github.com/dannin/go@v0.0.0-20161031215817-d35dfd405eaa/src/time/time.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package time provides functionality for measuring and displaying time.
     6  //
     7  // The calendrical calculations always assume a Gregorian calendar, with
     8  // no leap seconds.
     9  package time
    10  
    11  import "errors"
    12  
    13  // A Time represents an instant in time with nanosecond precision.
    14  //
    15  // Programs using times should typically store and pass them as values,
    16  // not pointers. That is, time variables and struct fields should be of
    17  // type time.Time, not *time.Time. A Time value can be used by
    18  // multiple goroutines simultaneously.
    19  //
    20  // Time instants can be compared using the Before, After, and Equal methods.
    21  // The Sub method subtracts two instants, producing a Duration.
    22  // The Add method adds a Time and a Duration, producing a Time.
    23  //
    24  // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
    25  // As this time is unlikely to come up in practice, the IsZero method gives
    26  // a simple way of detecting a time that has not been initialized explicitly.
    27  //
    28  // Each Time has associated with it a Location, consulted when computing the
    29  // presentation form of the time, such as in the Format, Hour, and Year methods.
    30  // The methods Local, UTC, and In return a Time with a specific location.
    31  // Changing the location in this way changes only the presentation; it does not
    32  // change the instant in time being denoted and therefore does not affect the
    33  // computations described in earlier paragraphs.
    34  //
    35  // Note that the Go == operator compares not just the time instant but also the
    36  // Location. Therefore, Time values should not be used as map or database keys
    37  // without first guaranteeing that the identical Location has been set for all
    38  // values, which can be achieved through use of the UTC or Local method.
    39  //
    40  type Time struct {
    41  	// sec gives the number of seconds elapsed since
    42  	// January 1, year 1 00:00:00 UTC.
    43  	sec int64
    44  
    45  	// nsec specifies a non-negative nanosecond
    46  	// offset within the second named by Seconds.
    47  	// It must be in the range [0, 999999999].
    48  	nsec int32
    49  
    50  	// loc specifies the Location that should be used to
    51  	// determine the minute, hour, month, day, and year
    52  	// that correspond to this Time.
    53  	// The nil location means UTC.
    54  	// All UTC times are represented with loc==nil, never loc==&utcLoc.
    55  	loc *Location
    56  }
    57  
    58  func (t *Time) setLoc(loc *Location) {
    59  	if loc == &utcLoc {
    60  		loc = nil
    61  	}
    62  	t.loc = loc
    63  }
    64  
    65  // After reports whether the time instant t is after u.
    66  func (t Time) After(u Time) bool {
    67  	return t.sec > u.sec || t.sec == u.sec && t.nsec > u.nsec
    68  }
    69  
    70  // Before reports whether the time instant t is before u.
    71  func (t Time) Before(u Time) bool {
    72  	return t.sec < u.sec || t.sec == u.sec && t.nsec < u.nsec
    73  }
    74  
    75  // Equal reports whether t and u represent the same time instant.
    76  // Two times can be equal even if they are in different locations.
    77  // For example, 6:00 +0200 CEST and 4:00 UTC are Equal.
    78  // Note that using == with Time values produces unpredictable results.
    79  func (t Time) Equal(u Time) bool {
    80  	return t.sec == u.sec && t.nsec == u.nsec
    81  }
    82  
    83  // A Month specifies a month of the year (January = 1, ...).
    84  type Month int
    85  
    86  const (
    87  	January Month = 1 + iota
    88  	February
    89  	March
    90  	April
    91  	May
    92  	June
    93  	July
    94  	August
    95  	September
    96  	October
    97  	November
    98  	December
    99  )
   100  
   101  var months = [...]string{
   102  	"January",
   103  	"February",
   104  	"March",
   105  	"April",
   106  	"May",
   107  	"June",
   108  	"July",
   109  	"August",
   110  	"September",
   111  	"October",
   112  	"November",
   113  	"December",
   114  }
   115  
   116  // String returns the English name of the month ("January", "February", ...).
   117  func (m Month) String() string { return months[m-1] }
   118  
   119  // A Weekday specifies a day of the week (Sunday = 0, ...).
   120  type Weekday int
   121  
   122  const (
   123  	Sunday Weekday = iota
   124  	Monday
   125  	Tuesday
   126  	Wednesday
   127  	Thursday
   128  	Friday
   129  	Saturday
   130  )
   131  
   132  var days = [...]string{
   133  	"Sunday",
   134  	"Monday",
   135  	"Tuesday",
   136  	"Wednesday",
   137  	"Thursday",
   138  	"Friday",
   139  	"Saturday",
   140  }
   141  
   142  // String returns the English name of the day ("Sunday", "Monday", ...).
   143  func (d Weekday) String() string { return days[d] }
   144  
   145  // Computations on time.
   146  //
   147  // The zero value for a Time is defined to be
   148  //	January 1, year 1, 00:00:00.000000000 UTC
   149  // which (1) looks like a zero, or as close as you can get in a date
   150  // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
   151  // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
   152  // non-negative year even in time zones west of UTC, unlike 1-1-0
   153  // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
   154  //
   155  // The zero Time value does not force a specific epoch for the time
   156  // representation. For example, to use the Unix epoch internally, we
   157  // could define that to distinguish a zero value from Jan 1 1970, that
   158  // time would be represented by sec=-1, nsec=1e9.  However, it does
   159  // suggest a representation, namely using 1-1-1 00:00:00 UTC as the
   160  // epoch, and that's what we do.
   161  //
   162  // The Add and Sub computations are oblivious to the choice of epoch.
   163  //
   164  // The presentation computations - year, month, minute, and so on - all
   165  // rely heavily on division and modulus by positive constants. For
   166  // calendrical calculations we want these divisions to round down, even
   167  // for negative values, so that the remainder is always positive, but
   168  // Go's division (like most hardware division instructions) rounds to
   169  // zero. We can still do those computations and then adjust the result
   170  // for a negative numerator, but it's annoying to write the adjustment
   171  // over and over. Instead, we can change to a different epoch so long
   172  // ago that all the times we care about will be positive, and then round
   173  // to zero and round down coincide. These presentation routines already
   174  // have to add the zone offset, so adding the translation to the
   175  // alternate epoch is cheap. For example, having a non-negative time t
   176  // means that we can write
   177  //
   178  //	sec = t % 60
   179  //
   180  // instead of
   181  //
   182  //	sec = t % 60
   183  //	if sec < 0 {
   184  //		sec += 60
   185  //	}
   186  //
   187  // everywhere.
   188  //
   189  // The calendar runs on an exact 400 year cycle: a 400-year calendar
   190  // printed for 1970-2469 will apply as well to 2370-2769.  Even the days
   191  // of the week match up. It simplifies the computations to choose the
   192  // cycle boundaries so that the exceptional years are always delayed as
   193  // long as possible. That means choosing a year equal to 1 mod 400, so
   194  // that the first leap year is the 4th year, the first missed leap year
   195  // is the 100th year, and the missed missed leap year is the 400th year.
   196  // So we'd prefer instead to print a calendar for 2001-2400 and reuse it
   197  // for 2401-2800.
   198  //
   199  // Finally, it's convenient if the delta between the Unix epoch and
   200  // long-ago epoch is representable by an int64 constant.
   201  //
   202  // These three considerations—choose an epoch as early as possible, that
   203  // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
   204  // earlier than 1970—bring us to the year -292277022399.  We refer to
   205  // this year as the absolute zero year, and to times measured as a uint64
   206  // seconds since this year as absolute times.
   207  //
   208  // Times measured as an int64 seconds since the year 1—the representation
   209  // used for Time's sec field—are called internal times.
   210  //
   211  // Times measured as an int64 seconds since the year 1970 are called Unix
   212  // times.
   213  //
   214  // It is tempting to just use the year 1 as the absolute epoch, defining
   215  // that the routines are only valid for years >= 1.  However, the
   216  // routines would then be invalid when displaying the epoch in time zones
   217  // west of UTC, since it is year 0.  It doesn't seem tenable to say that
   218  // printing the zero time correctly isn't supported in half the time
   219  // zones. By comparison, it's reasonable to mishandle some times in
   220  // the year -292277022399.
   221  //
   222  // All this is opaque to clients of the API and can be changed if a
   223  // better implementation presents itself.
   224  
   225  const (
   226  	// The unsigned zero year for internal calculations.
   227  	// Must be 1 mod 400, and times before it will not compute correctly,
   228  	// but otherwise can be changed at will.
   229  	absoluteZeroYear = -292277022399
   230  
   231  	// The year of the zero Time.
   232  	// Assumed by the unixToInternal computation below.
   233  	internalYear = 1
   234  
   235  	// Offsets to convert between internal and absolute or Unix times.
   236  	absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
   237  	internalToAbsolute       = -absoluteToInternal
   238  
   239  	unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
   240  	internalToUnix int64 = -unixToInternal
   241  )
   242  
   243  // IsZero reports whether t represents the zero time instant,
   244  // January 1, year 1, 00:00:00 UTC.
   245  func (t Time) IsZero() bool {
   246  	return t.sec == 0 && t.nsec == 0
   247  }
   248  
   249  // abs returns the time t as an absolute time, adjusted by the zone offset.
   250  // It is called when computing a presentation property like Month or Hour.
   251  func (t Time) abs() uint64 {
   252  	l := t.loc
   253  	// Avoid function calls when possible.
   254  	if l == nil || l == &localLoc {
   255  		l = l.get()
   256  	}
   257  	sec := t.sec + internalToUnix
   258  	if l != &utcLoc {
   259  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   260  			sec += int64(l.cacheZone.offset)
   261  		} else {
   262  			_, offset, _, _, _ := l.lookup(sec)
   263  			sec += int64(offset)
   264  		}
   265  	}
   266  	return uint64(sec + (unixToInternal + internalToAbsolute))
   267  }
   268  
   269  // locabs is a combination of the Zone and abs methods,
   270  // extracting both return values from a single zone lookup.
   271  func (t Time) locabs() (name string, offset int, abs uint64) {
   272  	l := t.loc
   273  	if l == nil || l == &localLoc {
   274  		l = l.get()
   275  	}
   276  	// Avoid function call if we hit the local time cache.
   277  	sec := t.sec + internalToUnix
   278  	if l != &utcLoc {
   279  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   280  			name = l.cacheZone.name
   281  			offset = l.cacheZone.offset
   282  		} else {
   283  			name, offset, _, _, _ = l.lookup(sec)
   284  		}
   285  		sec += int64(offset)
   286  	} else {
   287  		name = "UTC"
   288  	}
   289  	abs = uint64(sec + (unixToInternal + internalToAbsolute))
   290  	return
   291  }
   292  
   293  // Date returns the year, month, and day in which t occurs.
   294  func (t Time) Date() (year int, month Month, day int) {
   295  	year, month, day, _ = t.date(true)
   296  	return
   297  }
   298  
   299  // Year returns the year in which t occurs.
   300  func (t Time) Year() int {
   301  	year, _, _, _ := t.date(false)
   302  	return year
   303  }
   304  
   305  // Month returns the month of the year specified by t.
   306  func (t Time) Month() Month {
   307  	_, month, _, _ := t.date(true)
   308  	return month
   309  }
   310  
   311  // Day returns the day of the month specified by t.
   312  func (t Time) Day() int {
   313  	_, _, day, _ := t.date(true)
   314  	return day
   315  }
   316  
   317  // Weekday returns the day of the week specified by t.
   318  func (t Time) Weekday() Weekday {
   319  	return absWeekday(t.abs())
   320  }
   321  
   322  // absWeekday is like Weekday but operates on an absolute time.
   323  func absWeekday(abs uint64) Weekday {
   324  	// January 1 of the absolute year, like January 1 of 2001, was a Monday.
   325  	sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
   326  	return Weekday(int(sec) / secondsPerDay)
   327  }
   328  
   329  // ISOWeek returns the ISO 8601 year and week number in which t occurs.
   330  // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
   331  // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
   332  // of year n+1.
   333  func (t Time) ISOWeek() (year, week int) {
   334  	year, month, day, yday := t.date(true)
   335  	wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0.
   336  	const (
   337  		Mon int = iota
   338  		Tue
   339  		Wed
   340  		Thu
   341  		Fri
   342  		Sat
   343  		Sun
   344  	)
   345  
   346  	// Calculate week as number of Mondays in year up to
   347  	// and including today, plus 1 because the first week is week 0.
   348  	// Putting the + 1 inside the numerator as a + 7 keeps the
   349  	// numerator from being negative, which would cause it to
   350  	// round incorrectly.
   351  	week = (yday - wday + 7) / 7
   352  
   353  	// The week number is now correct under the assumption
   354  	// that the first Monday of the year is in week 1.
   355  	// If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday
   356  	// is actually in week 2.
   357  	jan1wday := (wday - yday + 7*53) % 7
   358  	if Tue <= jan1wday && jan1wday <= Thu {
   359  		week++
   360  	}
   361  
   362  	// If the week number is still 0, we're in early January but in
   363  	// the last week of last year.
   364  	if week == 0 {
   365  		year--
   366  		week = 52
   367  		// A year has 53 weeks when Jan 1 or Dec 31 is a Thursday,
   368  		// meaning Jan 1 of the next year is a Friday
   369  		// or it was a leap year and Jan 1 of the next year is a Saturday.
   370  		if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) {
   371  			week++
   372  		}
   373  	}
   374  
   375  	// December 29 to 31 are in week 1 of next year if
   376  	// they are after the last Thursday of the year and
   377  	// December 31 is a Monday, Tuesday, or Wednesday.
   378  	if month == December && day >= 29 && wday < Thu {
   379  		if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed {
   380  			year++
   381  			week = 1
   382  		}
   383  	}
   384  
   385  	return
   386  }
   387  
   388  // Clock returns the hour, minute, and second within the day specified by t.
   389  func (t Time) Clock() (hour, min, sec int) {
   390  	return absClock(t.abs())
   391  }
   392  
   393  // absClock is like clock but operates on an absolute time.
   394  func absClock(abs uint64) (hour, min, sec int) {
   395  	sec = int(abs % secondsPerDay)
   396  	hour = sec / secondsPerHour
   397  	sec -= hour * secondsPerHour
   398  	min = sec / secondsPerMinute
   399  	sec -= min * secondsPerMinute
   400  	return
   401  }
   402  
   403  // Hour returns the hour within the day specified by t, in the range [0, 23].
   404  func (t Time) Hour() int {
   405  	return int(t.abs()%secondsPerDay) / secondsPerHour
   406  }
   407  
   408  // Minute returns the minute offset within the hour specified by t, in the range [0, 59].
   409  func (t Time) Minute() int {
   410  	return int(t.abs()%secondsPerHour) / secondsPerMinute
   411  }
   412  
   413  // Second returns the second offset within the minute specified by t, in the range [0, 59].
   414  func (t Time) Second() int {
   415  	return int(t.abs() % secondsPerMinute)
   416  }
   417  
   418  // Nanosecond returns the nanosecond offset within the second specified by t,
   419  // in the range [0, 999999999].
   420  func (t Time) Nanosecond() int {
   421  	return int(t.nsec)
   422  }
   423  
   424  // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
   425  // and [1,366] in leap years.
   426  func (t Time) YearDay() int {
   427  	_, _, _, yday := t.date(false)
   428  	return yday + 1
   429  }
   430  
   431  // A Duration represents the elapsed time between two instants
   432  // as an int64 nanosecond count. The representation limits the
   433  // largest representable duration to approximately 290 years.
   434  type Duration int64
   435  
   436  const (
   437  	minDuration Duration = -1 << 63
   438  	maxDuration Duration = 1<<63 - 1
   439  )
   440  
   441  // Common durations. There is no definition for units of Day or larger
   442  // to avoid confusion across daylight savings time zone transitions.
   443  //
   444  // To count the number of units in a Duration, divide:
   445  //	second := time.Second
   446  //	fmt.Print(int64(second/time.Millisecond)) // prints 1000
   447  //
   448  // To convert an integer number of units to a Duration, multiply:
   449  //	seconds := 10
   450  //	fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
   451  //
   452  const (
   453  	Nanosecond  Duration = 1
   454  	Microsecond          = 1000 * Nanosecond
   455  	Millisecond          = 1000 * Microsecond
   456  	Second               = 1000 * Millisecond
   457  	Minute               = 60 * Second
   458  	Hour                 = 60 * Minute
   459  )
   460  
   461  // String returns a string representing the duration in the form "72h3m0.5s".
   462  // Leading zero units are omitted. As a special case, durations less than one
   463  // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
   464  // that the leading digit is non-zero. The zero duration formats as 0s.
   465  func (d Duration) String() string {
   466  	// Largest time is 2540400h10m10.000000000s
   467  	var buf [32]byte
   468  	w := len(buf)
   469  
   470  	u := uint64(d)
   471  	neg := d < 0
   472  	if neg {
   473  		u = -u
   474  	}
   475  
   476  	if u < uint64(Second) {
   477  		// Special case: if duration is smaller than a second,
   478  		// use smaller units, like 1.2ms
   479  		var prec int
   480  		w--
   481  		buf[w] = 's'
   482  		w--
   483  		switch {
   484  		case u == 0:
   485  			return "0s"
   486  		case u < uint64(Microsecond):
   487  			// print nanoseconds
   488  			prec = 0
   489  			buf[w] = 'n'
   490  		case u < uint64(Millisecond):
   491  			// print microseconds
   492  			prec = 3
   493  			// U+00B5 'µ' micro sign == 0xC2 0xB5
   494  			w-- // Need room for two bytes.
   495  			copy(buf[w:], "µ")
   496  		default:
   497  			// print milliseconds
   498  			prec = 6
   499  			buf[w] = 'm'
   500  		}
   501  		w, u = fmtFrac(buf[:w], u, prec)
   502  		w = fmtInt(buf[:w], u)
   503  	} else {
   504  		w--
   505  		buf[w] = 's'
   506  
   507  		w, u = fmtFrac(buf[:w], u, 9)
   508  
   509  		// u is now integer seconds
   510  		w = fmtInt(buf[:w], u%60)
   511  		u /= 60
   512  
   513  		// u is now integer minutes
   514  		if u > 0 {
   515  			w--
   516  			buf[w] = 'm'
   517  			w = fmtInt(buf[:w], u%60)
   518  			u /= 60
   519  
   520  			// u is now integer hours
   521  			// Stop at hours because days can be different lengths.
   522  			if u > 0 {
   523  				w--
   524  				buf[w] = 'h'
   525  				w = fmtInt(buf[:w], u)
   526  			}
   527  		}
   528  	}
   529  
   530  	if neg {
   531  		w--
   532  		buf[w] = '-'
   533  	}
   534  
   535  	return string(buf[w:])
   536  }
   537  
   538  // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
   539  // tail of buf, omitting trailing zeros.  it omits the decimal
   540  // point too when the fraction is 0.  It returns the index where the
   541  // output bytes begin and the value v/10**prec.
   542  func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
   543  	// Omit trailing zeros up to and including decimal point.
   544  	w := len(buf)
   545  	print := false
   546  	for i := 0; i < prec; i++ {
   547  		digit := v % 10
   548  		print = print || digit != 0
   549  		if print {
   550  			w--
   551  			buf[w] = byte(digit) + '0'
   552  		}
   553  		v /= 10
   554  	}
   555  	if print {
   556  		w--
   557  		buf[w] = '.'
   558  	}
   559  	return w, v
   560  }
   561  
   562  // fmtInt formats v into the tail of buf.
   563  // It returns the index where the output begins.
   564  func fmtInt(buf []byte, v uint64) int {
   565  	w := len(buf)
   566  	if v == 0 {
   567  		w--
   568  		buf[w] = '0'
   569  	} else {
   570  		for v > 0 {
   571  			w--
   572  			buf[w] = byte(v%10) + '0'
   573  			v /= 10
   574  		}
   575  	}
   576  	return w
   577  }
   578  
   579  // Nanoseconds returns the duration as an integer nanosecond count.
   580  func (d Duration) Nanoseconds() int64 { return int64(d) }
   581  
   582  // These methods return float64 because the dominant
   583  // use case is for printing a floating point number like 1.5s, and
   584  // a truncation to integer would make them not useful in those cases.
   585  // Splitting the integer and fraction ourselves guarantees that
   586  // converting the returned float64 to an integer rounds the same
   587  // way that a pure integer conversion would have, even in cases
   588  // where, say, float64(d.Nanoseconds())/1e9 would have rounded
   589  // differently.
   590  
   591  // Seconds returns the duration as a floating point number of seconds.
   592  func (d Duration) Seconds() float64 {
   593  	sec := d / Second
   594  	nsec := d % Second
   595  	return float64(sec) + float64(nsec)*1e-9
   596  }
   597  
   598  // Minutes returns the duration as a floating point number of minutes.
   599  func (d Duration) Minutes() float64 {
   600  	min := d / Minute
   601  	nsec := d % Minute
   602  	return float64(min) + float64(nsec)*(1e-9/60)
   603  }
   604  
   605  // Hours returns the duration as a floating point number of hours.
   606  func (d Duration) Hours() float64 {
   607  	hour := d / Hour
   608  	nsec := d % Hour
   609  	return float64(hour) + float64(nsec)*(1e-9/60/60)
   610  }
   611  
   612  // Add returns the time t+d.
   613  func (t Time) Add(d Duration) Time {
   614  	t.sec += int64(d / 1e9)
   615  	nsec := t.nsec + int32(d%1e9)
   616  	if nsec >= 1e9 {
   617  		t.sec++
   618  		nsec -= 1e9
   619  	} else if nsec < 0 {
   620  		t.sec--
   621  		nsec += 1e9
   622  	}
   623  	t.nsec = nsec
   624  	return t
   625  }
   626  
   627  // Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
   628  // value that can be stored in a Duration, the maximum (or minimum) duration
   629  // will be returned.
   630  // To compute t-d for a duration d, use t.Add(-d).
   631  func (t Time) Sub(u Time) Duration {
   632  	d := Duration(t.sec-u.sec)*Second + Duration(t.nsec-u.nsec)
   633  	// Check for overflow or underflow.
   634  	switch {
   635  	case u.Add(d).Equal(t):
   636  		return d // d is correct
   637  	case t.Before(u):
   638  		return minDuration // t - u is negative out of range
   639  	default:
   640  		return maxDuration // t - u is positive out of range
   641  	}
   642  }
   643  
   644  // Since returns the time elapsed since t.
   645  // It is shorthand for time.Now().Sub(t).
   646  func Since(t Time) Duration {
   647  	return Now().Sub(t)
   648  }
   649  
   650  // Until returns the duration until t.
   651  // It is shorthand for t.Sub(time.Now()).
   652  func Until(t Time) Duration {
   653  	return t.Sub(Now())
   654  }
   655  
   656  // AddDate returns the time corresponding to adding the
   657  // given number of years, months, and days to t.
   658  // For example, AddDate(-1, 2, 3) applied to January 1, 2011
   659  // returns March 4, 2010.
   660  //
   661  // AddDate normalizes its result in the same way that Date does,
   662  // so, for example, adding one month to October 31 yields
   663  // December 1, the normalized form for November 31.
   664  func (t Time) AddDate(years int, months int, days int) Time {
   665  	year, month, day := t.Date()
   666  	hour, min, sec := t.Clock()
   667  	return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec), t.Location())
   668  }
   669  
   670  const (
   671  	secondsPerMinute = 60
   672  	secondsPerHour   = 60 * 60
   673  	secondsPerDay    = 24 * secondsPerHour
   674  	secondsPerWeek   = 7 * secondsPerDay
   675  	daysPer400Years  = 365*400 + 97
   676  	daysPer100Years  = 365*100 + 24
   677  	daysPer4Years    = 365*4 + 1
   678  )
   679  
   680  // date computes the year, day of year, and when full=true,
   681  // the month and day in which t occurs.
   682  func (t Time) date(full bool) (year int, month Month, day int, yday int) {
   683  	return absDate(t.abs(), full)
   684  }
   685  
   686  // absDate is like date but operates on an absolute time.
   687  func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
   688  	// Split into time and day.
   689  	d := abs / secondsPerDay
   690  
   691  	// Account for 400 year cycles.
   692  	n := d / daysPer400Years
   693  	y := 400 * n
   694  	d -= daysPer400Years * n
   695  
   696  	// Cut off 100-year cycles.
   697  	// The last cycle has one extra leap year, so on the last day
   698  	// of that year, day / daysPer100Years will be 4 instead of 3.
   699  	// Cut it back down to 3 by subtracting n>>2.
   700  	n = d / daysPer100Years
   701  	n -= n >> 2
   702  	y += 100 * n
   703  	d -= daysPer100Years * n
   704  
   705  	// Cut off 4-year cycles.
   706  	// The last cycle has a missing leap year, which does not
   707  	// affect the computation.
   708  	n = d / daysPer4Years
   709  	y += 4 * n
   710  	d -= daysPer4Years * n
   711  
   712  	// Cut off years within a 4-year cycle.
   713  	// The last year is a leap year, so on the last day of that year,
   714  	// day / 365 will be 4 instead of 3.  Cut it back down to 3
   715  	// by subtracting n>>2.
   716  	n = d / 365
   717  	n -= n >> 2
   718  	y += n
   719  	d -= 365 * n
   720  
   721  	year = int(int64(y) + absoluteZeroYear)
   722  	yday = int(d)
   723  
   724  	if !full {
   725  		return
   726  	}
   727  
   728  	day = yday
   729  	if isLeap(year) {
   730  		// Leap year
   731  		switch {
   732  		case day > 31+29-1:
   733  			// After leap day; pretend it wasn't there.
   734  			day--
   735  		case day == 31+29-1:
   736  			// Leap day.
   737  			month = February
   738  			day = 29
   739  			return
   740  		}
   741  	}
   742  
   743  	// Estimate month on assumption that every month has 31 days.
   744  	// The estimate may be too low by at most one month, so adjust.
   745  	month = Month(day / 31)
   746  	end := int(daysBefore[month+1])
   747  	var begin int
   748  	if day >= end {
   749  		month++
   750  		begin = end
   751  	} else {
   752  		begin = int(daysBefore[month])
   753  	}
   754  
   755  	month++ // because January is 1
   756  	day = day - begin + 1
   757  	return
   758  }
   759  
   760  // daysBefore[m] counts the number of days in a non-leap year
   761  // before month m begins. There is an entry for m=12, counting
   762  // the number of days before January of next year (365).
   763  var daysBefore = [...]int32{
   764  	0,
   765  	31,
   766  	31 + 28,
   767  	31 + 28 + 31,
   768  	31 + 28 + 31 + 30,
   769  	31 + 28 + 31 + 30 + 31,
   770  	31 + 28 + 31 + 30 + 31 + 30,
   771  	31 + 28 + 31 + 30 + 31 + 30 + 31,
   772  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
   773  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
   774  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
   775  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
   776  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
   777  }
   778  
   779  func daysIn(m Month, year int) int {
   780  	if m == February && isLeap(year) {
   781  		return 29
   782  	}
   783  	return int(daysBefore[m] - daysBefore[m-1])
   784  }
   785  
   786  // Provided by package runtime.
   787  func now() (sec int64, nsec int32)
   788  
   789  // Now returns the current local time.
   790  func Now() Time {
   791  	sec, nsec := now()
   792  	return Time{sec + unixToInternal, nsec, Local}
   793  }
   794  
   795  // UTC returns t with the location set to UTC.
   796  func (t Time) UTC() Time {
   797  	t.setLoc(&utcLoc)
   798  	return t
   799  }
   800  
   801  // Local returns t with the location set to local time.
   802  func (t Time) Local() Time {
   803  	t.setLoc(Local)
   804  	return t
   805  }
   806  
   807  // In returns t with the location information set to loc.
   808  //
   809  // In panics if loc is nil.
   810  func (t Time) In(loc *Location) Time {
   811  	if loc == nil {
   812  		panic("time: missing Location in call to Time.In")
   813  	}
   814  	t.setLoc(loc)
   815  	return t
   816  }
   817  
   818  // Location returns the time zone information associated with t.
   819  func (t Time) Location() *Location {
   820  	l := t.loc
   821  	if l == nil {
   822  		l = UTC
   823  	}
   824  	return l
   825  }
   826  
   827  // Zone computes the time zone in effect at time t, returning the abbreviated
   828  // name of the zone (such as "CET") and its offset in seconds east of UTC.
   829  func (t Time) Zone() (name string, offset int) {
   830  	name, offset, _, _, _ = t.loc.lookup(t.sec + internalToUnix)
   831  	return
   832  }
   833  
   834  // Unix returns t as a Unix time, the number of seconds elapsed
   835  // since January 1, 1970 UTC.
   836  func (t Time) Unix() int64 {
   837  	return t.sec + internalToUnix
   838  }
   839  
   840  // UnixNano returns t as a Unix time, the number of nanoseconds elapsed
   841  // since January 1, 1970 UTC. The result is undefined if the Unix time
   842  // in nanoseconds cannot be represented by an int64 (a date before the year
   843  // 1678 or after 2262). Note that this means the result of calling UnixNano
   844  // on the zero Time is undefined.
   845  func (t Time) UnixNano() int64 {
   846  	return (t.sec+internalToUnix)*1e9 + int64(t.nsec)
   847  }
   848  
   849  const timeBinaryVersion byte = 1
   850  
   851  // MarshalBinary implements the encoding.BinaryMarshaler interface.
   852  func (t Time) MarshalBinary() ([]byte, error) {
   853  	var offsetMin int16 // minutes east of UTC. -1 is UTC.
   854  
   855  	if t.Location() == UTC {
   856  		offsetMin = -1
   857  	} else {
   858  		_, offset := t.Zone()
   859  		if offset%60 != 0 {
   860  			return nil, errors.New("Time.MarshalBinary: zone offset has fractional minute")
   861  		}
   862  		offset /= 60
   863  		if offset < -32768 || offset == -1 || offset > 32767 {
   864  			return nil, errors.New("Time.MarshalBinary: unexpected zone offset")
   865  		}
   866  		offsetMin = int16(offset)
   867  	}
   868  
   869  	enc := []byte{
   870  		timeBinaryVersion, // byte 0 : version
   871  		byte(t.sec >> 56), // bytes 1-8: seconds
   872  		byte(t.sec >> 48),
   873  		byte(t.sec >> 40),
   874  		byte(t.sec >> 32),
   875  		byte(t.sec >> 24),
   876  		byte(t.sec >> 16),
   877  		byte(t.sec >> 8),
   878  		byte(t.sec),
   879  		byte(t.nsec >> 24), // bytes 9-12: nanoseconds
   880  		byte(t.nsec >> 16),
   881  		byte(t.nsec >> 8),
   882  		byte(t.nsec),
   883  		byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
   884  		byte(offsetMin),
   885  	}
   886  
   887  	return enc, nil
   888  }
   889  
   890  // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
   891  func (t *Time) UnmarshalBinary(data []byte) error {
   892  	buf := data
   893  	if len(buf) == 0 {
   894  		return errors.New("Time.UnmarshalBinary: no data")
   895  	}
   896  
   897  	if buf[0] != timeBinaryVersion {
   898  		return errors.New("Time.UnmarshalBinary: unsupported version")
   899  	}
   900  
   901  	if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 {
   902  		return errors.New("Time.UnmarshalBinary: invalid length")
   903  	}
   904  
   905  	buf = buf[1:]
   906  	t.sec = int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
   907  		int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
   908  
   909  	buf = buf[8:]
   910  	t.nsec = int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24
   911  
   912  	buf = buf[4:]
   913  	offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
   914  
   915  	if offset == -1*60 {
   916  		t.setLoc(&utcLoc)
   917  	} else if _, localoff, _, _, _ := Local.lookup(t.sec + internalToUnix); offset == localoff {
   918  		t.setLoc(Local)
   919  	} else {
   920  		t.setLoc(FixedZone("", offset))
   921  	}
   922  
   923  	return nil
   924  }
   925  
   926  // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
   927  // The same semantics will be provided by the generic MarshalBinary, MarshalText,
   928  // UnmarshalBinary, UnmarshalText.
   929  
   930  // GobEncode implements the gob.GobEncoder interface.
   931  func (t Time) GobEncode() ([]byte, error) {
   932  	return t.MarshalBinary()
   933  }
   934  
   935  // GobDecode implements the gob.GobDecoder interface.
   936  func (t *Time) GobDecode(data []byte) error {
   937  	return t.UnmarshalBinary(data)
   938  }
   939  
   940  // MarshalJSON implements the json.Marshaler interface.
   941  // The time is a quoted string in RFC 3339 format, with sub-second precision added if present.
   942  func (t Time) MarshalJSON() ([]byte, error) {
   943  	if y := t.Year(); y < 0 || y >= 10000 {
   944  		// RFC 3339 is clear that years are 4 digits exactly.
   945  		// See golang.org/issue/4556#c15 for more discussion.
   946  		return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]")
   947  	}
   948  
   949  	b := make([]byte, 0, len(RFC3339Nano)+2)
   950  	b = append(b, '"')
   951  	b = t.AppendFormat(b, RFC3339Nano)
   952  	b = append(b, '"')
   953  	return b, nil
   954  }
   955  
   956  // UnmarshalJSON implements the json.Unmarshaler interface.
   957  // The time is expected to be a quoted string in RFC 3339 format.
   958  func (t *Time) UnmarshalJSON(data []byte) error {
   959  	// Ignore null, like in the main JSON package.
   960  	if string(data) == "null" {
   961  		return nil
   962  	}
   963  	// Fractional seconds are handled implicitly by Parse.
   964  	var err error
   965  	*t, err = Parse(`"`+RFC3339+`"`, string(data))
   966  	return err
   967  }
   968  
   969  // MarshalText implements the encoding.TextMarshaler interface.
   970  // The time is formatted in RFC 3339 format, with sub-second precision added if present.
   971  func (t Time) MarshalText() ([]byte, error) {
   972  	if y := t.Year(); y < 0 || y >= 10000 {
   973  		return nil, errors.New("Time.MarshalText: year outside of range [0,9999]")
   974  	}
   975  
   976  	b := make([]byte, 0, len(RFC3339Nano))
   977  	return t.AppendFormat(b, RFC3339Nano), nil
   978  }
   979  
   980  // UnmarshalText implements the encoding.TextUnmarshaler interface.
   981  // The time is expected to be in RFC 3339 format.
   982  func (t *Time) UnmarshalText(data []byte) error {
   983  	// Fractional seconds are handled implicitly by Parse.
   984  	var err error
   985  	*t, err = Parse(RFC3339, string(data))
   986  	return err
   987  }
   988  
   989  // Unix returns the local Time corresponding to the given Unix time,
   990  // sec seconds and nsec nanoseconds since January 1, 1970 UTC.
   991  // It is valid to pass nsec outside the range [0, 999999999].
   992  // Not all sec values have a corresponding time value. One such
   993  // value is 1<<63-1 (the largest int64 value).
   994  func Unix(sec int64, nsec int64) Time {
   995  	if nsec < 0 || nsec >= 1e9 {
   996  		n := nsec / 1e9
   997  		sec += n
   998  		nsec -= n * 1e9
   999  		if nsec < 0 {
  1000  			nsec += 1e9
  1001  			sec--
  1002  		}
  1003  	}
  1004  	return Time{sec + unixToInternal, int32(nsec), Local}
  1005  }
  1006  
  1007  func isLeap(year int) bool {
  1008  	return year%4 == 0 && (year%100 != 0 || year%400 == 0)
  1009  }
  1010  
  1011  // norm returns nhi, nlo such that
  1012  //	hi * base + lo == nhi * base + nlo
  1013  //	0 <= nlo < base
  1014  func norm(hi, lo, base int) (nhi, nlo int) {
  1015  	if lo < 0 {
  1016  		n := (-lo-1)/base + 1
  1017  		hi -= n
  1018  		lo += n * base
  1019  	}
  1020  	if lo >= base {
  1021  		n := lo / base
  1022  		hi += n
  1023  		lo -= n * base
  1024  	}
  1025  	return hi, lo
  1026  }
  1027  
  1028  // Date returns the Time corresponding to
  1029  //	yyyy-mm-dd hh:mm:ss + nsec nanoseconds
  1030  // in the appropriate zone for that time in the given location.
  1031  //
  1032  // The month, day, hour, min, sec, and nsec values may be outside
  1033  // their usual ranges and will be normalized during the conversion.
  1034  // For example, October 32 converts to November 1.
  1035  //
  1036  // A daylight savings time transition skips or repeats times.
  1037  // For example, in the United States, March 13, 2011 2:15am never occurred,
  1038  // while November 6, 2011 1:15am occurred twice. In such cases, the
  1039  // choice of time zone, and therefore the time, is not well-defined.
  1040  // Date returns a time that is correct in one of the two zones involved
  1041  // in the transition, but it does not guarantee which.
  1042  //
  1043  // Date panics if loc is nil.
  1044  func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
  1045  	if loc == nil {
  1046  		panic("time: missing Location in call to Date")
  1047  	}
  1048  
  1049  	// Normalize month, overflowing into year.
  1050  	m := int(month) - 1
  1051  	year, m = norm(year, m, 12)
  1052  	month = Month(m) + 1
  1053  
  1054  	// Normalize nsec, sec, min, hour, overflowing into day.
  1055  	sec, nsec = norm(sec, nsec, 1e9)
  1056  	min, sec = norm(min, sec, 60)
  1057  	hour, min = norm(hour, min, 60)
  1058  	day, hour = norm(day, hour, 24)
  1059  
  1060  	y := uint64(int64(year) - absoluteZeroYear)
  1061  
  1062  	// Compute days since the absolute epoch.
  1063  
  1064  	// Add in days from 400-year cycles.
  1065  	n := y / 400
  1066  	y -= 400 * n
  1067  	d := daysPer400Years * n
  1068  
  1069  	// Add in 100-year cycles.
  1070  	n = y / 100
  1071  	y -= 100 * n
  1072  	d += daysPer100Years * n
  1073  
  1074  	// Add in 4-year cycles.
  1075  	n = y / 4
  1076  	y -= 4 * n
  1077  	d += daysPer4Years * n
  1078  
  1079  	// Add in non-leap years.
  1080  	n = y
  1081  	d += 365 * n
  1082  
  1083  	// Add in days before this month.
  1084  	d += uint64(daysBefore[month-1])
  1085  	if isLeap(year) && month >= March {
  1086  		d++ // February 29
  1087  	}
  1088  
  1089  	// Add in days before today.
  1090  	d += uint64(day - 1)
  1091  
  1092  	// Add in time elapsed today.
  1093  	abs := d * secondsPerDay
  1094  	abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
  1095  
  1096  	unix := int64(abs) + (absoluteToInternal + internalToUnix)
  1097  
  1098  	// Look for zone offset for t, so we can adjust to UTC.
  1099  	// The lookup function expects UTC, so we pass t in the
  1100  	// hope that it will not be too close to a zone transition,
  1101  	// and then adjust if it is.
  1102  	_, offset, _, start, end := loc.lookup(unix)
  1103  	if offset != 0 {
  1104  		switch utc := unix - int64(offset); {
  1105  		case utc < start:
  1106  			_, offset, _, _, _ = loc.lookup(start - 1)
  1107  		case utc >= end:
  1108  			_, offset, _, _, _ = loc.lookup(end)
  1109  		}
  1110  		unix -= int64(offset)
  1111  	}
  1112  
  1113  	t := Time{unix + unixToInternal, int32(nsec), nil}
  1114  	t.setLoc(loc)
  1115  	return t
  1116  }
  1117  
  1118  // Truncate returns the result of rounding t down to a multiple of d (since the zero time).
  1119  // If d <= 0, Truncate returns t unchanged.
  1120  //
  1121  // Truncate operates on the time as an absolute duration since the
  1122  // zero time; it does not operate on the presentation form of the
  1123  // time. Thus, Truncate(Hour) may return a time with a non-zero
  1124  // minute, depending on the time's Location.
  1125  func (t Time) Truncate(d Duration) Time {
  1126  	if d <= 0 {
  1127  		return t
  1128  	}
  1129  	_, r := div(t, d)
  1130  	return t.Add(-r)
  1131  }
  1132  
  1133  // Round returns the result of rounding t to the nearest multiple of d (since the zero time).
  1134  // The rounding behavior for halfway values is to round up.
  1135  // If d <= 0, Round returns t unchanged.
  1136  //
  1137  // Round operates on the time as an absolute duration since the
  1138  // zero time; it does not operate on the presentation form of the
  1139  // time. Thus, Round(Hour) may return a time with a non-zero
  1140  // minute, depending on the time's Location.
  1141  func (t Time) Round(d Duration) Time {
  1142  	if d <= 0 {
  1143  		return t
  1144  	}
  1145  	_, r := div(t, d)
  1146  	if r+r < d {
  1147  		return t.Add(-r)
  1148  	}
  1149  	return t.Add(d - r)
  1150  }
  1151  
  1152  // div divides t by d and returns the quotient parity and remainder.
  1153  // We don't use the quotient parity anymore (round half up instead of round to even)
  1154  // but it's still here in case we change our minds.
  1155  func div(t Time, d Duration) (qmod2 int, r Duration) {
  1156  	neg := false
  1157  	nsec := t.nsec
  1158  	if t.sec < 0 {
  1159  		// Operate on absolute value.
  1160  		neg = true
  1161  		t.sec = -t.sec
  1162  		nsec = -nsec
  1163  		if nsec < 0 {
  1164  			nsec += 1e9
  1165  			t.sec-- // t.sec >= 1 before the -- so safe
  1166  		}
  1167  	}
  1168  
  1169  	switch {
  1170  	// Special case: 2d divides 1 second.
  1171  	case d < Second && Second%(d+d) == 0:
  1172  		qmod2 = int(nsec/int32(d)) & 1
  1173  		r = Duration(nsec % int32(d))
  1174  
  1175  	// Special case: d is a multiple of 1 second.
  1176  	case d%Second == 0:
  1177  		d1 := int64(d / Second)
  1178  		qmod2 = int(t.sec/d1) & 1
  1179  		r = Duration(t.sec%d1)*Second + Duration(nsec)
  1180  
  1181  	// General case.
  1182  	// This could be faster if more cleverness were applied,
  1183  	// but it's really only here to avoid special case restrictions in the API.
  1184  	// No one will care about these cases.
  1185  	default:
  1186  		// Compute nanoseconds as 128-bit number.
  1187  		sec := uint64(t.sec)
  1188  		tmp := (sec >> 32) * 1e9
  1189  		u1 := tmp >> 32
  1190  		u0 := tmp << 32
  1191  		tmp = (sec & 0xFFFFFFFF) * 1e9
  1192  		u0x, u0 := u0, u0+tmp
  1193  		if u0 < u0x {
  1194  			u1++
  1195  		}
  1196  		u0x, u0 = u0, u0+uint64(nsec)
  1197  		if u0 < u0x {
  1198  			u1++
  1199  		}
  1200  
  1201  		// Compute remainder by subtracting r<<k for decreasing k.
  1202  		// Quotient parity is whether we subtract on last round.
  1203  		d1 := uint64(d)
  1204  		for d1>>63 != 1 {
  1205  			d1 <<= 1
  1206  		}
  1207  		d0 := uint64(0)
  1208  		for {
  1209  			qmod2 = 0
  1210  			if u1 > d1 || u1 == d1 && u0 >= d0 {
  1211  				// subtract
  1212  				qmod2 = 1
  1213  				u0x, u0 = u0, u0-d0
  1214  				if u0 > u0x {
  1215  					u1--
  1216  				}
  1217  				u1 -= d1
  1218  			}
  1219  			if d1 == 0 && d0 == uint64(d) {
  1220  				break
  1221  			}
  1222  			d0 >>= 1
  1223  			d0 |= (d1 & 1) << 63
  1224  			d1 >>= 1
  1225  		}
  1226  		r = Duration(u0)
  1227  	}
  1228  
  1229  	if neg && r != 0 {
  1230  		// If input was negative and not an exact multiple of d, we computed q, r such that
  1231  		//	q*d + r = -t
  1232  		// But the right answers are given by -(q-1), d-r:
  1233  		//	q*d + r = -t
  1234  		//	-q*d - r = t
  1235  		//	-(q-1)*d + (d - r) = t
  1236  		qmod2 ^= 1
  1237  		r = d - r
  1238  	}
  1239  	return
  1240  }