github.com/digdeepmining/go-atheios@v1.5.13-0.20180902133602-d5687a2e6f43/crypto/crypto.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package crypto
    18  
    19  import (
    20  	"crypto/ecdsa"
    21  	"crypto/elliptic"
    22  	"crypto/rand"
    23  	"crypto/sha256"
    24  	"fmt"
    25  	"io"
    26  	"io/ioutil"
    27  	"math/big"
    28  	"os"
    29  
    30  	"encoding/hex"
    31  	"errors"
    32  
    33  	"github.com/atheioschain/go-atheios/common"
    34  	"github.com/atheioschain/go-atheios/crypto/ecies"
    35  	"github.com/atheioschain/go-atheios/crypto/secp256k1"
    36  	"github.com/atheioschain/go-atheios/crypto/sha3"
    37  	"github.com/atheioschain/go-atheios/rlp"
    38  	"golang.org/x/crypto/ripemd160"
    39  )
    40  
    41  func Keccak256(data ...[]byte) []byte {
    42  	d := sha3.NewKeccak256()
    43  	for _, b := range data {
    44  		d.Write(b)
    45  	}
    46  	return d.Sum(nil)
    47  }
    48  
    49  func Keccak256Hash(data ...[]byte) (h common.Hash) {
    50  	d := sha3.NewKeccak256()
    51  	for _, b := range data {
    52  		d.Write(b)
    53  	}
    54  	d.Sum(h[:0])
    55  	return h
    56  }
    57  
    58  // Deprecated: For backward compatibility as other packages depend on these
    59  func Sha3(data ...[]byte) []byte          { return Keccak256(data...) }
    60  func Sha3Hash(data ...[]byte) common.Hash { return Keccak256Hash(data...) }
    61  
    62  // Creates an ethereum address given the bytes and the nonce
    63  func CreateAddress(b common.Address, nonce uint64) common.Address {
    64  	data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
    65  	return common.BytesToAddress(Keccak256(data)[12:])
    66  }
    67  
    68  func Sha256(data []byte) []byte {
    69  	hash := sha256.Sum256(data)
    70  
    71  	return hash[:]
    72  }
    73  
    74  func Ripemd160(data []byte) []byte {
    75  	ripemd := ripemd160.New()
    76  	ripemd.Write(data)
    77  
    78  	return ripemd.Sum(nil)
    79  }
    80  
    81  // Ecrecover returns the public key for the private key that was used to
    82  // calculate the signature.
    83  //
    84  // Note: secp256k1 expects the recover id to be either 0, 1. Ethereum
    85  // signatures have a recover id with an offset of 27. Callers must take
    86  // this into account and if "recovering" from an Ethereum signature adjust.
    87  func Ecrecover(hash, sig []byte) ([]byte, error) {
    88  	return secp256k1.RecoverPubkey(hash, sig)
    89  }
    90  
    91  // New methods using proper ecdsa keys from the stdlib
    92  func ToECDSA(prv []byte) *ecdsa.PrivateKey {
    93  	if len(prv) == 0 {
    94  		return nil
    95  	}
    96  
    97  	priv := new(ecdsa.PrivateKey)
    98  	priv.PublicKey.Curve = secp256k1.S256()
    99  	priv.D = common.BigD(prv)
   100  	priv.PublicKey.X, priv.PublicKey.Y = secp256k1.S256().ScalarBaseMult(prv)
   101  	return priv
   102  }
   103  
   104  func FromECDSA(prv *ecdsa.PrivateKey) []byte {
   105  	if prv == nil {
   106  		return nil
   107  	}
   108  	return prv.D.Bytes()
   109  }
   110  
   111  func ToECDSAPub(pub []byte) *ecdsa.PublicKey {
   112  	if len(pub) == 0 {
   113  		return nil
   114  	}
   115  	x, y := elliptic.Unmarshal(secp256k1.S256(), pub)
   116  	return &ecdsa.PublicKey{Curve: secp256k1.S256(), X: x, Y: y}
   117  }
   118  
   119  func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
   120  	if pub == nil || pub.X == nil || pub.Y == nil {
   121  		return nil
   122  	}
   123  	return elliptic.Marshal(secp256k1.S256(), pub.X, pub.Y)
   124  }
   125  
   126  // HexToECDSA parses a secp256k1 private key.
   127  func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
   128  	b, err := hex.DecodeString(hexkey)
   129  	if err != nil {
   130  		return nil, errors.New("invalid hex string")
   131  	}
   132  	if len(b) != 32 {
   133  		return nil, errors.New("invalid length, need 256 bits")
   134  	}
   135  	return ToECDSA(b), nil
   136  }
   137  
   138  // LoadECDSA loads a secp256k1 private key from the given file.
   139  // The key data is expected to be hex-encoded.
   140  func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
   141  	buf := make([]byte, 64)
   142  	fd, err := os.Open(file)
   143  	if err != nil {
   144  		return nil, err
   145  	}
   146  	defer fd.Close()
   147  	if _, err := io.ReadFull(fd, buf); err != nil {
   148  		return nil, err
   149  	}
   150  
   151  	key, err := hex.DecodeString(string(buf))
   152  	if err != nil {
   153  		return nil, err
   154  	}
   155  
   156  	return ToECDSA(key), nil
   157  }
   158  
   159  // SaveECDSA saves a secp256k1 private key to the given file with
   160  // restrictive permissions. The key data is saved hex-encoded.
   161  func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
   162  	k := hex.EncodeToString(FromECDSA(key))
   163  	return ioutil.WriteFile(file, []byte(k), 0600)
   164  }
   165  
   166  func GenerateKey() (*ecdsa.PrivateKey, error) {
   167  	return ecdsa.GenerateKey(secp256k1.S256(), rand.Reader)
   168  }
   169  
   170  // ValidateSignatureValues verifies whether the signature values are valid with
   171  // the given chain rules. The v value is assumed to be either 0 or 1.
   172  func ValidateSignatureValues(v byte, r, s *big.Int, homestead bool) bool {
   173  	if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 {
   174  		return false
   175  	}
   176  	// reject upper range of s values (ECDSA malleability)
   177  	// see discussion in secp256k1/libsecp256k1/include/secp256k1.h
   178  	if homestead && s.Cmp(secp256k1.HalfN) > 0 {
   179  		return false
   180  	}
   181  	// Frontier: allow s to be in full N range
   182  	return r.Cmp(secp256k1.N) < 0 && s.Cmp(secp256k1.N) < 0 && (v == 0 || v == 1)
   183  }
   184  
   185  func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
   186  	s, err := Ecrecover(hash, sig)
   187  	if err != nil {
   188  		return nil, err
   189  	}
   190  
   191  	x, y := elliptic.Unmarshal(secp256k1.S256(), s)
   192  	return &ecdsa.PublicKey{Curve: secp256k1.S256(), X: x, Y: y}, nil
   193  }
   194  
   195  // Sign calculates an ECDSA signature.
   196  //
   197  // This function is susceptible to chosen plaintext attacks that can leak
   198  // information about the private key that is used for signing. Callers must
   199  // be aware that the given hash cannot be chosen by an adversery. Common
   200  // solution is to hash any input before calculating the signature.
   201  //
   202  // The produced signature is in the [R || S || V] format where V is 0 or 1.
   203  func Sign(data []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
   204  	if len(data) != 32 {
   205  		return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(data))
   206  	}
   207  
   208  	seckey := common.LeftPadBytes(prv.D.Bytes(), prv.Params().BitSize/8)
   209  	defer zeroBytes(seckey)
   210  	sig, err = secp256k1.Sign(data, seckey)
   211  	return
   212  }
   213  
   214  func Encrypt(pub *ecdsa.PublicKey, message []byte) ([]byte, error) {
   215  	return ecies.Encrypt(rand.Reader, ecies.ImportECDSAPublic(pub), message, nil, nil)
   216  }
   217  
   218  func Decrypt(prv *ecdsa.PrivateKey, ct []byte) ([]byte, error) {
   219  	key := ecies.ImportECDSA(prv)
   220  	return key.Decrypt(rand.Reader, ct, nil, nil)
   221  }
   222  
   223  func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
   224  	pubBytes := FromECDSAPub(&p)
   225  	return common.BytesToAddress(Keccak256(pubBytes[1:])[12:])
   226  }
   227  
   228  func zeroBytes(bytes []byte) {
   229  	for i := range bytes {
   230  		bytes[i] = 0
   231  	}
   232  }