writer, debug int) error { 561 return writeRuntimeProfile(w, debug, "threadcreate", runtime.ThreadCreateProfile) 562 } 563 564 // countGoroutine returns the number of goroutines. 565 func countGoroutine() int { 566 return runtime.NumGoroutine() 567 } 568 569 // writeGoroutine writes the current runtime GoroutineProfile to w. 570 func writeGoroutine(w io.Writer, debug int) error { 571 if debug >= 2 { 572 return writeGoroutineStacks(w) 573 } 574 return writeRuntimeProfile(w, debug, "goroutine", runtime.GoroutineProfile) 575 } 576 577 func writeGoroutineStacks(w io.Writer) error { 578 // We don't know how big the buffer needs to be to collect 579 // all the goroutines. Start with 1 MB and try a few times, doubling each time. 580 // Give up and use a truncated trace if 64 MB is not enough. 581 buf := make([]byte, 1<<20) 582 for i := 0; ; i++ { 583 n := runtime.Stack(buf, true) 584 if n < len(buf) { 585 buf = buf[:n] 586 break 587 } 588 if len(buf) >= 64<<20 { 589 // Filled 64 MB - stop there. 590 break 591 } 592 buf = make([]byte, 2*len(buf)) 593 } 594 _, err := w.Write(buf) 595 return err 596 } 597 598 func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord) (int, bool)) error { 599 // Find out how many records there are (fetch(nil)), 600 // allocate that many records, and get the data. 601 // There's a race—more records might be added between 602 // the two calls—so allocate a few extra records for safety 603 // and also try again if we're very unlucky. 604 // The loop should only execute one iteration in the common case. 605 var p []runtime.StackRecord 606 n, ok := fetch(nil) 607 for { 608 // Allocate room for a slightly bigger profile, 609 // in case a few more entries have been added 610 // since the call to ThreadProfile. 611 p = make([]runtime.StackRecord, n+10) 612 n, ok = fetch(p) 613 if ok { 614 p = p[0:n] 615 break 616 } 617 // Profile grew; try again. 618 } 619 620 return printCountProfile(w, debug, name, runtimeProfile(p)) 621 } 622 623 type runtimeProfile []runtime.StackRecord 624 625 func (p runtimeProfile) Len() int { return len(p) } 626 func (p runtimeProfile) Stack(i int) []uintptr { return p[i].Stack() } 627 628 var cpu struct { 629 sync.Mutex 630 profiling bool 631 done chan bool 632 } 633 634 // StartCPUProfile enables CPU profiling for the current process. 635 // While profiling, the profile will be buffered and written to w. 636 // StartCPUProfile returns an error if profiling is already enabled. 637 // 638 // On Unix-like systems, StartCPUProfile does not work by default for 639 // Go code built with -buildmode=c-archive or -buildmode=c-shared. 640 // StartCPUProfile relies on the SIGPROF signal, but that signal will 641 // be delivered to the main program's SIGPROF signal handler (if any) 642 // not to the one used by Go. To make it work, call os/signal.Notify 643 // for syscall.SIGPROF, but note that doing so may break any profiling 644 // being done by the main program. 645 func StartCPUProfile(w io.Writer) error { 646 // The runtime routines allow a variable profiling rate, 647 // but in practice operating systems cannot trigger signals 648 // at more than about 500 Hz, and our processing of the 649 // signal is not cheap (mostly getting the stack trace). 650 // 100 Hz is a reasonable choice: it is frequent enough to 651 // produce useful data, rare enough not to bog down the 652 // system, and a nice round number to make it easy to 653 // convert sample counts to seconds. Instead of requiring 654 // each client to specify the frequency, we hard code it. 655 const hz = 100 656 657 cpu.Lock() 658 defer cpu.Unlock() 659 if cpu.done == nil { 660 cpu.done = make(chan bool) 661 } 662 // Double-check. 663 if cpu.profiling { 664 return fmt.Errorf("cpu profiling already in use") 665 } 666 cpu.profiling = true 667 runtime.SetCPUProfileRate(hz) 668 go profileWriter(w) 669 return nil 670 } 671 672 func profileWriter(w io.Writer) { 673 for { 674 data := runtime.CPUProfile() 675 if data == nil { 676 break 677 } 678 w.Write(data) 679 } 680 681 // We are emitting the legacy profiling format, which permits 682 // a memory map following the CPU samples. The memory map is 683 // simply a copy of the GNU/Linux /proc/self/maps file. The 684 // profiler uses the memory map to map PC values in shared 685 // libraries to a shared library in the filesystem, in order 686 // to report the correct function and, if the shared library 687 // has debug info, file/line. This is particularly useful for 688 // PIE (position independent executables) as on ELF systems a 689 // PIE is simply an executable shared library. 690 // 691 // Because the profiling format expects the memory map in 692 // GNU/Linux format, we only do this on GNU/Linux for now. To 693 // add support for profiling PIE on other ELF-based systems, 694 // it may be necessary to map the system-specific mapping 695 // information to the GNU/Linux format. For a reasonably 696 // portable C++ version, see the FillProcSelfMaps function in 697 // https://github.com/gperftools/gperftools/blob/master/src/base/sysinfo.cc 698 // 699 // The code that parses this mapping for the pprof tool is 700 // ParseMemoryMap in cmd/internal/pprof/legacy_profile.go, but 701 // don't change that code, as similar code exists in other 702 // (non-Go) pprof readers. Change this code so that that code works. 703 // 704 // We ignore errors reading or copying the memory map; the 705 // profile is likely usable without it, and we have no good way 706 // to report errors. 707 if runtime.GOOS == "linux" { 708 f, err := os.Open("/proc/self/maps") 709 if err == nil { 710 io.WriteString(w, "\nMAPPED_LIBRARIES:\n") 711 io.Copy(w, f) 712 f.Close() 713 } 714 } 715 716 cpu.done <- true 717 } 718 719 // StopCPUProfile stops the current CPU profile, if any. 720 // StopCPUProfile only returns after all the writes for the 721 // profile have completed. 722 func StopCPUProfile() { 723 cpu.Lock() 724 defer cpu.Unlock() 725 726 if !cpu.profiling { 727 return 728 } 729 cpu.profiling = false 730 runtime.SetCPUProfileRate(0) 731 <-cpu.done 732 } 733 734 // countBlock returns the number of records in the blocking profile. 735 func countBlock() int { 736 n, _ := runtime.BlockProfile(nil) 737 return n 738 } 739 740 // countMutex returns the number of records in the mutex profile. 741 func countMutex() int { 742 n, _ := runtime.MutexProfile(nil) 743 return n 744 } 745 746 // writeBlock writes the current blocking profile to w. 747 func writeBlock(w io.Writer, debug int) error { 748 var p []runtime.BlockProfileRecord 749 n, ok := runtime.BlockProfile(nil) 750 for { 751 p = make([]runtime.BlockProfileRecord, n+50) 752 n, ok = runtime.BlockProfile(p) 753 if ok { 754 p = p[:n] 755 break 756 } 757 } 758 759 sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles }) 760 761 b := bufio.NewWriter(w) 762 var tw *tabwriter.Writer 763 w = b 764 if debug > 0 { 765 tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 766 w = tw 767 } 768 769 fmt.Fprintf(w, "--- contention:\n") 770 fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) 771 for i := range p { 772 r := &p[i] 773 fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) 774 for _, pc := range r.Stack() { 775 fmt.Fprintf(w, " %#x", pc) 776 } 777 fmt.Fprint(w, "\n") 778 if debug > 0 { 779 printStackRecord(w, r.Stack(), true) 780 } 781 } 782 783 if tw != nil { 784 tw.Flush() 785 } 786 return b.Flush() 787 } 788 789 // writeMutex writes the current mutex profile to w. 790 func writeMutex(w io.Writer, debug int) error { 791 // TODO(pjw): too much common code with writeBlock. FIX! 792 var p []runtime.BlockProfileRecord 793 n, ok := runtime.MutexProfile(nil) 794 for { 795 p = make([]runtime.BlockProfileRecord, n+50) 796 n, ok = runtime.MutexProfile(p) 797 if ok { 798 p = p[:n] 799 break 800 } 801 } 802 803 sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles }) 804 805 b := bufio.NewWriter(w) 806 var tw *tabwriter.Writer 807 w = b 808 if debug > 0 { 809 tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 810 w = tw 811 } 812 813 fmt.Fprintf(w, "--- mutex:\n") 814 fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) 815 fmt.Fprintf(w, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1)) 816 for i := range p { 817 r := &p[i] 818 fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) 819 for _, pc := range r.Stack() { 820 fmt.Fprintf(w, " %#x", pc) 821 } 822 fmt.Fprint(w, "\n") 823 if debug > 0 { 824 printStackRecord(w, r.Stack(), true) 825 } 826 } 827 828 if tw != nil { 829 tw.Flush() 830 } 831 return b.Flush() 832 } 833 834 func runtime_cyclesPerSecond() int64