github.com/digdeepmining/go-atheios@v1.5.13-0.20180902133602-d5687a2e6f43/crypto/ecies/ecies_test.go (about)

     1  // Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is>
     2  // Copyright (c) 2012 The Go Authors. All rights reserved.
     3  //
     4  // Redistribution and use in source and binary forms, with or without
     5  // modification, are permitted provided that the following conditions are
     6  // met:
     7  //
     8  //    * Redistributions of source code must retain the above copyright
     9  // notice, this list of conditions and the following disclaimer.
    10  //    * Redistributions in binary form must reproduce the above
    11  // copyright notice, this list of conditions and the following disclaimer
    12  // in the documentation and/or other materials provided with the
    13  // distribution.
    14  //    * Neither the name of Google Inc. nor the names of its
    15  // contributors may be used to endorse or promote products derived from
    16  // this software without specific prior written permission.
    17  //
    18  // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    19  // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    20  // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    21  // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    22  // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    23  // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    24  // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    25  // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    26  // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    27  // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    28  // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    29  
    30  package ecies
    31  
    32  import (
    33  	"bytes"
    34  	"crypto/ecdsa"
    35  	"crypto/elliptic"
    36  	"crypto/rand"
    37  	"crypto/sha256"
    38  	"encoding/hex"
    39  	"flag"
    40  	"fmt"
    41  	"io/ioutil"
    42  	"math/big"
    43  	"testing"
    44  
    45  	"github.com/atheioschain/go-atheios/crypto/secp256k1"
    46  )
    47  
    48  var dumpEnc bool
    49  
    50  func init() {
    51  	flDump := flag.Bool("dump", false, "write encrypted test message to file")
    52  	flag.Parse()
    53  	dumpEnc = *flDump
    54  }
    55  
    56  // Ensure the KDF generates appropriately sized keys.
    57  func TestKDF(t *testing.T) {
    58  	msg := []byte("Hello, world")
    59  	h := sha256.New()
    60  
    61  	k, err := concatKDF(h, msg, nil, 64)
    62  	if err != nil {
    63  		fmt.Println(err.Error())
    64  		t.FailNow()
    65  	}
    66  	if len(k) != 64 {
    67  		fmt.Printf("KDF: generated key is the wrong size (%d instead of 64\n",
    68  			len(k))
    69  		t.FailNow()
    70  	}
    71  }
    72  
    73  var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match")
    74  
    75  // cmpParams compares a set of ECIES parameters. We assume, as per the
    76  // docs, that AES is the only supported symmetric encryption algorithm.
    77  func cmpParams(p1, p2 *ECIESParams) bool {
    78  	if p1.hashAlgo != p2.hashAlgo {
    79  		return false
    80  	} else if p1.KeyLen != p2.KeyLen {
    81  		return false
    82  	} else if p1.BlockSize != p2.BlockSize {
    83  		return false
    84  	}
    85  	return true
    86  }
    87  
    88  // cmpPublic returns true if the two public keys represent the same pojnt.
    89  func cmpPublic(pub1, pub2 PublicKey) bool {
    90  	if pub1.X == nil || pub1.Y == nil {
    91  		fmt.Println(ErrInvalidPublicKey.Error())
    92  		return false
    93  	}
    94  	if pub2.X == nil || pub2.Y == nil {
    95  		fmt.Println(ErrInvalidPublicKey.Error())
    96  		return false
    97  	}
    98  	pub1Out := elliptic.Marshal(pub1.Curve, pub1.X, pub1.Y)
    99  	pub2Out := elliptic.Marshal(pub2.Curve, pub2.X, pub2.Y)
   100  
   101  	return bytes.Equal(pub1Out, pub2Out)
   102  }
   103  
   104  // cmpPrivate returns true if the two private keys are the same.
   105  func cmpPrivate(prv1, prv2 *PrivateKey) bool {
   106  	if prv1 == nil || prv1.D == nil {
   107  		return false
   108  	} else if prv2 == nil || prv2.D == nil {
   109  		return false
   110  	} else if prv1.D.Cmp(prv2.D) != 0 {
   111  		return false
   112  	} else {
   113  		return cmpPublic(prv1.PublicKey, prv2.PublicKey)
   114  	}
   115  }
   116  
   117  // Validate the ECDH component.
   118  func TestSharedKey(t *testing.T) {
   119  	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
   120  	if err != nil {
   121  		fmt.Println(err.Error())
   122  		t.FailNow()
   123  	}
   124  	skLen := MaxSharedKeyLength(&prv1.PublicKey) / 2
   125  
   126  	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
   127  	if err != nil {
   128  		fmt.Println(err.Error())
   129  		t.FailNow()
   130  	}
   131  
   132  	sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen)
   133  	if err != nil {
   134  		fmt.Println(err.Error())
   135  		t.FailNow()
   136  	}
   137  
   138  	sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen)
   139  	if err != nil {
   140  		fmt.Println(err.Error())
   141  		t.FailNow()
   142  	}
   143  
   144  	if !bytes.Equal(sk1, sk2) {
   145  		fmt.Println(ErrBadSharedKeys.Error())
   146  		t.FailNow()
   147  	}
   148  }
   149  
   150  func TestSharedKeyPadding(t *testing.T) {
   151  	// sanity checks
   152  	prv0 := hexKey("1adf5c18167d96a1f9a0b1ef63be8aa27eaf6032c233b2b38f7850cf5b859fd9")
   153  	prv1 := hexKey("97a076fc7fcd9208240668e31c9abee952cbb6e375d1b8febc7499d6e16f1a")
   154  	x0, _ := new(big.Int).SetString("1a8ed022ff7aec59dc1b440446bdda5ff6bcb3509a8b109077282b361efffbd8", 16)
   155  	x1, _ := new(big.Int).SetString("6ab3ac374251f638d0abb3ef596d1dc67955b507c104e5f2009724812dc027b8", 16)
   156  	y0, _ := new(big.Int).SetString("e040bd480b1deccc3bc40bd5b1fdcb7bfd352500b477cb9471366dbd4493f923", 16)
   157  	y1, _ := new(big.Int).SetString("8ad915f2b503a8be6facab6588731fefeb584fd2dfa9a77a5e0bba1ec439e4fa", 16)
   158  
   159  	if prv0.PublicKey.X.Cmp(x0) != 0 {
   160  		t.Errorf("mismatched prv0.X:\nhave: %x\nwant: %x\n", prv0.PublicKey.X.Bytes(), x0.Bytes())
   161  	}
   162  	if prv0.PublicKey.Y.Cmp(y0) != 0 {
   163  		t.Errorf("mismatched prv0.Y:\nhave: %x\nwant: %x\n", prv0.PublicKey.Y.Bytes(), y0.Bytes())
   164  	}
   165  	if prv1.PublicKey.X.Cmp(x1) != 0 {
   166  		t.Errorf("mismatched prv1.X:\nhave: %x\nwant: %x\n", prv1.PublicKey.X.Bytes(), x1.Bytes())
   167  	}
   168  	if prv1.PublicKey.Y.Cmp(y1) != 0 {
   169  		t.Errorf("mismatched prv1.Y:\nhave: %x\nwant: %x\n", prv1.PublicKey.Y.Bytes(), y1.Bytes())
   170  	}
   171  
   172  	// test shared secret generation
   173  	sk1, err := prv0.GenerateShared(&prv1.PublicKey, 16, 16)
   174  	if err != nil {
   175  		fmt.Println(err.Error())
   176  	}
   177  
   178  	sk2, err := prv1.GenerateShared(&prv0.PublicKey, 16, 16)
   179  	if err != nil {
   180  		t.Fatal(err.Error())
   181  	}
   182  
   183  	if !bytes.Equal(sk1, sk2) {
   184  		t.Fatal(ErrBadSharedKeys.Error())
   185  	}
   186  }
   187  
   188  // Verify that the key generation code fails when too much key data is
   189  // requested.
   190  func TestTooBigSharedKey(t *testing.T) {
   191  	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
   192  	if err != nil {
   193  		fmt.Println(err.Error())
   194  		t.FailNow()
   195  	}
   196  
   197  	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
   198  	if err != nil {
   199  		fmt.Println(err.Error())
   200  		t.FailNow()
   201  	}
   202  
   203  	_, err = prv1.GenerateShared(&prv2.PublicKey, 32, 32)
   204  	if err != ErrSharedKeyTooBig {
   205  		fmt.Println("ecdh: shared key should be too large for curve")
   206  		t.FailNow()
   207  	}
   208  
   209  	_, err = prv2.GenerateShared(&prv1.PublicKey, 32, 32)
   210  	if err != ErrSharedKeyTooBig {
   211  		fmt.Println("ecdh: shared key should be too large for curve")
   212  		t.FailNow()
   213  	}
   214  }
   215  
   216  // Ensure a public key can be successfully marshalled and unmarshalled, and
   217  // that the decoded key is the same as the original.
   218  func TestMarshalPublic(t *testing.T) {
   219  	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
   220  	if err != nil {
   221  		t.Fatalf("GenerateKey error: %s", err)
   222  	}
   223  
   224  	out, err := MarshalPublic(&prv.PublicKey)
   225  	if err != nil {
   226  		t.Fatalf("MarshalPublic error: %s", err)
   227  	}
   228  
   229  	pub, err := UnmarshalPublic(out)
   230  	if err != nil {
   231  		t.Fatalf("UnmarshalPublic error: %s", err)
   232  	}
   233  
   234  	if !cmpPublic(prv.PublicKey, *pub) {
   235  		t.Fatal("ecies: failed to unmarshal public key")
   236  	}
   237  }
   238  
   239  // Ensure that a private key can be encoded into DER format, and that
   240  // the resulting key is properly parsed back into a public key.
   241  func TestMarshalPrivate(t *testing.T) {
   242  	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
   243  	if err != nil {
   244  		fmt.Println(err.Error())
   245  		t.FailNow()
   246  	}
   247  
   248  	out, err := MarshalPrivate(prv)
   249  	if err != nil {
   250  		fmt.Println(err.Error())
   251  		t.FailNow()
   252  	}
   253  
   254  	if dumpEnc {
   255  		ioutil.WriteFile("test.out", out, 0644)
   256  	}
   257  
   258  	prv2, err := UnmarshalPrivate(out)
   259  	if err != nil {
   260  		fmt.Println(err.Error())
   261  		t.FailNow()
   262  	}
   263  
   264  	if !cmpPrivate(prv, prv2) {
   265  		fmt.Println("ecdh: private key import failed")
   266  		t.FailNow()
   267  	}
   268  }
   269  
   270  // Ensure that a private key can be successfully encoded to PEM format, and
   271  // the resulting key is properly parsed back in.
   272  func TestPrivatePEM(t *testing.T) {
   273  	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
   274  	if err != nil {
   275  		fmt.Println(err.Error())
   276  		t.FailNow()
   277  	}
   278  
   279  	out, err := ExportPrivatePEM(prv)
   280  	if err != nil {
   281  		fmt.Println(err.Error())
   282  		t.FailNow()
   283  	}
   284  
   285  	if dumpEnc {
   286  		ioutil.WriteFile("test.key", out, 0644)
   287  	}
   288  
   289  	prv2, err := ImportPrivatePEM(out)
   290  	if err != nil {
   291  		fmt.Println(err.Error())
   292  		t.FailNow()
   293  	} else if !cmpPrivate(prv, prv2) {
   294  		fmt.Println("ecdh: import from PEM failed")
   295  		t.FailNow()
   296  	}
   297  }
   298  
   299  // Ensure that a public key can be successfully encoded to PEM format, and
   300  // the resulting key is properly parsed back in.
   301  func TestPublicPEM(t *testing.T) {
   302  	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
   303  	if err != nil {
   304  		fmt.Println(err.Error())
   305  		t.FailNow()
   306  	}
   307  
   308  	out, err := ExportPublicPEM(&prv.PublicKey)
   309  	if err != nil {
   310  		fmt.Println(err.Error())
   311  		t.FailNow()
   312  	}
   313  
   314  	if dumpEnc {
   315  		ioutil.WriteFile("test.pem", out, 0644)
   316  	}
   317  
   318  	pub2, err := ImportPublicPEM(out)
   319  	if err != nil {
   320  		fmt.Println(err.Error())
   321  		t.FailNow()
   322  	} else if !cmpPublic(prv.PublicKey, *pub2) {
   323  		fmt.Println("ecdh: import from PEM failed")
   324  		t.FailNow()
   325  	}
   326  }
   327  
   328  // Benchmark the generation of P256 keys.
   329  func BenchmarkGenerateKeyP256(b *testing.B) {
   330  	for i := 0; i < b.N; i++ {
   331  		if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil {
   332  			fmt.Println(err.Error())
   333  			b.FailNow()
   334  		}
   335  	}
   336  }
   337  
   338  // Benchmark the generation of P256 shared keys.
   339  func BenchmarkGenSharedKeyP256(b *testing.B) {
   340  	prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil)
   341  	if err != nil {
   342  		fmt.Println(err.Error())
   343  		b.FailNow()
   344  	}
   345  	b.ResetTimer()
   346  	for i := 0; i < b.N; i++ {
   347  		_, err := prv.GenerateShared(&prv.PublicKey, 16, 16)
   348  		if err != nil {
   349  			fmt.Println(err.Error())
   350  			b.FailNow()
   351  		}
   352  	}
   353  }
   354  
   355  // Benchmark the generation of S256 shared keys.
   356  func BenchmarkGenSharedKeyS256(b *testing.B) {
   357  	prv, err := GenerateKey(rand.Reader, secp256k1.S256(), nil)
   358  	if err != nil {
   359  		fmt.Println(err.Error())
   360  		b.FailNow()
   361  	}
   362  	b.ResetTimer()
   363  	for i := 0; i < b.N; i++ {
   364  		_, err := prv.GenerateShared(&prv.PublicKey, 16, 16)
   365  		if err != nil {
   366  			fmt.Println(err.Error())
   367  			b.FailNow()
   368  		}
   369  	}
   370  }
   371  
   372  // Verify that an encrypted message can be successfully decrypted.
   373  func TestEncryptDecrypt(t *testing.T) {
   374  	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
   375  	if err != nil {
   376  		fmt.Println(err.Error())
   377  		t.FailNow()
   378  	}
   379  
   380  	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
   381  	if err != nil {
   382  		fmt.Println(err.Error())
   383  		t.FailNow()
   384  	}
   385  
   386  	message := []byte("Hello, world.")
   387  	ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
   388  	if err != nil {
   389  		fmt.Println(err.Error())
   390  		t.FailNow()
   391  	}
   392  
   393  	pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
   394  	if err != nil {
   395  		fmt.Println(err.Error())
   396  		t.FailNow()
   397  	}
   398  
   399  	if !bytes.Equal(pt, message) {
   400  		fmt.Println("ecies: plaintext doesn't match message")
   401  		t.FailNow()
   402  	}
   403  
   404  	_, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
   405  	if err == nil {
   406  		fmt.Println("ecies: encryption should not have succeeded")
   407  		t.FailNow()
   408  	}
   409  }
   410  
   411  func TestDecryptShared2(t *testing.T) {
   412  	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
   413  	if err != nil {
   414  		t.Fatal(err)
   415  	}
   416  	message := []byte("Hello, world.")
   417  	shared2 := []byte("shared data 2")
   418  	ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, shared2)
   419  	if err != nil {
   420  		t.Fatal(err)
   421  	}
   422  
   423  	// Check that decrypting with correct shared data works.
   424  	pt, err := prv.Decrypt(rand.Reader, ct, nil, shared2)
   425  	if err != nil {
   426  		t.Fatal(err)
   427  	}
   428  	if !bytes.Equal(pt, message) {
   429  		t.Fatal("ecies: plaintext doesn't match message")
   430  	}
   431  
   432  	// Decrypting without shared data or incorrect shared data fails.
   433  	if _, err = prv.Decrypt(rand.Reader, ct, nil, nil); err == nil {
   434  		t.Fatal("ecies: decrypting without shared data didn't fail")
   435  	}
   436  	if _, err = prv.Decrypt(rand.Reader, ct, nil, []byte("garbage")); err == nil {
   437  		t.Fatal("ecies: decrypting with incorrect shared data didn't fail")
   438  	}
   439  }
   440  
   441  // TestMarshalEncryption validates the encode/decode produces a valid
   442  // ECIES encryption key.
   443  func TestMarshalEncryption(t *testing.T) {
   444  	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
   445  	if err != nil {
   446  		fmt.Println(err.Error())
   447  		t.FailNow()
   448  	}
   449  
   450  	out, err := MarshalPrivate(prv1)
   451  	if err != nil {
   452  		fmt.Println(err.Error())
   453  		t.FailNow()
   454  	}
   455  
   456  	prv2, err := UnmarshalPrivate(out)
   457  	if err != nil {
   458  		fmt.Println(err.Error())
   459  		t.FailNow()
   460  	}
   461  
   462  	message := []byte("Hello, world.")
   463  	ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
   464  	if err != nil {
   465  		fmt.Println(err.Error())
   466  		t.FailNow()
   467  	}
   468  
   469  	pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
   470  	if err != nil {
   471  		fmt.Println(err.Error())
   472  		t.FailNow()
   473  	}
   474  
   475  	if !bytes.Equal(pt, message) {
   476  		fmt.Println("ecies: plaintext doesn't match message")
   477  		t.FailNow()
   478  	}
   479  
   480  	_, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
   481  	if err != nil {
   482  		fmt.Println(err.Error())
   483  		t.FailNow()
   484  	}
   485  
   486  }
   487  
   488  type testCase struct {
   489  	Curve    elliptic.Curve
   490  	Name     string
   491  	Expected bool
   492  }
   493  
   494  var testCases = []testCase{
   495  	{
   496  		Curve:    elliptic.P256(),
   497  		Name:     "P256",
   498  		Expected: true,
   499  	},
   500  	{
   501  		Curve:    elliptic.P384(),
   502  		Name:     "P384",
   503  		Expected: true,
   504  	},
   505  	{
   506  		Curve:    elliptic.P521(),
   507  		Name:     "P521",
   508  		Expected: true,
   509  	},
   510  }
   511  
   512  // Test parameter selection for each curve, and that P224 fails automatic
   513  // parameter selection (see README for a discussion of P224). Ensures that
   514  // selecting a set of parameters automatically for the given curve works.
   515  func TestParamSelection(t *testing.T) {
   516  	for _, c := range testCases {
   517  		testParamSelection(t, c)
   518  	}
   519  }
   520  
   521  func testParamSelection(t *testing.T, c testCase) {
   522  	params := ParamsFromCurve(c.Curve)
   523  	if params == nil && c.Expected {
   524  		fmt.Printf("%s (%s)\n", ErrInvalidParams.Error(), c.Name)
   525  		t.FailNow()
   526  	} else if params != nil && !c.Expected {
   527  		fmt.Printf("ecies: parameters should be invalid (%s)\n",
   528  			c.Name)
   529  		t.FailNow()
   530  	}
   531  
   532  	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
   533  	if err != nil {
   534  		fmt.Printf("%s (%s)\n", err.Error(), c.Name)
   535  		t.FailNow()
   536  	}
   537  
   538  	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
   539  	if err != nil {
   540  		fmt.Printf("%s (%s)\n", err.Error(), c.Name)
   541  		t.FailNow()
   542  	}
   543  
   544  	message := []byte("Hello, world.")
   545  	ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
   546  	if err != nil {
   547  		fmt.Printf("%s (%s)\n", err.Error(), c.Name)
   548  		t.FailNow()
   549  	}
   550  
   551  	pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
   552  	if err != nil {
   553  		fmt.Printf("%s (%s)\n", err.Error(), c.Name)
   554  		t.FailNow()
   555  	}
   556  
   557  	if !bytes.Equal(pt, message) {
   558  		fmt.Printf("ecies: plaintext doesn't match message (%s)\n",
   559  			c.Name)
   560  		t.FailNow()
   561  	}
   562  
   563  	_, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
   564  	if err == nil {
   565  		fmt.Printf("ecies: encryption should not have succeeded (%s)\n",
   566  			c.Name)
   567  		t.FailNow()
   568  	}
   569  
   570  }
   571  
   572  // Ensure that the basic public key validation in the decryption operation
   573  // works.
   574  func TestBasicKeyValidation(t *testing.T) {
   575  	badBytes := []byte{0, 1, 5, 6, 7, 8, 9}
   576  
   577  	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
   578  	if err != nil {
   579  		fmt.Println(err.Error())
   580  		t.FailNow()
   581  	}
   582  
   583  	message := []byte("Hello, world.")
   584  	ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil)
   585  	if err != nil {
   586  		fmt.Println(err.Error())
   587  		t.FailNow()
   588  	}
   589  
   590  	for _, b := range badBytes {
   591  		ct[0] = b
   592  		_, err := prv.Decrypt(rand.Reader, ct, nil, nil)
   593  		if err != ErrInvalidPublicKey {
   594  			fmt.Println("ecies: validated an invalid key")
   595  			t.FailNow()
   596  		}
   597  	}
   598  }
   599  
   600  // Verify GenerateShared against static values - useful when
   601  // debugging changes in underlying libs
   602  func TestSharedKeyStatic(t *testing.T) {
   603  	prv1 := hexKey("7ebbc6a8358bc76dd73ebc557056702c8cfc34e5cfcd90eb83af0347575fd2ad")
   604  	prv2 := hexKey("6a3d6396903245bba5837752b9e0348874e72db0c4e11e9c485a81b4ea4353b9")
   605  
   606  	skLen := MaxSharedKeyLength(&prv1.PublicKey) / 2
   607  
   608  	sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen)
   609  	if err != nil {
   610  		fmt.Println(err.Error())
   611  		t.FailNow()
   612  	}
   613  
   614  	sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen)
   615  	if err != nil {
   616  		fmt.Println(err.Error())
   617  		t.FailNow()
   618  	}
   619  
   620  	if !bytes.Equal(sk1, sk2) {
   621  		fmt.Println(ErrBadSharedKeys.Error())
   622  		t.FailNow()
   623  	}
   624  
   625  	sk, _ := hex.DecodeString("167ccc13ac5e8a26b131c3446030c60fbfac6aa8e31149d0869f93626a4cdf62")
   626  	if !bytes.Equal(sk1, sk) {
   627  		t.Fatalf("shared secret mismatch: want: %x have: %x", sk, sk1)
   628  	}
   629  }
   630  
   631  // TODO: remove after refactoring packages crypto and crypto/ecies
   632  func hexKey(prv string) *PrivateKey {
   633  	priv := new(ecdsa.PrivateKey)
   634  	priv.PublicKey.Curve = secp256k1.S256()
   635  	priv.D, _ = new(big.Int).SetString(prv, 16)
   636  	priv.PublicKey.X, priv.PublicKey.Y = secp256k1.S256().ScalarBaseMult(priv.D.Bytes())
   637  	return ImportECDSA(priv)
   638  }