github.com/datachainlab/burrow@v0.25.0/crypto/sha3/sha3.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package sha3
     6  
     7  // Package sha3 implements the SHA3 hash algorithm (formerly called Keccak) chosen by NIST in 2012.
     8  // This file provides a SHA3 implementation which implements the standard hash.Hash interface.
     9  // Writing input data, including padding, and reading output data are computed in this file.
    10  // Note that the current implementation can compute the hash of an integral number of bytes only.
    11  // This is a consequence of the hash interface in which a buffer of bytes is passed in.
    12  // The internals of the Keccak-f function are computed in keccakf.go.
    13  // For the detailed specification, refer to the Keccak web site (http://keccak.noekeon.org/).
    14  
    15  import (
    16  	"encoding/binary"
    17  	"hash"
    18  )
    19  
    20  // laneSize is the size in bytes of each "lane" of the internal state of SHA3 (5 * 5 * 8).
    21  // Note that changing this size would requires using a type other than uint64 to store each lane.
    22  const laneSize = 8
    23  
    24  // sliceSize represents the dimensions of the internal state, a square matrix of
    25  // sliceSize ** 2 lanes. This is the size of both the "rows" and "columns" dimensions in the
    26  // terminology of the SHA3 specification.
    27  const sliceSize = 5
    28  
    29  // numLanes represents the total number of lanes in the state.
    30  const numLanes = sliceSize * sliceSize
    31  
    32  // stateSize is the size in bytes of the internal state of SHA3 (5 * 5 * WSize).
    33  const stateSize = laneSize * numLanes
    34  
    35  // digest represents the partial evaluation of a checksum.
    36  // Note that capacity, and not outputSize, is the critical security parameter, as SHA3 can output
    37  // an arbitrary number of bytes for any given capacity. The Keccak proposal recommends that
    38  // capacity = 2*outputSize to ensure that finding a collision of size outputSize requires
    39  // O(2^{outputSize/2}) computations (the birthday lower bound). Future standards may modify the
    40  // capacity/outputSize ratio to allow for more output with lower cryptographic security.
    41  type digest struct {
    42  	a          [numLanes]uint64  // main state of the hash
    43  	b          [numLanes]uint64  // intermediate states
    44  	c          [sliceSize]uint64 // intermediate states
    45  	d          [sliceSize]uint64 // intermediate states
    46  	outputSize int               // desired output size in bytes
    47  	capacity   int               // number of bytes to leave untouched during squeeze/absorb
    48  	absorbed   int               // number of bytes absorbed thus far
    49  }
    50  
    51  // minInt returns the lesser of two integer arguments, to simplify the absorption routine.
    52  func minInt(v1, v2 int) int {
    53  	if v1 <= v2 {
    54  		return v1
    55  	}
    56  	return v2
    57  }
    58  
    59  // rate returns the number of bytes of the internal state which can be absorbed or squeezed
    60  // in between calls to the permutation function.
    61  func (d *digest) rate() int {
    62  	return stateSize - d.capacity
    63  }
    64  
    65  // Reset clears the internal state by zeroing bytes in the state buffer.
    66  // This can be skipped for a newly-created hash state; the default zero-allocated state is correct.
    67  func (d *digest) Reset() {
    68  	d.absorbed = 0
    69  	for i := range d.a {
    70  		d.a[i] = 0
    71  	}
    72  }
    73  
    74  // BlockSize, required by the hash.Hash interface, does not have a standard intepretation
    75  // for a sponge-based construction like SHA3. We return the data rate: the number of bytes which
    76  // can be absorbed per invocation of the permutation function. For Merkle-Damgård based hashes
    77  // (ie SHA1, SHA2, MD5) the output size of the internal compression function is returned.
    78  // We consider this to be roughly equivalent because it represents the number of bytes of output
    79  // produced per cryptographic operation.
    80  func (d *digest) BlockSize() int { return d.rate() }
    81  
    82  // Size returns the output size of the hash function in bytes.
    83  func (d *digest) Size() int {
    84  	return d.outputSize
    85  }
    86  
    87  // unalignedAbsorb is a helper function for Write, which absorbs data that isn't aligned with an
    88  // 8-byte lane. This requires shifting the individual bytes into position in a uint64.
    89  func (d *digest) unalignedAbsorb(p []byte) {
    90  	var t uint64
    91  	for i := len(p) - 1; i >= 0; i-- {
    92  		t <<= 8
    93  		t |= uint64(p[i])
    94  	}
    95  	offset := (d.absorbed) % d.rate()
    96  	t <<= 8 * uint(offset%laneSize)
    97  	d.a[offset/laneSize] ^= t
    98  	d.absorbed += len(p)
    99  }
   100  
   101  // Write "absorbs" bytes into the state of the SHA3 hash, updating as needed when the sponge
   102  // "fills up" with rate() bytes. Since lanes are stored internally as type uint64, this requires
   103  // converting the incoming bytes into uint64s using a little endian interpretation. This
   104  // implementation is optimized for large, aligned writes of multiples of 8 bytes (laneSize).
   105  // Non-aligned or uneven numbers of bytes require shifting and are slower.
   106  func (d *digest) Write(p []byte) (int, error) {
   107  	// An initial offset is needed if the we aren't absorbing to the first lane initially.
   108  	offset := d.absorbed % d.rate()
   109  	toWrite := len(p)
   110  
   111  	// The first lane may need to absorb unaligned and/or incomplete data.
   112  	if (offset%laneSize != 0 || len(p) < 8) && len(p) > 0 {
   113  		toAbsorb := minInt(laneSize-(offset%laneSize), len(p))
   114  		d.unalignedAbsorb(p[:toAbsorb])
   115  		p = p[toAbsorb:]
   116  		offset = (d.absorbed) % d.rate()
   117  
   118  		// For every rate() bytes absorbed, the state must be permuted via the F Function.
   119  		if (d.absorbed)%d.rate() == 0 {
   120  			d.keccakF()
   121  		}
   122  	}
   123  
   124  	// This loop should absorb the bulk of the data into full, aligned lanes.
   125  	// It will call the update function as necessary.
   126  	for len(p) > 7 {
   127  		firstLane := offset / laneSize
   128  		lastLane := minInt(d.rate()/laneSize, firstLane+len(p)/laneSize)
   129  
   130  		// This inner loop absorbs input bytes into the state in groups of 8, converted to uint64s.
   131  		for lane := firstLane; lane < lastLane; lane++ {
   132  			d.a[lane] ^= binary.LittleEndian.Uint64(p[:laneSize])
   133  			p = p[laneSize:]
   134  		}
   135  		d.absorbed += (lastLane - firstLane) * laneSize
   136  		// For every rate() bytes absorbed, the state must be permuted via the F Function.
   137  		if (d.absorbed)%d.rate() == 0 {
   138  			d.keccakF()
   139  		}
   140  
   141  		offset = 0
   142  	}
   143  
   144  	// If there are insufficient bytes to fill the final lane, an unaligned absorption.
   145  	// This should always start at a correct lane boundary though, or else it would be caught
   146  	// by the uneven opening lane case above.
   147  	if len(p) > 0 {
   148  		d.unalignedAbsorb(p)
   149  	}
   150  
   151  	return toWrite, nil
   152  }
   153  
   154  // pad computes the SHA3 padding scheme based on the number of bytes absorbed.
   155  // The padding is a 1 bit, followed by an arbitrary number of 0s and then a final 1 bit, such that
   156  // the input bits plus padding bits are a multiple of rate(). Adding the padding simply requires
   157  // xoring an opening and closing bit into the appropriate lanes.
   158  func (d *digest) pad() {
   159  	offset := d.absorbed % d.rate()
   160  	// The opening pad bit must be shifted into position based on the number of bytes absorbed
   161  	padOpenLane := offset / laneSize
   162  	d.a[padOpenLane] ^= 0x0000000000000001 << uint(8*(offset%laneSize))
   163  	// The closing padding bit is always in the last position
   164  	padCloseLane := (d.rate() / laneSize) - 1
   165  	d.a[padCloseLane] ^= 0x8000000000000000
   166  }
   167  
   168  // finalize prepares the hash to output data by padding and one final permutation of the state.
   169  func (d *digest) finalize() {
   170  	d.pad()
   171  	d.keccakF()
   172  }
   173  
   174  // squeeze outputs an arbitrary number of bytes from the hash state.
   175  // Squeezing can require multiple calls to the F function (one per rate() bytes squeezed),
   176  // although this is not the case for standard SHA3 parameters. This implementation only supports
   177  // squeezing a single time, subsequent squeezes may lose alignment. Future implementations
   178  // may wish to support multiple squeeze calls, for example to support use as a PRNG.
   179  func (d *digest) squeeze(in []byte, toSqueeze int) []byte {
   180  	// Because we read in blocks of laneSize, we need enough room to read
   181  	// an integral number of lanes
   182  	needed := toSqueeze + (laneSize-toSqueeze%laneSize)%laneSize
   183  	if cap(in)-len(in) < needed {
   184  		newIn := make([]byte, len(in), len(in)+needed)
   185  		copy(newIn, in)
   186  		in = newIn
   187  	}
   188  	out := in[len(in) : len(in)+needed]
   189  
   190  	for len(out) > 0 {
   191  		for i := 0; i < d.rate() && len(out) > 0; i += laneSize {
   192  			binary.LittleEndian.PutUint64(out[:], d.a[i/laneSize])
   193  			out = out[laneSize:]
   194  		}
   195  		if len(out) > 0 {
   196  			d.keccakF()
   197  		}
   198  	}
   199  	return in[:len(in)+toSqueeze] // Re-slice in case we wrote extra data.
   200  }
   201  
   202  // Sum applies padding to the hash state and then squeezes out the desired nubmer of output bytes.
   203  func (d *digest) Sum(in []byte) []byte {
   204  	// Make a copy of the original hash so that caller can keep writing and summing.
   205  	dup := *d
   206  	dup.finalize()
   207  	return dup.squeeze(in, dup.outputSize)
   208  }
   209  
   210  // The NewKeccakX constructors enable initializing a hash in any of the four recommend sizes
   211  // from the Keccak specification, all of which set capacity=2*outputSize. Note that the final
   212  // NIST standard for SHA3 may specify different input/output lengths.
   213  // The output size is indicated in bits but converted into bytes internally.
   214  func NewKeccak224() hash.Hash { return &digest{outputSize: 224 / 8, capacity: 2 * 224 / 8} }
   215  func NewKeccak256() hash.Hash { return &digest{outputSize: 256 / 8, capacity: 2 * 256 / 8} }
   216  func NewKeccak384() hash.Hash { return &digest{outputSize: 384 / 8, capacity: 2 * 384 / 8} }
   217  func NewKeccak512() hash.Hash { return &digest{outputSize: 512 / 8, capacity: 2 * 512 / 8} }
   218  
   219  func Sha3(data ...[]byte) []byte {
   220  	d := NewKeccak256()
   221  	for _, b := range data {
   222  		d.Write(b)
   223  	}
   224  	return d.Sum(nil)
   225  }