github.com/dim4egster/coreth@v0.10.2/trie/trie.go (about)

     1  // (c) 2020-2021, Ava Labs, Inc.
     2  //
     3  // This file is a derived work, based on the go-ethereum library whose original
     4  // notices appear below.
     5  //
     6  // It is distributed under a license compatible with the licensing terms of the
     7  // original code from which it is derived.
     8  //
     9  // Much love to the original authors for their work.
    10  // **********
    11  // Copyright 2014 The go-ethereum Authors
    12  // This file is part of the go-ethereum library.
    13  //
    14  // The go-ethereum library is free software: you can redistribute it and/or modify
    15  // it under the terms of the GNU Lesser General Public License as published by
    16  // the Free Software Foundation, either version 3 of the License, or
    17  // (at your option) any later version.
    18  //
    19  // The go-ethereum library is distributed in the hope that it will be useful,
    20  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    21  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    22  // GNU Lesser General Public License for more details.
    23  //
    24  // You should have received a copy of the GNU Lesser General Public License
    25  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    26  
    27  // Package trie implements Merkle Patricia Tries.
    28  package trie
    29  
    30  import (
    31  	"bytes"
    32  	"errors"
    33  	"fmt"
    34  
    35  	"github.com/ethereum/go-ethereum/common"
    36  	"github.com/ethereum/go-ethereum/log"
    37  )
    38  
    39  var (
    40  	// emptyRoot is the known root hash of an empty trie.
    41  	emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
    42  )
    43  
    44  // LeafCallback is a callback type invoked when a trie operation reaches a leaf
    45  // node.
    46  //
    47  // The keys is a path tuple identifying a particular trie node either in a single
    48  // trie (account) or a layered trie (account -> storage). Each key in the tuple
    49  // is in the raw format(32 bytes).
    50  //
    51  // The path is a composite hexary path identifying the trie node. All the key
    52  // bytes are converted to the hexary nibbles and composited with the parent path
    53  // if the trie node is in a layered trie.
    54  //
    55  // It's used by state sync and commit to allow handling external references
    56  // between account and storage tries. And also it's used in the state healing
    57  // for extracting the raw states(leaf nodes) with corresponding paths.
    58  type LeafCallback func(keys [][]byte, path []byte, leaf []byte, parent common.Hash, parentPath []byte) error
    59  
    60  // Trie is a Merkle Patricia Trie. Use New to create a trie that sits on
    61  // top of a database. Whenever trie performs a commit operation, the generated
    62  // nodes will be gathered and returned in a set. Once the trie is committed,
    63  // it's not usable anymore. Callers have to re-create the trie with new root
    64  // based on the updated trie database.
    65  //
    66  // Trie is not safe for concurrent use.
    67  type Trie struct {
    68  	root  node
    69  	owner common.Hash
    70  
    71  	// Keep track of the number leaves which have been inserted since the last
    72  	// hashing operation. This number will not directly map to the number of
    73  	// actually unhashed nodes.
    74  	unhashed int
    75  
    76  	// db is the handler trie can retrieve nodes from. It's
    77  	// only for reading purpose and not available for writing.
    78  	db *Database
    79  
    80  	// tracer is the tool to track the trie changes.
    81  	// It will be reset after each commit operation.
    82  	tracer *tracer
    83  }
    84  
    85  // newFlag returns the cache flag value for a newly created node.
    86  func (t *Trie) newFlag() nodeFlag {
    87  	return nodeFlag{dirty: true}
    88  }
    89  
    90  // Copy returns a copy of Trie.
    91  func (t *Trie) Copy() *Trie {
    92  	return &Trie{
    93  		root:     t.root,
    94  		owner:    t.owner,
    95  		unhashed: t.unhashed,
    96  		db:       t.db,
    97  		tracer:   t.tracer.copy(),
    98  	}
    99  }
   100  
   101  // New creates a trie with an existing root node from db and an assigned
   102  // owner for storage proximity.
   103  //
   104  // If root is the zero hash or the sha3 hash of an empty string, the
   105  // trie is initially empty and does not require a database. Otherwise,
   106  // New will panic if db is nil and returns a MissingNodeError if root does
   107  // not exist in the database. Accessing the trie loads nodes from db on demand.
   108  func New(owner common.Hash, root common.Hash, db *Database) (*Trie, error) {
   109  	trie := &Trie{
   110  		owner: owner,
   111  		db:    db,
   112  		//tracer: newTracer(),
   113  	}
   114  	if root != (common.Hash{}) && root != emptyRoot {
   115  		rootnode, err := trie.resolveHash(root[:], nil)
   116  		if err != nil {
   117  			return nil, err
   118  		}
   119  		trie.root = rootnode
   120  	}
   121  	return trie, nil
   122  }
   123  
   124  // NewEmpty is a shortcut to create empty tree. It's mostly used in tests.
   125  func NewEmpty(db *Database) *Trie {
   126  	tr, _ := New(common.Hash{}, common.Hash{}, db)
   127  	return tr
   128  }
   129  
   130  // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at
   131  // the key after the given start key.
   132  func (t *Trie) NodeIterator(start []byte) NodeIterator {
   133  	return newNodeIterator(t, start)
   134  }
   135  
   136  // Get returns the value for key stored in the trie.
   137  // The value bytes must not be modified by the caller.
   138  func (t *Trie) Get(key []byte) []byte {
   139  	res, err := t.TryGet(key)
   140  	if err != nil {
   141  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   142  	}
   143  	return res
   144  }
   145  
   146  // TryGet returns the value for key stored in the trie.
   147  // The value bytes must not be modified by the caller.
   148  // If a node was not found in the database, a MissingNodeError is returned.
   149  func (t *Trie) TryGet(key []byte) ([]byte, error) {
   150  	value, newroot, didResolve, err := t.tryGet(t.root, keybytesToHex(key), 0)
   151  	if err == nil && didResolve {
   152  		t.root = newroot
   153  	}
   154  	return value, err
   155  }
   156  
   157  func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) {
   158  	switch n := (origNode).(type) {
   159  	case nil:
   160  		return nil, nil, false, nil
   161  	case valueNode:
   162  		return n, n, false, nil
   163  	case *shortNode:
   164  		if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) {
   165  			// key not found in trie
   166  			return nil, n, false, nil
   167  		}
   168  		value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key))
   169  		if err == nil && didResolve {
   170  			n = n.copy()
   171  			n.Val = newnode
   172  		}
   173  		return value, n, didResolve, err
   174  	case *fullNode:
   175  		value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1)
   176  		if err == nil && didResolve {
   177  			n = n.copy()
   178  			n.Children[key[pos]] = newnode
   179  		}
   180  		return value, n, didResolve, err
   181  	case hashNode:
   182  		child, err := t.resolveHash(n, key[:pos])
   183  		if err != nil {
   184  			return nil, n, true, err
   185  		}
   186  		value, newnode, _, err := t.tryGet(child, key, pos)
   187  		return value, newnode, true, err
   188  	default:
   189  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   190  	}
   191  }
   192  
   193  // TryGetNode attempts to retrieve a trie node by compact-encoded path. It is not
   194  // possible to use keybyte-encoding as the path might contain odd nibbles.
   195  func (t *Trie) TryGetNode(path []byte) ([]byte, int, error) {
   196  	item, newroot, resolved, err := t.tryGetNode(t.root, compactToHex(path), 0)
   197  	if err != nil {
   198  		return nil, resolved, err
   199  	}
   200  	if resolved > 0 {
   201  		t.root = newroot
   202  	}
   203  	if item == nil {
   204  		return nil, resolved, nil
   205  	}
   206  	return item, resolved, err
   207  }
   208  
   209  func (t *Trie) tryGetNode(origNode node, path []byte, pos int) (item []byte, newnode node, resolved int, err error) {
   210  	// If non-existent path requested, abort
   211  	if origNode == nil {
   212  		return nil, nil, 0, nil
   213  	}
   214  	// If we reached the requested path, return the current node
   215  	if pos >= len(path) {
   216  		// Although we most probably have the original node expanded, encoding
   217  		// that into consensus form can be nasty (needs to cascade down) and
   218  		// time consuming. Instead, just pull the hash up from disk directly.
   219  		var hash hashNode
   220  		if node, ok := origNode.(hashNode); ok {
   221  			hash = node
   222  		} else {
   223  			hash, _ = origNode.cache()
   224  		}
   225  		if hash == nil {
   226  			return nil, origNode, 0, errors.New("non-consensus node")
   227  		}
   228  		blob, err := t.db.RawNode(common.BytesToHash(hash))
   229  		return blob, origNode, 1, err
   230  	}
   231  	// Path still needs to be traversed, descend into children
   232  	switch n := (origNode).(type) {
   233  	case valueNode:
   234  		// Path prematurely ended, abort
   235  		return nil, nil, 0, nil
   236  
   237  	case *shortNode:
   238  		if len(path)-pos < len(n.Key) || !bytes.Equal(n.Key, path[pos:pos+len(n.Key)]) {
   239  			// Path branches off from short node
   240  			return nil, n, 0, nil
   241  		}
   242  		item, newnode, resolved, err = t.tryGetNode(n.Val, path, pos+len(n.Key))
   243  		if err == nil && resolved > 0 {
   244  			n = n.copy()
   245  			n.Val = newnode
   246  		}
   247  		return item, n, resolved, err
   248  
   249  	case *fullNode:
   250  		item, newnode, resolved, err = t.tryGetNode(n.Children[path[pos]], path, pos+1)
   251  		if err == nil && resolved > 0 {
   252  			n = n.copy()
   253  			n.Children[path[pos]] = newnode
   254  		}
   255  		return item, n, resolved, err
   256  
   257  	case hashNode:
   258  		child, err := t.resolveHash(n, path[:pos])
   259  		if err != nil {
   260  			return nil, n, 1, err
   261  		}
   262  		item, newnode, resolved, err := t.tryGetNode(child, path, pos)
   263  		return item, newnode, resolved + 1, err
   264  
   265  	default:
   266  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   267  	}
   268  }
   269  
   270  // Update associates key with value in the trie. Subsequent calls to
   271  // Get will return value. If value has length zero, any existing value
   272  // is deleted from the trie and calls to Get will return nil.
   273  //
   274  // The value bytes must not be modified by the caller while they are
   275  // stored in the trie.
   276  func (t *Trie) Update(key, value []byte) {
   277  	if err := t.TryUpdate(key, value); err != nil {
   278  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   279  	}
   280  }
   281  
   282  // TryUpdate associates key with value in the trie. Subsequent calls to
   283  // Get will return value. If value has length zero, any existing value
   284  // is deleted from the trie and calls to Get will return nil.
   285  //
   286  // The value bytes must not be modified by the caller while they are
   287  // stored in the trie.
   288  //
   289  // If a node was not found in the database, a MissingNodeError is returned.
   290  func (t *Trie) TryUpdate(key, value []byte) error {
   291  	return t.tryUpdate(key, value)
   292  }
   293  
   294  // tryUpdate expects an RLP-encoded value and performs the core function
   295  // for TryUpdate and TryUpdateAccount.
   296  func (t *Trie) tryUpdate(key, value []byte) error {
   297  	t.unhashed++
   298  	k := keybytesToHex(key)
   299  	if len(value) != 0 {
   300  		_, n, err := t.insert(t.root, nil, k, valueNode(value))
   301  		if err != nil {
   302  			return err
   303  		}
   304  		t.root = n
   305  	} else {
   306  		_, n, err := t.delete(t.root, nil, k)
   307  		if err != nil {
   308  			return err
   309  		}
   310  		t.root = n
   311  	}
   312  	return nil
   313  }
   314  
   315  func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) {
   316  	if len(key) == 0 {
   317  		if v, ok := n.(valueNode); ok {
   318  			return !bytes.Equal(v, value.(valueNode)), value, nil
   319  		}
   320  		return true, value, nil
   321  	}
   322  	switch n := n.(type) {
   323  	case *shortNode:
   324  		matchlen := prefixLen(key, n.Key)
   325  		// If the whole key matches, keep this short node as is
   326  		// and only update the value.
   327  		if matchlen == len(n.Key) {
   328  			dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value)
   329  			if !dirty || err != nil {
   330  				return false, n, err
   331  			}
   332  			return true, &shortNode{n.Key, nn, t.newFlag()}, nil
   333  		}
   334  		// Otherwise branch out at the index where they differ.
   335  		branch := &fullNode{flags: t.newFlag()}
   336  		var err error
   337  		_, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val)
   338  		if err != nil {
   339  			return false, nil, err
   340  		}
   341  		_, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value)
   342  		if err != nil {
   343  			return false, nil, err
   344  		}
   345  		// Replace this shortNode with the branch if it occurs at index 0.
   346  		if matchlen == 0 {
   347  			return true, branch, nil
   348  		}
   349  		// New branch node is created as a child of the original short node.
   350  		// Track the newly inserted node in the tracer. The node identifier
   351  		// passed is the path from the root node.
   352  		t.tracer.onInsert(append(prefix, key[:matchlen]...))
   353  
   354  		// Replace it with a short node leading up to the branch.
   355  		return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil
   356  
   357  	case *fullNode:
   358  		dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value)
   359  		if !dirty || err != nil {
   360  			return false, n, err
   361  		}
   362  		n = n.copy()
   363  		n.flags = t.newFlag()
   364  		n.Children[key[0]] = nn
   365  		return true, n, nil
   366  
   367  	case nil:
   368  		// New short node is created and track it in the tracer. The node identifier
   369  		// passed is the path from the root node. Note the valueNode won't be tracked
   370  		// since it's always embedded in its parent.
   371  		t.tracer.onInsert(prefix)
   372  
   373  		return true, &shortNode{key, value, t.newFlag()}, nil
   374  
   375  	case hashNode:
   376  		// We've hit a part of the trie that isn't loaded yet. Load
   377  		// the node and insert into it. This leaves all child nodes on
   378  		// the path to the value in the trie.
   379  		rn, err := t.resolveHash(n, prefix)
   380  		if err != nil {
   381  			return false, nil, err
   382  		}
   383  		dirty, nn, err := t.insert(rn, prefix, key, value)
   384  		if !dirty || err != nil {
   385  			return false, rn, err
   386  		}
   387  		return true, nn, nil
   388  
   389  	default:
   390  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   391  	}
   392  }
   393  
   394  // Delete removes any existing value for key from the trie.
   395  func (t *Trie) Delete(key []byte) {
   396  	if err := t.TryDelete(key); err != nil {
   397  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   398  	}
   399  }
   400  
   401  // TryDelete removes any existing value for key from the trie.
   402  // If a node was not found in the database, a MissingNodeError is returned.
   403  func (t *Trie) TryDelete(key []byte) error {
   404  	t.unhashed++
   405  	k := keybytesToHex(key)
   406  	_, n, err := t.delete(t.root, nil, k)
   407  	if err != nil {
   408  		return err
   409  	}
   410  	t.root = n
   411  	return nil
   412  }
   413  
   414  // delete returns the new root of the trie with key deleted.
   415  // It reduces the trie to minimal form by simplifying
   416  // nodes on the way up after deleting recursively.
   417  func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) {
   418  	switch n := n.(type) {
   419  	case *shortNode:
   420  		matchlen := prefixLen(key, n.Key)
   421  		if matchlen < len(n.Key) {
   422  			return false, n, nil // don't replace n on mismatch
   423  		}
   424  		if matchlen == len(key) {
   425  			// The matched short node is deleted entirely and track
   426  			// it in the deletion set. The same the valueNode doesn't
   427  			// need to be tracked at all since it's always embedded.
   428  			t.tracer.onDelete(prefix)
   429  
   430  			return true, nil, nil // remove n entirely for whole matches
   431  		}
   432  		// The key is longer than n.Key. Remove the remaining suffix
   433  		// from the subtrie. Child can never be nil here since the
   434  		// subtrie must contain at least two other values with keys
   435  		// longer than n.Key.
   436  		dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):])
   437  		if !dirty || err != nil {
   438  			return false, n, err
   439  		}
   440  		switch child := child.(type) {
   441  		case *shortNode:
   442  			// The child shortNode is merged into its parent, track
   443  			// is deleted as well.
   444  			t.tracer.onDelete(append(prefix, n.Key...))
   445  
   446  			// Deleting from the subtrie reduced it to another
   447  			// short node. Merge the nodes to avoid creating a
   448  			// shortNode{..., shortNode{...}}. Use concat (which
   449  			// always creates a new slice) instead of append to
   450  			// avoid modifying n.Key since it might be shared with
   451  			// other nodes.
   452  			return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil
   453  		default:
   454  			return true, &shortNode{n.Key, child, t.newFlag()}, nil
   455  		}
   456  
   457  	case *fullNode:
   458  		dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:])
   459  		if !dirty || err != nil {
   460  			return false, n, err
   461  		}
   462  		n = n.copy()
   463  		n.flags = t.newFlag()
   464  		n.Children[key[0]] = nn
   465  
   466  		// Because n is a full node, it must've contained at least two children
   467  		// before the delete operation. If the new child value is non-nil, n still
   468  		// has at least two children after the deletion, and cannot be reduced to
   469  		// a short node.
   470  		if nn != nil {
   471  			return true, n, nil
   472  		}
   473  		// Reduction:
   474  		// Check how many non-nil entries are left after deleting and
   475  		// reduce the full node to a short node if only one entry is
   476  		// left. Since n must've contained at least two children
   477  		// before deletion (otherwise it would not be a full node) n
   478  		// can never be reduced to nil.
   479  		//
   480  		// When the loop is done, pos contains the index of the single
   481  		// value that is left in n or -2 if n contains at least two
   482  		// values.
   483  		pos := -1
   484  		for i, cld := range &n.Children {
   485  			if cld != nil {
   486  				if pos == -1 {
   487  					pos = i
   488  				} else {
   489  					pos = -2
   490  					break
   491  				}
   492  			}
   493  		}
   494  		if pos >= 0 {
   495  			if pos != 16 {
   496  				// If the remaining entry is a short node, it replaces
   497  				// n and its key gets the missing nibble tacked to the
   498  				// front. This avoids creating an invalid
   499  				// shortNode{..., shortNode{...}}.  Since the entry
   500  				// might not be loaded yet, resolve it just for this
   501  				// check.
   502  				cnode, err := t.resolve(n.Children[pos], append(prefix, byte(pos)))
   503  				if err != nil {
   504  					return false, nil, err
   505  				}
   506  				if cnode, ok := cnode.(*shortNode); ok {
   507  					// Replace the entire full node with the short node.
   508  					// Mark the original short node as deleted since the
   509  					// value is embedded into the parent now.
   510  					t.tracer.onDelete(append(prefix, byte(pos)))
   511  
   512  					k := append([]byte{byte(pos)}, cnode.Key...)
   513  					return true, &shortNode{k, cnode.Val, t.newFlag()}, nil
   514  				}
   515  			}
   516  			// Otherwise, n is replaced by a one-nibble short node
   517  			// containing the child.
   518  			return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil
   519  		}
   520  		// n still contains at least two values and cannot be reduced.
   521  		return true, n, nil
   522  
   523  	case valueNode:
   524  		return true, nil, nil
   525  
   526  	case nil:
   527  		return false, nil, nil
   528  
   529  	case hashNode:
   530  		// We've hit a part of the trie that isn't loaded yet. Load
   531  		// the node and delete from it. This leaves all child nodes on
   532  		// the path to the value in the trie.
   533  		rn, err := t.resolveHash(n, prefix)
   534  		if err != nil {
   535  			return false, nil, err
   536  		}
   537  		dirty, nn, err := t.delete(rn, prefix, key)
   538  		if !dirty || err != nil {
   539  			return false, rn, err
   540  		}
   541  		return true, nn, nil
   542  
   543  	default:
   544  		panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
   545  	}
   546  }
   547  
   548  func concat(s1 []byte, s2 ...byte) []byte {
   549  	r := make([]byte, len(s1)+len(s2))
   550  	copy(r, s1)
   551  	copy(r[len(s1):], s2)
   552  	return r
   553  }
   554  
   555  func (t *Trie) resolve(n node, prefix []byte) (node, error) {
   556  	if n, ok := n.(hashNode); ok {
   557  		return t.resolveHash(n, prefix)
   558  	}
   559  	return n, nil
   560  }
   561  
   562  // resolveHash loads node from the underlying database with the provided
   563  // node hash and path prefix.
   564  func (t *Trie) resolveHash(n hashNode, prefix []byte) (node, error) {
   565  	hash := common.BytesToHash(n)
   566  	if node := t.db.EncodedNode(hash); node != nil {
   567  		return node, nil
   568  	}
   569  	return nil, &MissingNodeError{Owner: t.owner, NodeHash: hash, Path: prefix}
   570  }
   571  
   572  // resolveHash loads rlp-encoded node blob from the underlying database
   573  // with the provided node hash and path prefix.
   574  func (t *Trie) resolveBlob(n hashNode, prefix []byte) ([]byte, error) {
   575  	hash := common.BytesToHash(n)
   576  	blob, _ := t.db.RawNode(hash)
   577  	if len(blob) != 0 {
   578  		return blob, nil
   579  	}
   580  	return nil, &MissingNodeError{Owner: t.owner, NodeHash: hash, Path: prefix}
   581  }
   582  
   583  // Hash returns the root hash of the trie. It does not write to the
   584  // database and can be used even if the trie doesn't have one.
   585  func (t *Trie) Hash() common.Hash {
   586  	hash, cached, _ := t.hashRoot()
   587  	t.root = cached
   588  	return common.BytesToHash(hash.(hashNode))
   589  }
   590  
   591  // Commit collects all dirty nodes in the trie and replace them with the
   592  // corresponding node hash. All collected nodes(including dirty leaves if
   593  // collectLeaf is true) will be encapsulated into a nodeset for return.
   594  // The returned nodeset can be nil if the trie is clean(nothing to commit).
   595  // Once the trie is committed, it's not usable anymore. A new trie must
   596  // be created with new root and updated trie database for following usage
   597  func (t *Trie) Commit(collectLeaf bool) (common.Hash, *NodeSet, error) {
   598  	defer t.tracer.reset()
   599  
   600  	if t.root == nil {
   601  		return emptyRoot, nil, nil
   602  	}
   603  	// Derive the hash for all dirty nodes first. We hold the assumption
   604  	// in the following procedure that all nodes are hashed.
   605  	rootHash := t.Hash()
   606  
   607  	// Do a quick check if we really need to commit. This can happen e.g.
   608  	// if we load a trie for reading storage values, but don't write to it.
   609  	if hashedNode, dirty := t.root.cache(); !dirty {
   610  		// Replace the root node with the origin hash in order to
   611  		// ensure all resolved nodes are dropped after the commit.
   612  		t.root = hashedNode
   613  		return rootHash, nil, nil
   614  	}
   615  	h := newCommitter(t.owner, collectLeaf)
   616  	newRoot, nodes, err := h.Commit(t.root)
   617  	if err != nil {
   618  		return common.Hash{}, nil, err
   619  	}
   620  	t.root = newRoot
   621  	return rootHash, nodes, nil
   622  }
   623  
   624  // hashRoot calculates the root hash of the given trie
   625  func (t *Trie) hashRoot() (node, node, error) {
   626  	if t.root == nil {
   627  		return hashNode(emptyRoot.Bytes()), nil, nil
   628  	}
   629  	// If the number of changes is below 100, we let one thread handle it
   630  	h := newHasher(t.unhashed >= 100)
   631  	defer returnHasherToPool(h)
   632  	hashed, cached := h.hash(t.root, true)
   633  	t.unhashed = 0
   634  	return hashed, cached, nil
   635  }
   636  
   637  // Reset drops the referenced root node and cleans all internal state.
   638  func (t *Trie) Reset() {
   639  	t.root = nil
   640  	t.owner = common.Hash{}
   641  	t.unhashed = 0
   642  	//t.db = nil
   643  	t.tracer.reset()
   644  }