github.com/digdeepmining/go-atheios@v1.5.13-0.20180902133602-d5687a2e6f43/crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h (about)

     1  /**********************************************************************
     2   * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra                  *
     3   * Distributed under the MIT software license, see the accompanying   *
     4   * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
     5   **********************************************************************/
     6  
     7  #ifndef _SECP256K1_ECMULT_CONST_IMPL_
     8  #define _SECP256K1_ECMULT_CONST_IMPL_
     9  
    10  #include "scalar.h"
    11  #include "group.h"
    12  #include "ecmult_const.h"
    13  #include "ecmult_impl.h"
    14  
    15  #ifdef USE_ENDOMORPHISM
    16      #define WNAF_BITS 128
    17  #else
    18      #define WNAF_BITS 256
    19  #endif
    20  #define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w))
    21  
    22  /* This is like `ECMULT_TABLE_GET_GE` but is constant time */
    23  #define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
    24      int m; \
    25      int abs_n = (n) * (((n) > 0) * 2 - 1); \
    26      int idx_n = abs_n / 2; \
    27      secp256k1_fe neg_y; \
    28      VERIFY_CHECK(((n) & 1) == 1); \
    29      VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
    30      VERIFY_CHECK((n) <=  ((1 << ((w)-1)) - 1)); \
    31      VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \
    32      VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \
    33      for (m = 0; m < ECMULT_TABLE_SIZE(w); m++) { \
    34          /* This loop is used to avoid secret data in array indices. See
    35           * the comment in ecmult_gen_impl.h for rationale. */ \
    36          secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \
    37          secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \
    38      } \
    39      (r)->infinity = 0; \
    40      secp256k1_fe_negate(&neg_y, &(r)->y, 1); \
    41      secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \
    42  } while(0)
    43  
    44  
    45  /** Convert a number to WNAF notation. The number becomes represented by sum(2^{wi} * wnaf[i], i=0..return_val)
    46   *  with the following guarantees:
    47   *  - each wnaf[i] an odd integer between -(1 << w) and (1 << w)
    48   *  - each wnaf[i] is nonzero
    49   *  - the number of words set is returned; this is always (WNAF_BITS + w - 1) / w
    50   *
    51   *  Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar
    52   *  Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.)
    53   *  CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003
    54   *
    55   *  Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335
    56   */
    57  static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) {
    58      int global_sign;
    59      int skew = 0;
    60      int word = 0;
    61  
    62      /* 1 2 3 */
    63      int u_last;
    64      int u;
    65  
    66      int flip;
    67      int bit;
    68      secp256k1_scalar neg_s;
    69      int not_neg_one;
    70      /* Note that we cannot handle even numbers by negating them to be odd, as is
    71       * done in other implementations, since if our scalars were specified to have
    72       * width < 256 for performance reasons, their negations would have width 256
    73       * and we'd lose any performance benefit. Instead, we use a technique from
    74       * Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even)
    75       * or 2 (for odd) to the number we are encoding, returning a skew value indicating
    76       * this, and having the caller compensate after doing the multiplication. */
    77  
    78      /* Negative numbers will be negated to keep their bit representation below the maximum width */
    79      flip = secp256k1_scalar_is_high(&s);
    80      /* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */
    81      bit = flip ^ !secp256k1_scalar_is_even(&s);
    82      /* We check for negative one, since adding 2 to it will cause an overflow */
    83      secp256k1_scalar_negate(&neg_s, &s);
    84      not_neg_one = !secp256k1_scalar_is_one(&neg_s);
    85      secp256k1_scalar_cadd_bit(&s, bit, not_neg_one);
    86      /* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects
    87       * that we added two to it and flipped it. In fact for -1 these operations are
    88       * identical. We only flipped, but since skewing is required (in the sense that
    89       * the skew must be 1 or 2, never zero) and flipping is not, we need to change
    90       * our flags to claim that we only skewed. */
    91      global_sign = secp256k1_scalar_cond_negate(&s, flip);
    92      global_sign *= not_neg_one * 2 - 1;
    93      skew = 1 << bit;
    94  
    95      /* 4 */
    96      u_last = secp256k1_scalar_shr_int(&s, w);
    97      while (word * w < WNAF_BITS) {
    98          int sign;
    99          int even;
   100  
   101          /* 4.1 4.4 */
   102          u = secp256k1_scalar_shr_int(&s, w);
   103          /* 4.2 */
   104          even = ((u & 1) == 0);
   105          sign = 2 * (u_last > 0) - 1;
   106          u += sign * even;
   107          u_last -= sign * even * (1 << w);
   108  
   109          /* 4.3, adapted for global sign change */
   110          wnaf[word++] = u_last * global_sign;
   111  
   112          u_last = u;
   113      }
   114      wnaf[word] = u * global_sign;
   115  
   116      VERIFY_CHECK(secp256k1_scalar_is_zero(&s));
   117      VERIFY_CHECK(word == WNAF_SIZE(w));
   118      return skew;
   119  }
   120  
   121  
   122  static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) {
   123      secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
   124      secp256k1_ge tmpa;
   125      secp256k1_fe Z;
   126  
   127      int skew_1;
   128      int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
   129  #ifdef USE_ENDOMORPHISM
   130      secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
   131      int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
   132      int skew_lam;
   133      secp256k1_scalar q_1, q_lam;
   134  #endif
   135  
   136      int i;
   137      secp256k1_scalar sc = *scalar;
   138  
   139      /* build wnaf representation for q. */
   140  #ifdef USE_ENDOMORPHISM
   141      /* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
   142      secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc);
   143      skew_1   = secp256k1_wnaf_const(wnaf_1,   q_1,   WINDOW_A - 1);
   144      skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1);
   145  #else
   146      skew_1   = secp256k1_wnaf_const(wnaf_1, sc, WINDOW_A - 1);
   147  #endif
   148  
   149      /* Calculate odd multiples of a.
   150       * All multiples are brought to the same Z 'denominator', which is stored
   151       * in Z. Due to secp256k1' isomorphism we can do all operations pretending
   152       * that the Z coordinate was 1, use affine addition formulae, and correct
   153       * the Z coordinate of the result once at the end.
   154       */
   155      secp256k1_gej_set_ge(r, a);
   156      secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r);
   157      for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
   158          secp256k1_fe_normalize_weak(&pre_a[i].y);
   159      }
   160  #ifdef USE_ENDOMORPHISM
   161      for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
   162          secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
   163      }
   164  #endif
   165  
   166      /* first loop iteration (separated out so we can directly set r, rather
   167       * than having it start at infinity, get doubled several times, then have
   168       * its new value added to it) */
   169      i = wnaf_1[WNAF_SIZE(WINDOW_A - 1)];
   170      VERIFY_CHECK(i != 0);
   171      ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
   172      secp256k1_gej_set_ge(r, &tmpa);
   173  #ifdef USE_ENDOMORPHISM
   174      i = wnaf_lam[WNAF_SIZE(WINDOW_A - 1)];
   175      VERIFY_CHECK(i != 0);
   176      ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
   177      secp256k1_gej_add_ge(r, r, &tmpa);
   178  #endif
   179      /* remaining loop iterations */
   180      for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) {
   181          int n;
   182          int j;
   183          for (j = 0; j < WINDOW_A - 1; ++j) {
   184              secp256k1_gej_double_nonzero(r, r, NULL);
   185          }
   186  
   187          n = wnaf_1[i];
   188          ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
   189          VERIFY_CHECK(n != 0);
   190          secp256k1_gej_add_ge(r, r, &tmpa);
   191  #ifdef USE_ENDOMORPHISM
   192          n = wnaf_lam[i];
   193          ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
   194          VERIFY_CHECK(n != 0);
   195          secp256k1_gej_add_ge(r, r, &tmpa);
   196  #endif
   197      }
   198  
   199      secp256k1_fe_mul(&r->z, &r->z, &Z);
   200  
   201      {
   202          /* Correct for wNAF skew */
   203          secp256k1_ge correction = *a;
   204          secp256k1_ge_storage correction_1_stor;
   205  #ifdef USE_ENDOMORPHISM
   206          secp256k1_ge_storage correction_lam_stor;
   207  #endif
   208          secp256k1_ge_storage a2_stor;
   209          secp256k1_gej tmpj;
   210          secp256k1_gej_set_ge(&tmpj, &correction);
   211          secp256k1_gej_double_var(&tmpj, &tmpj, NULL);
   212          secp256k1_ge_set_gej(&correction, &tmpj);
   213          secp256k1_ge_to_storage(&correction_1_stor, a);
   214  #ifdef USE_ENDOMORPHISM
   215          secp256k1_ge_to_storage(&correction_lam_stor, a);
   216  #endif
   217          secp256k1_ge_to_storage(&a2_stor, &correction);
   218  
   219          /* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */
   220          secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2);
   221  #ifdef USE_ENDOMORPHISM
   222          secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2);
   223  #endif
   224  
   225          /* Apply the correction */
   226          secp256k1_ge_from_storage(&correction, &correction_1_stor);
   227          secp256k1_ge_neg(&correction, &correction);
   228          secp256k1_gej_add_ge(r, r, &correction);
   229  
   230  #ifdef USE_ENDOMORPHISM
   231          secp256k1_ge_from_storage(&correction, &correction_lam_stor);
   232          secp256k1_ge_neg(&correction, &correction);
   233          secp256k1_ge_mul_lambda(&correction, &correction);
   234          secp256k1_gej_add_ge(r, r, &correction);
   235  #endif
   236      }
   237  }
   238  
   239  #endif