github.com/digdeepmining/go-atheios@v1.5.13-0.20180902133602-d5687a2e6f43/crypto/secp256k1/curve.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Copyright 2011 ThePiachu. All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // * The name of ThePiachu may not be used to endorse or promote products 18 // derived from this software without specific prior written permission. 19 // 20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 25 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 26 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 30 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 32 package secp256k1 33 34 import ( 35 "crypto/elliptic" 36 "math/big" 37 "sync" 38 "unsafe" 39 ) 40 41 /* 42 #include "libsecp256k1/include/secp256k1.h" 43 extern int secp256k1_pubkey_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar); 44 */ 45 import "C" 46 47 // This code is from https://github.com/ThePiachu/GoBit and implements 48 // several Koblitz elliptic curves over prime fields. 49 // 50 // The curve methods, internally, on Jacobian coordinates. For a given 51 // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, 52 // z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come 53 // when the whole calculation can be performed within the transform 54 // (as in ScalarMult and ScalarBaseMult). But even for Add and Double, 55 // it's faster to apply and reverse the transform than to operate in 56 // affine coordinates. 57 58 // A BitCurve represents a Koblitz Curve with a=0. 59 // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html 60 type BitCurve struct { 61 P *big.Int // the order of the underlying field 62 N *big.Int // the order of the base point 63 B *big.Int // the constant of the BitCurve equation 64 Gx, Gy *big.Int // (x,y) of the base point 65 BitSize int // the size of the underlying field 66 } 67 68 func (BitCurve *BitCurve) Params() *elliptic.CurveParams { 69 return &elliptic.CurveParams{ 70 P: BitCurve.P, 71 N: BitCurve.N, 72 B: BitCurve.B, 73 Gx: BitCurve.Gx, 74 Gy: BitCurve.Gy, 75 BitSize: BitCurve.BitSize, 76 } 77 } 78 79 // IsOnBitCurve returns true if the given (x,y) lies on the BitCurve. 80 func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool { 81 // y² = x³ + b 82 y2 := new(big.Int).Mul(y, y) //y² 83 y2.Mod(y2, BitCurve.P) //y²%P 84 85 x3 := new(big.Int).Mul(x, x) //x² 86 x3.Mul(x3, x) //x³ 87 88 x3.Add(x3, BitCurve.B) //x³+B 89 x3.Mod(x3, BitCurve.P) //(x³+B)%P 90 91 return x3.Cmp(y2) == 0 92 } 93 94 //TODO: double check if the function is okay 95 // affineFromJacobian reverses the Jacobian transform. See the comment at the 96 // top of the file. 97 func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { 98 zinv := new(big.Int).ModInverse(z, BitCurve.P) 99 zinvsq := new(big.Int).Mul(zinv, zinv) 100 101 xOut = new(big.Int).Mul(x, zinvsq) 102 xOut.Mod(xOut, BitCurve.P) 103 zinvsq.Mul(zinvsq, zinv) 104 yOut = new(big.Int).Mul(y, zinvsq) 105 yOut.Mod(yOut, BitCurve.P) 106 return 107 } 108 109 // Add returns the sum of (x1,y1) and (x2,y2) 110 func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { 111 z := new(big.Int).SetInt64(1) 112 return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z)) 113 } 114 115 // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and 116 // (x2, y2, z2) and returns their sum, also in Jacobian form. 117 func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { 118 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl 119 z1z1 := new(big.Int).Mul(z1, z1) 120 z1z1.Mod(z1z1, BitCurve.P) 121 z2z2 := new(big.Int).Mul(z2, z2) 122 z2z2.Mod(z2z2, BitCurve.P) 123 124 u1 := new(big.Int).Mul(x1, z2z2) 125 u1.Mod(u1, BitCurve.P) 126 u2 := new(big.Int).Mul(x2, z1z1) 127 u2.Mod(u2, BitCurve.P) 128 h := new(big.Int).Sub(u2, u1) 129 if h.Sign() == -1 { 130 h.Add(h, BitCurve.P) 131 } 132 i := new(big.Int).Lsh(h, 1) 133 i.Mul(i, i) 134 j := new(big.Int).Mul(h, i) 135 136 s1 := new(big.Int).Mul(y1, z2) 137 s1.Mul(s1, z2z2) 138 s1.Mod(s1, BitCurve.P) 139 s2 := new(big.Int).Mul(y2, z1) 140 s2.Mul(s2, z1z1) 141 s2.Mod(s2, BitCurve.P) 142 r := new(big.Int).Sub(s2, s1) 143 if r.Sign() == -1 { 144 r.Add(r, BitCurve.P) 145 } 146 r.Lsh(r, 1) 147 v := new(big.Int).Mul(u1, i) 148 149 x3 := new(big.Int).Set(r) 150 x3.Mul(x3, x3) 151 x3.Sub(x3, j) 152 x3.Sub(x3, v) 153 x3.Sub(x3, v) 154 x3.Mod(x3, BitCurve.P) 155 156 y3 := new(big.Int).Set(r) 157 v.Sub(v, x3) 158 y3.Mul(y3, v) 159 s1.Mul(s1, j) 160 s1.Lsh(s1, 1) 161 y3.Sub(y3, s1) 162 y3.Mod(y3, BitCurve.P) 163 164 z3 := new(big.Int).Add(z1, z2) 165 z3.Mul(z3, z3) 166 z3.Sub(z3, z1z1) 167 if z3.Sign() == -1 { 168 z3.Add(z3, BitCurve.P) 169 } 170 z3.Sub(z3, z2z2) 171 if z3.Sign() == -1 { 172 z3.Add(z3, BitCurve.P) 173 } 174 z3.Mul(z3, h) 175 z3.Mod(z3, BitCurve.P) 176 177 return x3, y3, z3 178 } 179 180 // Double returns 2*(x,y) 181 func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { 182 z1 := new(big.Int).SetInt64(1) 183 return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1)) 184 } 185 186 // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and 187 // returns its double, also in Jacobian form. 188 func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { 189 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l 190 191 a := new(big.Int).Mul(x, x) //X1² 192 b := new(big.Int).Mul(y, y) //Y1² 193 c := new(big.Int).Mul(b, b) //B² 194 195 d := new(big.Int).Add(x, b) //X1+B 196 d.Mul(d, d) //(X1+B)² 197 d.Sub(d, a) //(X1+B)²-A 198 d.Sub(d, c) //(X1+B)²-A-C 199 d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C) 200 201 e := new(big.Int).Mul(big.NewInt(3), a) //3*A 202 f := new(big.Int).Mul(e, e) //E² 203 204 x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D 205 x3.Sub(f, x3) //F-2*D 206 x3.Mod(x3, BitCurve.P) 207 208 y3 := new(big.Int).Sub(d, x3) //D-X3 209 y3.Mul(e, y3) //E*(D-X3) 210 y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C 211 y3.Mod(y3, BitCurve.P) 212 213 z3 := new(big.Int).Mul(y, z) //Y1*Z1 214 z3.Mul(big.NewInt(2), z3) //3*Y1*Z1 215 z3.Mod(z3, BitCurve.P) 216 217 return x3, y3, z3 218 } 219 220 func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { 221 // Ensure scalar is exactly 32 bytes. We pad always, even if 222 // scalar is 32 bytes long, to avoid a timing side channel. 223 if len(scalar) > 32 { 224 panic("can't handle scalars > 256 bits") 225 } 226 // NOTE: potential timing issue 227 padded := make([]byte, 32) 228 copy(padded[32-len(scalar):], scalar) 229 scalar = padded 230 231 // Do the multiplication in C, updating point. 232 point := make([]byte, 64) 233 readBits(point[:32], Bx) 234 readBits(point[32:], By) 235 pointPtr := (*C.uchar)(unsafe.Pointer(&point[0])) 236 scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0])) 237 res := C.secp256k1_pubkey_scalar_mul(context, pointPtr, scalarPtr) 238 239 // Unpack the result and clear temporaries. 240 x := new(big.Int).SetBytes(point[:32]) 241 y := new(big.Int).SetBytes(point[32:]) 242 for i := range point { 243 point[i] = 0 244 } 245 for i := range padded { 246 scalar[i] = 0 247 } 248 if res != 1 { 249 return nil, nil 250 } 251 return x, y 252 } 253 254 // ScalarBaseMult returns k*G, where G is the base point of the group and k is 255 // an integer in big-endian form. 256 func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { 257 return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k) 258 } 259 260 // Marshal converts a point into the form specified in section 4.3.6 of ANSI 261 // X9.62. 262 func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte { 263 byteLen := (BitCurve.BitSize + 7) >> 3 264 265 ret := make([]byte, 1+2*byteLen) 266 ret[0] = 4 // uncompressed point 267 268 xBytes := x.Bytes() 269 copy(ret[1+byteLen-len(xBytes):], xBytes) 270 yBytes := y.Bytes() 271 copy(ret[1+2*byteLen-len(yBytes):], yBytes) 272 return ret 273 } 274 275 // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On 276 // error, x = nil. 277 func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) { 278 byteLen := (BitCurve.BitSize + 7) >> 3 279 if len(data) != 1+2*byteLen { 280 return 281 } 282 if data[0] != 4 { // uncompressed form 283 return 284 } 285 x = new(big.Int).SetBytes(data[1 : 1+byteLen]) 286 y = new(big.Int).SetBytes(data[1+byteLen:]) 287 return 288 } 289 290 var ( 291 initonce sync.Once 292 theCurve *BitCurve 293 ) 294 295 // S256 returns a BitCurve which implements secp256k1 (see SEC 2 section 2.7.1) 296 func S256() *BitCurve { 297 initonce.Do(func() { 298 // See SEC 2 section 2.7.1 299 // curve parameters taken from: 300 // http://www.secg.org/collateral/sec2_final.pdf 301 theCurve = new(BitCurve) 302 theCurve.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16) 303 theCurve.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16) 304 theCurve.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16) 305 theCurve.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16) 306 theCurve.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16) 307 theCurve.BitSize = 256 308 }) 309 return theCurve 310 }