github.com/dominant-strategies/go-quai@v0.28.2/common/math/big.go (about)

     1  // Copyright 2017 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package math provides integer math utilities.
    18  package math
    19  
    20  import (
    21  	"fmt"
    22  	"math/big"
    23  )
    24  
    25  // Various big integer limit values.
    26  var (
    27  	tt255     = BigPow(2, 255)
    28  	tt256     = BigPow(2, 256)
    29  	tt256m1   = new(big.Int).Sub(tt256, big.NewInt(1))
    30  	tt63      = BigPow(2, 63)
    31  	MaxBig256 = new(big.Int).Set(tt256m1)
    32  	MaxBig63  = new(big.Int).Sub(tt63, big.NewInt(1))
    33  )
    34  
    35  const (
    36  	// number of bits in a big.Word
    37  	wordBits = 32 << (uint64(^big.Word(0)) >> 63)
    38  	// number of bytes in a big.Word
    39  	wordBytes = wordBits / 8
    40  )
    41  
    42  // HexOrDecimal256 marshals big.Int as hex or decimal.
    43  type HexOrDecimal256 big.Int
    44  
    45  // NewHexOrDecimal256 creates a new HexOrDecimal256
    46  func NewHexOrDecimal256(x int64) *HexOrDecimal256 {
    47  	b := big.NewInt(x)
    48  	h := HexOrDecimal256(*b)
    49  	return &h
    50  }
    51  
    52  // UnmarshalText implements encoding.TextUnmarshaler.
    53  func (i *HexOrDecimal256) UnmarshalText(input []byte) error {
    54  	bigint, ok := ParseBig256(string(input))
    55  	if !ok {
    56  		return fmt.Errorf("invalid hex or decimal integer %q", input)
    57  	}
    58  	*i = HexOrDecimal256(*bigint)
    59  	return nil
    60  }
    61  
    62  // MarshalText implements encoding.TextMarshaler.
    63  func (i *HexOrDecimal256) MarshalText() ([]byte, error) {
    64  	if i == nil {
    65  		return []byte("0x0"), nil
    66  	}
    67  	return []byte(fmt.Sprintf("%#x", (*big.Int)(i))), nil
    68  }
    69  
    70  // Decimal256 unmarshals big.Int as a decimal string. When unmarshalling,
    71  // it however accepts either "0x"-prefixed (hex encoded) or non-prefixed (decimal)
    72  type Decimal256 big.Int
    73  
    74  // NewHexOrDecimal256 creates a new Decimal256
    75  func NewDecimal256(x int64) *Decimal256 {
    76  	b := big.NewInt(x)
    77  	d := Decimal256(*b)
    78  	return &d
    79  }
    80  
    81  // UnmarshalText implements encoding.TextUnmarshaler.
    82  func (i *Decimal256) UnmarshalText(input []byte) error {
    83  	bigint, ok := ParseBig256(string(input))
    84  	if !ok {
    85  		return fmt.Errorf("invalid hex or decimal integer %q", input)
    86  	}
    87  	*i = Decimal256(*bigint)
    88  	return nil
    89  }
    90  
    91  // MarshalText implements encoding.TextMarshaler.
    92  func (i *Decimal256) MarshalText() ([]byte, error) {
    93  	return []byte(i.String()), nil
    94  }
    95  
    96  // String implements Stringer.
    97  func (i *Decimal256) String() string {
    98  	if i == nil {
    99  		return "0"
   100  	}
   101  	return fmt.Sprintf("%#d", (*big.Int)(i))
   102  }
   103  
   104  // ParseBig256 parses s as a 256 bit integer in decimal or hexadecimal syntax.
   105  // Leading zeros are accepted. The empty string parses as zero.
   106  func ParseBig256(s string) (*big.Int, bool) {
   107  	if s == "" {
   108  		return new(big.Int), true
   109  	}
   110  	var bigint *big.Int
   111  	var ok bool
   112  	if len(s) >= 2 && (s[:2] == "0x" || s[:2] == "0X") {
   113  		bigint, ok = new(big.Int).SetString(s[2:], 16)
   114  	} else {
   115  		bigint, ok = new(big.Int).SetString(s, 10)
   116  	}
   117  	if ok && bigint.BitLen() > 256 {
   118  		bigint, ok = nil, false
   119  	}
   120  	return bigint, ok
   121  }
   122  
   123  // MustParseBig256 parses s as a 256 bit big integer and panics if the string is invalid.
   124  func MustParseBig256(s string) *big.Int {
   125  	v, ok := ParseBig256(s)
   126  	if !ok {
   127  		panic("invalid 256 bit integer: " + s)
   128  	}
   129  	return v
   130  }
   131  
   132  // BigPow returns a ** b as a big integer.
   133  func BigPow(a, b int64) *big.Int {
   134  	r := big.NewInt(a)
   135  	return r.Exp(r, big.NewInt(b), nil)
   136  }
   137  
   138  // BigMax returns the larger of x or y.
   139  func BigMax(x, y *big.Int) *big.Int {
   140  	if x.Cmp(y) < 0 {
   141  		return y
   142  	}
   143  	return x
   144  }
   145  
   146  // BigMin returns the smaller of x or y.
   147  func BigMin(x, y *big.Int) *big.Int {
   148  	if x.Cmp(y) > 0 {
   149  		return y
   150  	}
   151  	return x
   152  }
   153  
   154  // FirstBitSet returns the index of the first 1 bit in v, counting from LSB.
   155  func FirstBitSet(v *big.Int) int {
   156  	for i := 0; i < v.BitLen(); i++ {
   157  		if v.Bit(i) > 0 {
   158  			return i
   159  		}
   160  	}
   161  	return v.BitLen()
   162  }
   163  
   164  // PaddedBigBytes encodes a big integer as a big-endian byte slice. The length
   165  // of the slice is at least n bytes.
   166  func PaddedBigBytes(bigint *big.Int, n int) []byte {
   167  	if bigint.BitLen()/8 >= n {
   168  		return bigint.Bytes()
   169  	}
   170  	ret := make([]byte, n)
   171  	ReadBits(bigint, ret)
   172  	return ret
   173  }
   174  
   175  // bigEndianByteAt returns the byte at position n,
   176  // in Big-Endian encoding
   177  // So n==0 returns the least significant byte
   178  func bigEndianByteAt(bigint *big.Int, n int) byte {
   179  	words := bigint.Bits()
   180  	// Check word-bucket the byte will reside in
   181  	i := n / wordBytes
   182  	if i >= len(words) {
   183  		return byte(0)
   184  	}
   185  	word := words[i]
   186  	// Offset of the byte
   187  	shift := 8 * uint(n%wordBytes)
   188  
   189  	return byte(word >> shift)
   190  }
   191  
   192  // Byte returns the byte at position n,
   193  // with the supplied padlength in Little-Endian encoding.
   194  // n==0 returns the MSB
   195  // Example: bigint '5', padlength 32, n=31 => 5
   196  func Byte(bigint *big.Int, padlength, n int) byte {
   197  	if n >= padlength {
   198  		return byte(0)
   199  	}
   200  	return bigEndianByteAt(bigint, padlength-1-n)
   201  }
   202  
   203  // ReadBits encodes the absolute value of bigint as big-endian bytes. Callers must ensure
   204  // that buf has enough space. If buf is too short the result will be incomplete.
   205  func ReadBits(bigint *big.Int, buf []byte) {
   206  	i := len(buf)
   207  	for _, d := range bigint.Bits() {
   208  		for j := 0; j < wordBytes && i > 0; j++ {
   209  			i--
   210  			buf[i] = byte(d)
   211  			d >>= 8
   212  		}
   213  	}
   214  }
   215  
   216  // U256 encodes as a 256 bit two's complement number. This operation is destructive.
   217  func U256(x *big.Int) *big.Int {
   218  	return x.And(x, tt256m1)
   219  }
   220  
   221  // U256Bytes converts a big Int into a 256bit EVM number.
   222  // This operation is destructive.
   223  func U256Bytes(n *big.Int) []byte {
   224  	return PaddedBigBytes(U256(n), 32)
   225  }
   226  
   227  // S256 interprets x as a two's complement number.
   228  // x must not exceed 256 bits (the result is undefined if it does) and is not modified.
   229  //
   230  //	S256(0)        = 0
   231  //	S256(1)        = 1
   232  //	S256(2**255)   = -2**255
   233  //	S256(2**256-1) = -1
   234  func S256(x *big.Int) *big.Int {
   235  	if x.Cmp(tt255) < 0 {
   236  		return x
   237  	}
   238  	return new(big.Int).Sub(x, tt256)
   239  }
   240  
   241  // Exp implements exponentiation by squaring.
   242  // Exp returns a newly-allocated big integer and does not change
   243  // base or exponent. The result is truncated to 256 bits.
   244  func Exp(base, exponent *big.Int) *big.Int {
   245  	result := big.NewInt(1)
   246  
   247  	for _, word := range exponent.Bits() {
   248  		for i := 0; i < wordBits; i++ {
   249  			if word&1 == 1 {
   250  				U256(result.Mul(result, base))
   251  			}
   252  			U256(base.Mul(base, base))
   253  			word >>= 1
   254  		}
   255  	}
   256  	return result
   257  }