github.com/dannin/go@v0.0.0-20161031215817-d35dfd405eaa/src/runtime/trace.go (about) 1 // Copyright 2014 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Go execution tracer. 6 // The tracer captures a wide range of execution events like goroutine 7 // creation/blocking/unblocking, syscall enter/exit/block, GC-related events, 8 // changes of heap size, processor start/stop, etc and writes them to a buffer 9 // in a compact form. A precise nanosecond-precision timestamp and a stack 10 // trace is captured for most events. 11 // See https://golang.org/s/go15trace for more info. 12 13 package runtime 14 15 import ( 16 "runtime/internal/sys" 17 "unsafe" 18 ) 19 20 // Event types in the trace, args are given in square brackets. 21 const ( 22 traceEvNone = 0 // unused 23 traceEvBatch = 1 // start of per-P batch of events [pid, timestamp] 24 traceEvFrequency = 2 // contains tracer timer frequency [frequency (ticks per second)] 25 traceEvStack = 3 // stack [stack id, number of PCs, array of {PC, func string ID, file string ID, line}] 26 traceEvGomaxprocs = 4 // current value of GOMAXPROCS [timestamp, GOMAXPROCS, stack id] 27 traceEvProcStart = 5 // start of P [timestamp, thread id] 28 traceEvProcStop = 6 // stop of P [timestamp] 29 traceEvGCStart = 7 // GC start [timestamp, seq, stack id] 30 traceEvGCDone = 8 // GC done [timestamp] 31 traceEvGCScanStart = 9 // GC mark termination start [timestamp] 32 traceEvGCScanDone = 10 // GC mark termination done [timestamp] 33 traceEvGCSweepStart = 11 // GC sweep start [timestamp, stack id] 34 traceEvGCSweepDone = 12 // GC sweep done [timestamp] 35 traceEvGoCreate = 13 // goroutine creation [timestamp, new goroutine id, new stack id, stack id] 36 traceEvGoStart = 14 // goroutine starts running [timestamp, goroutine id, seq] 37 traceEvGoEnd = 15 // goroutine ends [timestamp] 38 traceEvGoStop = 16 // goroutine stops (like in select{}) [timestamp, stack] 39 traceEvGoSched = 17 // goroutine calls Gosched [timestamp, stack] 40 traceEvGoPreempt = 18 // goroutine is preempted [timestamp, stack] 41 traceEvGoSleep = 19 // goroutine calls Sleep [timestamp, stack] 42 traceEvGoBlock = 20 // goroutine blocks [timestamp, stack] 43 traceEvGoUnblock = 21 // goroutine is unblocked [timestamp, goroutine id, seq, stack] 44 traceEvGoBlockSend = 22 // goroutine blocks on chan send [timestamp, stack] 45 traceEvGoBlockRecv = 23 // goroutine blocks on chan recv [timestamp, stack] 46 traceEvGoBlockSelect = 24 // goroutine blocks on select [timestamp, stack] 47 traceEvGoBlockSync = 25 // goroutine blocks on Mutex/RWMutex [timestamp, stack] 48 traceEvGoBlockCond = 26 // goroutine blocks on Cond [timestamp, stack] 49 traceEvGoBlockNet = 27 // goroutine blocks on network [timestamp, stack] 50 traceEvGoSysCall = 28 // syscall enter [timestamp, stack] 51 traceEvGoSysExit = 29 // syscall exit [timestamp, goroutine id, seq, real timestamp] 52 traceEvGoSysBlock = 30 // syscall blocks [timestamp] 53 traceEvGoWaiting = 31 // denotes that goroutine is blocked when tracing starts [timestamp, goroutine id] 54 traceEvGoInSyscall = 32 // denotes that goroutine is in syscall when tracing starts [timestamp, goroutine id] 55 traceEvHeapAlloc = 33 // memstats.heap_live change [timestamp, heap_alloc] 56 traceEvNextGC = 34 // memstats.next_gc change [timestamp, next_gc] 57 traceEvTimerGoroutine = 35 // denotes timer goroutine [timer goroutine id] 58 traceEvFutileWakeup = 36 // denotes that the previous wakeup of this goroutine was futile [timestamp] 59 traceEvString = 37 // string dictionary entry [ID, length, string] 60 traceEvGoStartLocal = 38 // goroutine starts running on the same P as the last event [timestamp, goroutine id] 61 traceEvGoUnblockLocal = 39 // goroutine is unblocked on the same P as the last event [timestamp, goroutine id, stack] 62 traceEvGoSysExitLocal = 40 // syscall exit on the same P as the last event [timestamp, goroutine id, real timestamp] 63 traceEvGoStartLabel = 41 // goroutine starts running with label [timestamp, goroutine id, seq, label string id] 64 traceEvGoBlockGC = 42 // goroutine blocks on GC assist [timestamp, stack] 65 traceEvCount = 43 66 ) 67 68 const ( 69 // Timestamps in trace are cputicks/traceTickDiv. 70 // This makes absolute values of timestamp diffs smaller, 71 // and so they are encoded in less number of bytes. 72 // 64 on x86 is somewhat arbitrary (one tick is ~20ns on a 3GHz machine). 73 // The suggested increment frequency for PowerPC's time base register is 74 // 512 MHz according to Power ISA v2.07 section 6.2, so we use 16 on ppc64 75 // and ppc64le. 76 // Tracing won't work reliably for architectures where cputicks is emulated 77 // by nanotime, so the value doesn't matter for those architectures. 78 traceTickDiv = 16 + 48*(sys.Goarch386|sys.GoarchAmd64|sys.GoarchAmd64p32) 79 // Maximum number of PCs in a single stack trace. 80 // Since events contain only stack id rather than whole stack trace, 81 // we can allow quite large values here. 82 traceStackSize = 128 83 // Identifier of a fake P that is used when we trace without a real P. 84 traceGlobProc = -1 85 // Maximum number of bytes to encode uint64 in base-128. 86 traceBytesPerNumber = 10 87 // Shift of the number of arguments in the first event byte. 88 traceArgCountShift = 6 89 // Flag passed to traceGoPark to denote that the previous wakeup of this 90 // goroutine was futile. For example, a goroutine was unblocked on a mutex, 91 // but another goroutine got ahead and acquired the mutex before the first 92 // goroutine is scheduled, so the first goroutine has to block again. 93 // Such wakeups happen on buffered channels and sync.Mutex, 94 // but are generally not interesting for end user. 95 traceFutileWakeup byte = 128 96 ) 97 98 // trace is global tracing context. 99 var trace struct { 100 lock mutex // protects the following members 101 lockOwner *g // to avoid deadlocks during recursive lock locks 102 enabled bool // when set runtime traces events 103 shutdown bool // set when we are waiting for trace reader to finish after setting enabled to false 104 headerWritten bool // whether ReadTrace has emitted trace header 105 footerWritten bool // whether ReadTrace has emitted trace footer 106 shutdownSema uint32 // used to wait for ReadTrace completion 107 seqStart uint64 // sequence number when tracing was started 108 ticksStart int64 // cputicks when tracing was started 109 ticksEnd int64 // cputicks when tracing was stopped 110 timeStart int64 // nanotime when tracing was started 111 timeEnd int64 // nanotime when tracing was stopped 112 seqGC uint64 // GC start/done sequencer 113 reading traceBufPtr // buffer currently handed off to user 114 empty traceBufPtr // stack of empty buffers 115 fullHead traceBufPtr // queue of full buffers 116 fullTail traceBufPtr 117 reader guintptr // goroutine that called ReadTrace, or nil 118 stackTab traceStackTable // maps stack traces to unique ids 119 120 // Dictionary for traceEvString. 121 // 122 // Currently this is used only at trace setup and for 123 // func/file:line info after tracing session, so we assume 124 // single-threaded access. 125 strings map[string]uint64 126 stringSeq uint64 127 128 // markWorkerLabels maps gcMarkWorkerMode to string ID. 129 markWorkerLabels [len(gcMarkWorkerModeStrings)]uint64 130 131 bufLock mutex // protects buf 132 buf traceBufPtr // global trace buffer, used when running without a p 133 } 134 135 // traceBufHeader is per-P tracing buffer. 136 type traceBufHeader struct { 137 link traceBufPtr // in trace.empty/full 138 lastTicks uint64 // when we wrote the last event 139 pos int // next write offset in arr 140 stk [traceStackSize]uintptr // scratch buffer for traceback 141 } 142 143 // traceBuf is per-P tracing buffer. 144 // 145 //go:notinheap 146 type traceBuf struct { 147 traceBufHeader 148 arr [64<<10 - unsafe.Sizeof(traceBufHeader{})]byte // underlying buffer for traceBufHeader.buf 149 } 150 151 // traceBufPtr is a *traceBuf that is not traced by the garbage 152 // collector and doesn't have write barriers. traceBufs are not 153 // allocated from the GC'd heap, so this is safe, and are often 154 // manipulated in contexts where write barriers are not allowed, so 155 // this is necessary. 156 // 157 // TODO: Since traceBuf is now go:notinheap, this isn't necessary. 158 type traceBufPtr uintptr 159 160 func (tp traceBufPtr) ptr() *traceBuf { return (*traceBuf)(unsafe.Pointer(tp)) } 161 func (tp *traceBufPtr) set(b *traceBuf) { *tp = traceBufPtr(unsafe.Pointer(b)) } 162 func traceBufPtrOf(b *traceBuf) traceBufPtr { 163 return traceBufPtr(unsafe.Pointer(b)) 164 } 165 166 // StartTrace enables tracing for the current process. 167 // While tracing, the data will be buffered and available via ReadTrace. 168 // StartTrace returns an error if tracing is already enabled. 169 // Most clients should use the runtime/trace package or the testing package's 170 // -test.trace flag instead of calling StartTrace directly. 171 func StartTrace() error { 172 // Stop the world, so that we can take a consistent snapshot 173 // of all goroutines at the beginning of the trace. 174 stopTheWorld("start tracing") 175 176 // We are in stop-the-world, but syscalls can finish and write to trace concurrently. 177 // Exitsyscall could check trace.enabled long before and then suddenly wake up 178 // and decide to write to trace at a random point in time. 179 // However, such syscall will use the global trace.buf buffer, because we've 180 // acquired all p's by doing stop-the-world. So this protects us from such races. 181 lock(&trace.bufLock) 182 183 if trace.enabled || trace.shutdown { 184 unlock(&trace.bufLock) 185 startTheWorld() 186 return errorString("tracing is already enabled") 187 } 188 189 // Can't set trace.enabled yet. While the world is stopped, exitsyscall could 190 // already emit a delayed event (see exitTicks in exitsyscall) if we set trace.enabled here. 191 // That would lead to an inconsistent trace: 192 // - either GoSysExit appears before EvGoInSyscall, 193 // - or GoSysExit appears for a goroutine for which we don't emit EvGoInSyscall below. 194 // To instruct traceEvent that it must not ignore events below, we set startingtrace. 195 // trace.enabled is set afterwards once we have emitted all preliminary events. 196 _g_ := getg() 197 _g_.m.startingtrace = true 198 199 // Obtain current stack ID to use in all traceEvGoCreate events below. 200 mp := acquirem() 201 stkBuf := make([]uintptr, traceStackSize) 202 stackID := traceStackID(mp, stkBuf, 2) 203 releasem(mp) 204 205 for _, gp := range allgs { 206 status := readgstatus(gp) 207 if status != _Gdead { 208 gp.traceseq = 0 209 gp.tracelastp = getg().m.p 210 // +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum. 211 id := trace.stackTab.put([]uintptr{gp.startpc + sys.PCQuantum}) 212 traceEvent(traceEvGoCreate, -1, uint64(gp.goid), uint64(id), stackID) 213 } 214 if status == _Gwaiting { 215 // traceEvGoWaiting is implied to have seq=1. 216 gp.traceseq++ 217 traceEvent(traceEvGoWaiting, -1, uint64(gp.goid)) 218 } 219 if status == _Gsyscall { 220 gp.traceseq++ 221 traceEvent(traceEvGoInSyscall, -1, uint64(gp.goid)) 222 } else { 223 gp.sysblocktraced = false 224 } 225 } 226 traceProcStart() 227 traceGoStart() 228 // Note: ticksStart needs to be set after we emit traceEvGoInSyscall events. 229 // If we do it the other way around, it is possible that exitsyscall will 230 // query sysexitticks after ticksStart but before traceEvGoInSyscall timestamp. 231 // It will lead to a false conclusion that cputicks is broken. 232 trace.ticksStart = cputicks() 233 trace.timeStart = nanotime() 234 trace.headerWritten = false 235 trace.footerWritten = false 236 trace.strings = make(map[string]uint64) 237 trace.stringSeq = 0 238 trace.seqGC = 0 239 _g_.m.startingtrace = false 240 trace.enabled = true 241 242 // Register runtime goroutine labels. 243 _, pid, bufp := traceAcquireBuffer() 244 buf := (*bufp).ptr() 245 if buf == nil { 246 buf = traceFlush(0).ptr() 247 (*bufp).set(buf) 248 } 249 for i, label := range gcMarkWorkerModeStrings[:] { 250 trace.markWorkerLabels[i], buf = traceString(buf, label) 251 } 252 traceReleaseBuffer(pid) 253 254 unlock(&trace.bufLock) 255 256 startTheWorld() 257 return nil 258 } 259 260 // StopTrace stops tracing, if it was previously enabled. 261 // StopTrace only returns after all the reads for the trace have completed. 262 func StopTrace() { 263 // Stop the world so that we can collect the trace buffers from all p's below, 264 // and also to avoid races with traceEvent. 265 stopTheWorld("stop tracing") 266 267 // See the comment in StartTrace. 268 lock(&trace.bufLock) 269 270 if !trace.enabled { 271 unlock(&trace.bufLock) 272 startTheWorld() 273 return 274 } 275 276 traceGoSched() 277 278 for _, p := range &allp { 279 if p == nil { 280 break 281 } 282 buf := p.tracebuf 283 if buf != 0 { 284 traceFullQueue(buf) 285 p.tracebuf = 0 286 } 287 } 288 if trace.buf != 0 { 289 buf := trace.buf 290 trace.buf = 0 291 if buf.ptr().pos != 0 { 292 traceFullQueue(buf) 293 } 294 } 295 296 for { 297 trace.ticksEnd = cputicks() 298 trace.timeEnd = nanotime() 299 // Windows time can tick only every 15ms, wait for at least one tick. 300 if trace.timeEnd != trace.timeStart { 301 break 302 } 303 osyield() 304 } 305 306 trace.enabled = false 307 trace.shutdown = true 308 unlock(&trace.bufLock) 309 310 startTheWorld() 311 312 // The world is started but we've set trace.shutdown, so new tracing can't start. 313 // Wait for the trace reader to flush pending buffers and stop. 314 semacquire(&trace.shutdownSema, 0) 315 if raceenabled { 316 raceacquire(unsafe.Pointer(&trace.shutdownSema)) 317 } 318 319 // The lock protects us from races with StartTrace/StopTrace because they do stop-the-world. 320 lock(&trace.lock) 321 for _, p := range &allp { 322 if p == nil { 323 break 324 } 325 if p.tracebuf != 0 { 326 throw("trace: non-empty trace buffer in proc") 327 } 328 } 329 if trace.buf != 0 { 330 throw("trace: non-empty global trace buffer") 331 } 332 if trace.fullHead != 0 || trace.fullTail != 0 { 333 throw("trace: non-empty full trace buffer") 334 } 335 if trace.reading != 0 || trace.reader != 0 { 336 throw("trace: reading after shutdown") 337 } 338 for trace.empty != 0 { 339 buf := trace.empty 340 trace.empty = buf.ptr().link 341 sysFree(unsafe.Pointer(buf), unsafe.Sizeof(*buf.ptr()), &memstats.other_sys) 342 } 343 trace.strings = nil 344 trace.shutdown = false 345 unlock(&trace.lock) 346 } 347 348 // ReadTrace returns the next chunk of binary tracing data, blocking until data 349 // is available. If tracing is turned off and all the data accumulated while it 350 // was on has been returned, ReadTrace returns nil. The caller must copy the 351 // returned data before calling ReadTrace again. 352 // ReadTrace must be called from one goroutine at a time. 353 func ReadTrace() []byte { 354 // This function may need to lock trace.lock recursively 355 // (goparkunlock -> traceGoPark -> traceEvent -> traceFlush). 356 // To allow this we use trace.lockOwner. 357 // Also this function must not allocate while holding trace.lock: 358 // allocation can call heap allocate, which will try to emit a trace 359 // event while holding heap lock. 360 lock(&trace.lock) 361 trace.lockOwner = getg() 362 363 if trace.reader != 0 { 364 // More than one goroutine reads trace. This is bad. 365 // But we rather do not crash the program because of tracing, 366 // because tracing can be enabled at runtime on prod servers. 367 trace.lockOwner = nil 368 unlock(&trace.lock) 369 println("runtime: ReadTrace called from multiple goroutines simultaneously") 370 return nil 371 } 372 // Recycle the old buffer. 373 if buf := trace.reading; buf != 0 { 374 buf.ptr().link = trace.empty 375 trace.empty = buf 376 trace.reading = 0 377 } 378 // Write trace header. 379 if !trace.headerWritten { 380 trace.headerWritten = true 381 trace.lockOwner = nil 382 unlock(&trace.lock) 383 return []byte("go 1.8 trace\x00\x00\x00\x00") 384 } 385 // Wait for new data. 386 if trace.fullHead == 0 && !trace.shutdown { 387 trace.reader.set(getg()) 388 goparkunlock(&trace.lock, "trace reader (blocked)", traceEvGoBlock, 2) 389 lock(&trace.lock) 390 } 391 // Write a buffer. 392 if trace.fullHead != 0 { 393 buf := traceFullDequeue() 394 trace.reading = buf 395 trace.lockOwner = nil 396 unlock(&trace.lock) 397 return buf.ptr().arr[:buf.ptr().pos] 398 } 399 // Write footer with timer frequency. 400 if !trace.footerWritten { 401 trace.footerWritten = true 402 // Use float64 because (trace.ticksEnd - trace.ticksStart) * 1e9 can overflow int64. 403 freq := float64(trace.ticksEnd-trace.ticksStart) * 1e9 / float64(trace.timeEnd-trace.timeStart) / traceTickDiv 404 trace.lockOwner = nil 405 unlock(&trace.lock) 406 var data []byte 407 data = append(data, traceEvFrequency|0<<traceArgCountShift) 408 data = traceAppend(data, uint64(freq)) 409 if timers.gp != nil { 410 data = append(data, traceEvTimerGoroutine|0<<traceArgCountShift) 411 data = traceAppend(data, uint64(timers.gp.goid)) 412 } 413 // This will emit a bunch of full buffers, we will pick them up 414 // on the next iteration. 415 trace.stackTab.dump() 416 return data 417 } 418 // Done. 419 if trace.shutdown { 420 trace.lockOwner = nil 421 unlock(&trace.lock) 422 if raceenabled { 423 // Model synchronization on trace.shutdownSema, which race 424 // detector does not see. This is required to avoid false 425 // race reports on writer passed to trace.Start. 426 racerelease(unsafe.Pointer(&trace.shutdownSema)) 427 } 428 // trace.enabled is already reset, so can call traceable functions. 429 semrelease(&trace.shutdownSema) 430 return nil 431 } 432 // Also bad, but see the comment above. 433 trace.lockOwner = nil 434 unlock(&trace.lock) 435 println("runtime: spurious wakeup of trace reader") 436 return nil 437 } 438 439 // traceReader returns the trace reader that should be woken up, if any. 440 func traceReader() *g { 441 if trace.reader == 0 || (trace.fullHead == 0 && !trace.shutdown) { 442 return nil 443 } 444 lock(&trace.lock) 445 if trace.reader == 0 || (trace.fullHead == 0 && !trace.shutdown) { 446 unlock(&trace.lock) 447 return nil 448 } 449 gp := trace.reader.ptr() 450 trace.reader.set(nil) 451 unlock(&trace.lock) 452 return gp 453 } 454 455 // traceProcFree frees trace buffer associated with pp. 456 func traceProcFree(pp *p) { 457 buf := pp.tracebuf 458 pp.tracebuf = 0 459 if buf == 0 { 460 return 461 } 462 lock(&trace.lock) 463 traceFullQueue(buf) 464 unlock(&trace.lock) 465 } 466 467 // traceFullQueue queues buf into queue of full buffers. 468 func traceFullQueue(buf traceBufPtr) { 469 buf.ptr().link = 0 470 if trace.fullHead == 0 { 471 trace.fullHead = buf 472 } else { 473 trace.fullTail.ptr().link = buf 474 } 475 trace.fullTail = buf 476 } 477 478 // traceFullDequeue dequeues from queue of full buffers. 479 func traceFullDequeue() traceBufPtr { 480 buf := trace.fullHead 481 if buf == 0 { 482 return 0 483 } 484 trace.fullHead = buf.ptr().link 485 if trace.fullHead == 0 { 486 trace.fullTail = 0 487 } 488 buf.ptr().link = 0 489 return buf 490 } 491 492 // traceEvent writes a single event to trace buffer, flushing the buffer if necessary. 493 // ev is event type. 494 // If skip > 0, write current stack id as the last argument (skipping skip top frames). 495 // If skip = 0, this event type should contain a stack, but we don't want 496 // to collect and remember it for this particular call. 497 func traceEvent(ev byte, skip int, args ...uint64) { 498 mp, pid, bufp := traceAcquireBuffer() 499 // Double-check trace.enabled now that we've done m.locks++ and acquired bufLock. 500 // This protects from races between traceEvent and StartTrace/StopTrace. 501 502 // The caller checked that trace.enabled == true, but trace.enabled might have been 503 // turned off between the check and now. Check again. traceLockBuffer did mp.locks++, 504 // StopTrace does stopTheWorld, and stopTheWorld waits for mp.locks to go back to zero, 505 // so if we see trace.enabled == true now, we know it's true for the rest of the function. 506 // Exitsyscall can run even during stopTheWorld. The race with StartTrace/StopTrace 507 // during tracing in exitsyscall is resolved by locking trace.bufLock in traceLockBuffer. 508 if !trace.enabled && !mp.startingtrace { 509 traceReleaseBuffer(pid) 510 return 511 } 512 buf := (*bufp).ptr() 513 const maxSize = 2 + 5*traceBytesPerNumber // event type, length, sequence, timestamp, stack id and two add params 514 if buf == nil || len(buf.arr)-buf.pos < maxSize { 515 buf = traceFlush(traceBufPtrOf(buf)).ptr() 516 (*bufp).set(buf) 517 } 518 519 ticks := uint64(cputicks()) / traceTickDiv 520 tickDiff := ticks - buf.lastTicks 521 if buf.pos == 0 { 522 buf.byte(traceEvBatch | 1<<traceArgCountShift) 523 buf.varint(uint64(pid)) 524 buf.varint(ticks) 525 tickDiff = 0 526 } 527 buf.lastTicks = ticks 528 narg := byte(len(args)) 529 if skip >= 0 { 530 narg++ 531 } 532 // We have only 2 bits for number of arguments. 533 // If number is >= 3, then the event type is followed by event length in bytes. 534 if narg > 3 { 535 narg = 3 536 } 537 startPos := buf.pos 538 buf.byte(ev | narg<<traceArgCountShift) 539 var lenp *byte 540 if narg == 3 { 541 // Reserve the byte for length assuming that length < 128. 542 buf.varint(0) 543 lenp = &buf.arr[buf.pos-1] 544 } 545 buf.varint(tickDiff) 546 for _, a := range args { 547 buf.varint(a) 548 } 549 if skip == 0 { 550 buf.varint(0) 551 } else if skip > 0 { 552 buf.varint(traceStackID(mp, buf.stk[:], skip)) 553 } 554 evSize := buf.pos - startPos 555 if evSize > maxSize { 556 throw("invalid length of trace event") 557 } 558 if lenp != nil { 559 // Fill in actual length. 560 *lenp = byte(evSize - 2) 561 } 562 traceReleaseBuffer(pid) 563 } 564 565 func traceStackID(mp *m, buf []uintptr, skip int) uint64 { 566 _g_ := getg() 567 gp := mp.curg 568 var nstk int 569 if gp == _g_ { 570 nstk = callers(skip+1, buf[:]) 571 } else if gp != nil { 572 gp = mp.curg 573 // This may happen when tracing a system call, 574 // so we must lock the stack. 575 if gcTryLockStackBarriers(gp) { 576 nstk = gcallers(gp, skip, buf[:]) 577 gcUnlockStackBarriers(gp) 578 } 579 } 580 if nstk > 0 { 581 nstk-- // skip runtime.goexit 582 } 583 if nstk > 0 && gp.goid == 1 { 584 nstk-- // skip runtime.main 585 } 586 id := trace.stackTab.put(buf[:nstk]) 587 return uint64(id) 588 } 589 590 // traceAcquireBuffer returns trace buffer to use and, if necessary, locks it. 591 func traceAcquireBuffer() (mp *m, pid int32, bufp *traceBufPtr) { 592 mp = acquirem() 593 if p := mp.p.ptr(); p != nil { 594 return mp, p.id, &p.tracebuf 595 } 596 lock(&trace.bufLock) 597 return mp, traceGlobProc, &trace.buf 598 } 599 600 // traceReleaseBuffer releases a buffer previously acquired with traceAcquireBuffer. 601 func traceReleaseBuffer(pid int32) { 602 if pid == traceGlobProc { 603 unlock(&trace.bufLock) 604 } 605 releasem(getg().m) 606 } 607 608 // traceFlush puts buf onto stack of full buffers and returns an empty buffer. 609 func traceFlush(buf traceBufPtr) traceBufPtr { 610 owner := trace.lockOwner 611 dolock := owner == nil || owner != getg().m.curg 612 if dolock { 613 lock(&trace.lock) 614 } 615 if buf != 0 { 616 traceFullQueue(buf) 617 } 618 if trace.empty != 0 { 619 buf = trace.empty 620 trace.empty = buf.ptr().link 621 } else { 622 buf = traceBufPtr(sysAlloc(unsafe.Sizeof(traceBuf{}), &memstats.other_sys)) 623 if buf == 0 { 624 throw("trace: out of memory") 625 } 626 } 627 bufp := buf.ptr() 628 bufp.link.set(nil) 629 bufp.pos = 0 630 bufp.lastTicks = 0 631 if dolock { 632 unlock(&trace.lock) 633 } 634 return buf 635 } 636 637 func traceString(buf *traceBuf, s string) (uint64, *traceBuf) { 638 if s == "" { 639 return 0, buf 640 } 641 if id, ok := trace.strings[s]; ok { 642 return id, buf 643 } 644 645 trace.stringSeq++ 646 id := trace.stringSeq 647 trace.strings[s] = id 648 649 size := 1 + 2*traceBytesPerNumber + len(s) 650 if len(buf.arr)-buf.pos < size { 651 buf = traceFlush(traceBufPtrOf(buf)).ptr() 652 } 653 buf.byte(traceEvString) 654 buf.varint(id) 655 buf.varint(uint64(len(s))) 656 buf.pos += copy(buf.arr[buf.pos:], s) 657 return id, buf 658 } 659 660 // traceAppend appends v to buf in little-endian-base-128 encoding. 661 func traceAppend(buf []byte, v uint64) []byte { 662 for ; v >= 0x80; v >>= 7 { 663 buf = append(buf, 0x80|byte(v)) 664 } 665 buf = append(buf, byte(v)) 666 return buf 667 } 668 669 // varint appends v to buf in little-endian-base-128 encoding. 670 func (buf *traceBuf) varint(v uint64) { 671 pos := buf.pos 672 for ; v >= 0x80; v >>= 7 { 673 buf.arr[pos] = 0x80 | byte(v) 674 pos++ 675 } 676 buf.arr[pos] = byte(v) 677 pos++ 678 buf.pos = pos 679 } 680 681 // byte appends v to buf. 682 func (buf *traceBuf) byte(v byte) { 683 buf.arr[buf.pos] = v 684 buf.pos++ 685 } 686 687 // traceStackTable maps stack traces (arrays of PC's) to unique uint32 ids. 688 // It is lock-free for reading. 689 type traceStackTable struct { 690 lock mutex 691 seq uint32 692 mem traceAlloc 693 tab [1 << 13]traceStackPtr 694 } 695 696 // traceStack is a single stack in traceStackTable. 697 type traceStack struct { 698 link traceStackPtr 699 hash uintptr 700 id uint32 701 n int 702 stk [0]uintptr // real type [n]uintptr 703 } 704 705 type traceStackPtr uintptr 706 707 func (tp traceStackPtr) ptr() *traceStack { return (*traceStack)(unsafe.Pointer(tp)) } 708 709 // stack returns slice of PCs. 710 func (ts *traceStack) stack() []uintptr { 711 return (*[traceStackSize]uintptr)(unsafe.Pointer(&ts.stk))[:ts.n] 712 } 713 714 // put returns a unique id for the stack trace pcs and caches it in the table, 715 // if it sees the trace for the first time. 716 func (tab *traceStackTable) put(pcs []uintptr) uint32 { 717 if len(pcs) == 0 { 718 return 0 719 } 720 hash := memhash(unsafe.Pointer(&pcs[0]), 0, uintptr(len(pcs))*unsafe.Sizeof(pcs[0])) 721 // First, search the hashtable w/o the mutex. 722 if id := tab.find(pcs, hash); id != 0 { 723 return id 724 } 725 // Now, double check under the mutex. 726 lock(&tab.lock) 727 if id := tab.find(pcs, hash); id != 0 { 728 unlock(&tab.lock) 729 return id 730 } 731 // Create new record. 732 tab.seq++ 733 stk := tab.newStack(len(pcs)) 734 stk.hash = hash 735 stk.id = tab.seq 736 stk.n = len(pcs) 737 stkpc := stk.stack() 738 for i, pc := range pcs { 739 stkpc[i] = pc 740 } 741 part := int(hash % uintptr(len(tab.tab))) 742 stk.link = tab.tab[part] 743 atomicstorep(unsafe.Pointer(&tab.tab[part]), unsafe.Pointer(stk)) 744 unlock(&tab.lock) 745 return stk.id 746 } 747 748 // find checks if the stack trace pcs is already present in the table. 749 func (tab *traceStackTable) find(pcs []uintptr, hash uintptr) uint32 { 750 part := int(hash % uintptr(len(tab.tab))) 751 Search: 752 for stk := tab.tab[part].ptr(); stk != nil; stk = stk.link.ptr() { 753 if stk.hash == hash && stk.n == len(pcs) { 754 for i, stkpc := range stk.stack() { 755 if stkpc != pcs[i] { 756 continue Search 757 } 758 } 759 return stk.id 760 } 761 } 762 return 0 763 } 764 765 // newStack allocates a new stack of size n. 766 func (tab *traceStackTable) newStack(n int) *traceStack { 767 return (*traceStack)(tab.mem.alloc(unsafe.Sizeof(traceStack{}) + uintptr(n)*sys.PtrSize)) 768 } 769 770 // dump writes all previously cached stacks to trace buffers, 771 // releases all memory and resets state. 772 func (tab *traceStackTable) dump() { 773 frames := make(map[uintptr]traceFrame) 774 var tmp [(2 + 4*traceStackSize) * traceBytesPerNumber]byte 775 buf := traceFlush(0).ptr() 776 for _, stk := range tab.tab { 777 stk := stk.ptr() 778 for ; stk != nil; stk = stk.link.ptr() { 779 tmpbuf := tmp[:0] 780 tmpbuf = traceAppend(tmpbuf, uint64(stk.id)) 781 tmpbuf = traceAppend(tmpbuf, uint64(stk.n)) 782 for _, pc := range stk.stack() { 783 var frame traceFrame 784 frame, buf = traceFrameForPC(buf, frames, pc) 785 tmpbuf = traceAppend(tmpbuf, uint64(pc)) 786 tmpbuf = traceAppend(tmpbuf, uint64(frame.funcID)) 787 tmpbuf = traceAppend(tmpbuf, uint64(frame.fileID)) 788 tmpbuf = traceAppend(tmpbuf, uint64(frame.line)) 789 } 790 // Now copy to the buffer. 791 size := 1 + traceBytesPerNumber + len(tmpbuf) 792 if len(buf.arr)-buf.pos < size { 793 buf = traceFlush(traceBufPtrOf(buf)).ptr() 794 } 795 buf.byte(traceEvStack | 3<<traceArgCountShift) 796 buf.varint(uint64(len(tmpbuf))) 797 buf.pos += copy(buf.arr[buf.pos:], tmpbuf) 798 } 799 } 800 801 lock(&trace.lock) 802 traceFullQueue(traceBufPtrOf(buf)) 803 unlock(&trace.lock) 804 805 tab.mem.drop() 806 *tab = traceStackTable{} 807 } 808 809 type traceFrame struct { 810 funcID uint64 811 fileID uint64 812 line uint64 813 } 814 815 func traceFrameForPC(buf *traceBuf, frames map[uintptr]traceFrame, pc uintptr) (traceFrame, *traceBuf) { 816 if frame, ok := frames[pc]; ok { 817 return frame, buf 818 } 819 820 var frame traceFrame 821 f := findfunc(pc) 822 if f == nil { 823 frames[pc] = frame 824 return frame, buf 825 } 826 827 fn := funcname(f) 828 const maxLen = 1 << 10 829 if len(fn) > maxLen { 830 fn = fn[len(fn)-maxLen:] 831 } 832 frame.funcID, buf = traceString(buf, fn) 833 file, line := funcline(f, pc-sys.PCQuantum) 834 frame.line = uint64(line) 835 if len(file) > maxLen { 836 file = file[len(file)-maxLen:] 837 } 838 frame.fileID, buf = traceString(buf, file) 839 return frame, buf 840 } 841 842 // traceAlloc is a non-thread-safe region allocator. 843 // It holds a linked list of traceAllocBlock. 844 type traceAlloc struct { 845 head traceAllocBlockPtr 846 off uintptr 847 } 848 849 // traceAllocBlock is a block in traceAlloc. 850 // 851 // traceAllocBlock is allocated from non-GC'd memory, so it must not 852 // contain heap pointers. Writes to pointers to traceAllocBlocks do 853 // not need write barriers. 854 // 855 //go:notinheap 856 type traceAllocBlock struct { 857 next traceAllocBlockPtr 858 data [64<<10 - sys.PtrSize]byte 859 } 860 861 // TODO: Since traceAllocBlock is now go:notinheap, this isn't necessary. 862 type traceAllocBlockPtr uintptr 863 864 func (p traceAllocBlockPtr) ptr() *traceAllocBlock { return (*traceAllocBlock)(unsafe.Pointer(p)) } 865 func (p *traceAllocBlockPtr) set(x *traceAllocBlock) { *p = traceAllocBlockPtr(unsafe.Pointer(x)) } 866 867 // alloc allocates n-byte block. 868 func (a *traceAlloc) alloc(n uintptr) unsafe.Pointer { 869 n = round(n, sys.PtrSize) 870 if a.head == 0 || a.off+n > uintptr(len(a.head.ptr().data)) { 871 if n > uintptr(len(a.head.ptr().data)) { 872 throw("trace: alloc too large") 873 } 874 block := (*traceAllocBlock)(sysAlloc(unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys)) 875 if block == nil { 876 throw("trace: out of memory") 877 } 878 block.next.set(a.head.ptr()) 879 a.head.set(block) 880 a.off = 0 881 } 882 p := &a.head.ptr().data[a.off] 883 a.off += n 884 return unsafe.Pointer(p) 885 } 886 887 // drop frees all previously allocated memory and resets the allocator. 888 func (a *traceAlloc) drop() { 889 for a.head != 0 { 890 block := a.head.ptr() 891 a.head.set(block.next.ptr()) 892 sysFree(unsafe.Pointer(block), unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys) 893 } 894 } 895 896 // The following functions write specific events to trace. 897 898 func traceGomaxprocs(procs int32) { 899 traceEvent(traceEvGomaxprocs, 1, uint64(procs)) 900 } 901 902 func traceProcStart() { 903 traceEvent(traceEvProcStart, -1, uint64(getg().m.id)) 904 } 905 906 func traceProcStop(pp *p) { 907 // Sysmon and stopTheWorld can stop Ps blocked in syscalls, 908 // to handle this we temporary employ the P. 909 mp := acquirem() 910 oldp := mp.p 911 mp.p.set(pp) 912 traceEvent(traceEvProcStop, -1) 913 mp.p = oldp 914 releasem(mp) 915 } 916 917 func traceGCStart() { 918 traceEvent(traceEvGCStart, 3, trace.seqGC) 919 trace.seqGC++ 920 } 921 922 func traceGCDone() { 923 traceEvent(traceEvGCDone, -1) 924 } 925 926 func traceGCScanStart() { 927 traceEvent(traceEvGCScanStart, -1) 928 } 929 930 func traceGCScanDone() { 931 traceEvent(traceEvGCScanDone, -1) 932 } 933 934 func traceGCSweepStart() { 935 traceEvent(traceEvGCSweepStart, 1) 936 } 937 938 func traceGCSweepDone() { 939 traceEvent(traceEvGCSweepDone, -1) 940 } 941 942 func traceGoCreate(newg *g, pc uintptr) { 943 newg.traceseq = 0 944 newg.tracelastp = getg().m.p 945 // +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum. 946 id := trace.stackTab.put([]uintptr{pc + sys.PCQuantum}) 947 traceEvent(traceEvGoCreate, 2, uint64(newg.goid), uint64(id)) 948 } 949 950 func traceGoStart() { 951 _g_ := getg().m.curg 952 _p_ := _g_.m.p 953 _g_.traceseq++ 954 if _g_ == _p_.ptr().gcBgMarkWorker.ptr() { 955 traceEvent(traceEvGoStartLabel, -1, uint64(_g_.goid), _g_.traceseq, trace.markWorkerLabels[_p_.ptr().gcMarkWorkerMode]) 956 } else if _g_.tracelastp == _p_ { 957 traceEvent(traceEvGoStartLocal, -1, uint64(_g_.goid)) 958 } else { 959 _g_.tracelastp = _p_ 960 traceEvent(traceEvGoStart, -1, uint64(_g_.goid), _g_.traceseq) 961 } 962 } 963 964 func traceGoEnd() { 965 traceEvent(traceEvGoEnd, -1) 966 } 967 968 func traceGoSched() { 969 _g_ := getg() 970 _g_.tracelastp = _g_.m.p 971 traceEvent(traceEvGoSched, 1) 972 } 973 974 func traceGoPreempt() { 975 _g_ := getg() 976 _g_.tracelastp = _g_.m.p 977 traceEvent(traceEvGoPreempt, 1) 978 } 979 980 func traceGoPark(traceEv byte, skip int, gp *g) { 981 if traceEv&traceFutileWakeup != 0 { 982 traceEvent(traceEvFutileWakeup, -1) 983 } 984 traceEvent(traceEv & ^traceFutileWakeup, skip) 985 } 986 987 func traceGoUnpark(gp *g, skip int) { 988 _p_ := getg().m.p 989 gp.traceseq++ 990 if gp.tracelastp == _p_ { 991 traceEvent(traceEvGoUnblockLocal, skip, uint64(gp.goid)) 992 } else { 993 gp.tracelastp = _p_ 994 traceEvent(traceEvGoUnblock, skip, uint64(gp.goid), gp.traceseq) 995 } 996 } 997 998 func traceGoSysCall() { 999 traceEvent(traceEvGoSysCall, 1) 1000 } 1001 1002 func traceGoSysExit(ts int64) { 1003 if ts != 0 && ts < trace.ticksStart { 1004 // There is a race between the code that initializes sysexitticks 1005 // (in exitsyscall, which runs without a P, and therefore is not 1006 // stopped with the rest of the world) and the code that initializes 1007 // a new trace. The recorded sysexitticks must therefore be treated 1008 // as "best effort". If they are valid for this trace, then great, 1009 // use them for greater accuracy. But if they're not valid for this 1010 // trace, assume that the trace was started after the actual syscall 1011 // exit (but before we actually managed to start the goroutine, 1012 // aka right now), and assign a fresh time stamp to keep the log consistent. 1013 ts = 0 1014 } 1015 _g_ := getg().m.curg 1016 _g_.traceseq++ 1017 _g_.tracelastp = _g_.m.p 1018 traceEvent(traceEvGoSysExit, -1, uint64(_g_.goid), _g_.traceseq, uint64(ts)/traceTickDiv) 1019 } 1020 1021 func traceGoSysBlock(pp *p) { 1022 // Sysmon and stopTheWorld can declare syscalls running on remote Ps as blocked, 1023 // to handle this we temporary employ the P. 1024 mp := acquirem() 1025 oldp := mp.p 1026 mp.p.set(pp) 1027 traceEvent(traceEvGoSysBlock, -1) 1028 mp.p = oldp 1029 releasem(mp) 1030 } 1031 1032 func traceHeapAlloc() { 1033 traceEvent(traceEvHeapAlloc, -1, memstats.heap_live) 1034 } 1035 1036 func traceNextGC() { 1037 if memstats.next_gc == ^uint64(0) { 1038 // Heap-based triggering is disabled. 1039 traceEvent(traceEvNextGC, -1, 0) 1040 } else { 1041 traceEvent(traceEvNextGC, -1, memstats.next_gc) 1042 } 1043 }