github.com/dominant-strategies/go-quai@v0.28.2/core/state_transition.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package core
    18  
    19  import (
    20  	"fmt"
    21  	"math"
    22  	"math/big"
    23  
    24  	"github.com/dominant-strategies/go-quai/common"
    25  	cmath "github.com/dominant-strategies/go-quai/common/math"
    26  	"github.com/dominant-strategies/go-quai/core/types"
    27  	"github.com/dominant-strategies/go-quai/core/vm"
    28  	"github.com/dominant-strategies/go-quai/crypto"
    29  	"github.com/dominant-strategies/go-quai/params"
    30  )
    31  
    32  var emptyCodeHash = crypto.Keccak256Hash(nil)
    33  
    34  /*
    35  The State Transitioning Model
    36  
    37  A state transition is a change made when a transaction is applied to the current world state
    38  The state transitioning model does all the necessary work to work out a valid new state root.
    39  
    40  1) Nonce handling
    41  2) Pre pay gas
    42  3) Create a new state object if the recipient is \0*32
    43  4) Value transfer
    44  == If contract creation ==
    45  
    46  	4a) Attempt to run transaction data
    47  	4b) If valid, use result as code for the new state object
    48  
    49  == end ==
    50  5) Run Script section
    51  6) Derive new state root
    52  */
    53  type StateTransition struct {
    54  	gp         *GasPool
    55  	msg        Message
    56  	gas        uint64
    57  	gasPrice   *big.Int
    58  	gasFeeCap  *big.Int
    59  	gasTipCap  *big.Int
    60  	initialGas uint64
    61  	value      *big.Int
    62  	data       []byte
    63  	state      vm.StateDB
    64  	evm        *vm.EVM
    65  }
    66  
    67  // Message represents a message sent to a contract.
    68  type Message interface {
    69  	From() common.Address
    70  	To() *common.Address
    71  
    72  	GasPrice() *big.Int
    73  	GasFeeCap() *big.Int
    74  	GasTipCap() *big.Int
    75  	Gas() uint64
    76  	Value() *big.Int
    77  
    78  	Nonce() uint64
    79  	CheckNonce() bool
    80  	Data() []byte
    81  	AccessList() types.AccessList
    82  	ETXSender() common.Address
    83  	Type() byte
    84  
    85  	ETXGasLimit() uint64
    86  	ETXGasPrice() *big.Int
    87  	ETXGasTip() *big.Int
    88  	ETXData() []byte
    89  	ETXAccessList() types.AccessList
    90  }
    91  
    92  // ExecutionResult includes all output after executing given evm
    93  // message no matter the execution itself is successful or not.
    94  type ExecutionResult struct {
    95  	UsedGas    uint64               // Total used gas but include the refunded gas
    96  	Err        error                // Any error encountered during the execution(listed in core/vm/errors.go)
    97  	ReturnData []byte               // Returned data from evm(function result or data supplied with revert opcode)
    98  	Etxs       []*types.Transaction // External transactions generated from opETX
    99  }
   100  
   101  // Unwrap returns the internal evm error which allows us for further
   102  // analysis outside.
   103  func (result *ExecutionResult) Unwrap() error {
   104  	return result.Err
   105  }
   106  
   107  // Failed returns the indicator whether the execution is successful or not
   108  func (result *ExecutionResult) Failed() bool { return result.Err != nil }
   109  
   110  // Return is a helper function to help caller distinguish between revert reason
   111  // and function return. Return returns the data after execution if no error occurs.
   112  func (result *ExecutionResult) Return() []byte {
   113  	if result.Err != nil {
   114  		return nil
   115  	}
   116  	return common.CopyBytes(result.ReturnData)
   117  }
   118  
   119  // Revert returns the concrete revert reason if the execution is aborted by `REVERT`
   120  // opcode. Note the reason can be nil if no data supplied with revert opcode.
   121  func (result *ExecutionResult) Revert() []byte {
   122  	if result.Err != vm.ErrExecutionReverted {
   123  		return nil
   124  	}
   125  	return common.CopyBytes(result.ReturnData)
   126  }
   127  
   128  // IntrinsicGas computes the 'intrinsic gas' for a message with the given data.
   129  func IntrinsicGas(data []byte, accessList types.AccessList, isContractCreation bool) (uint64, error) {
   130  	// Set the starting gas for the raw transaction
   131  	var gas uint64
   132  	if isContractCreation {
   133  		gas = params.TxGasContractCreation
   134  	} else {
   135  		gas = params.TxGas
   136  	}
   137  	// Bump the required gas by the amount of transactional data
   138  	if len(data) > 0 {
   139  		// Zero and non-zero bytes are priced differently
   140  		var nz uint64
   141  		for _, byt := range data {
   142  			if byt != 0 {
   143  				nz++
   144  			}
   145  		}
   146  		// Make sure we don't exceed uint64 for all data combinations
   147  		nonZeroGas := params.TxDataNonZeroGas
   148  		if (math.MaxUint64-gas)/nonZeroGas < nz {
   149  			return 0, ErrGasUintOverflow
   150  		}
   151  		gas += nz * nonZeroGas
   152  
   153  		z := uint64(len(data)) - nz
   154  		if (math.MaxUint64-gas)/params.TxDataZeroGas < z {
   155  			return 0, ErrGasUintOverflow
   156  		}
   157  		gas += z * params.TxDataZeroGas
   158  	}
   159  	if accessList != nil {
   160  		gas += uint64(len(accessList)) * params.TxAccessListAddressGas
   161  		gas += uint64(accessList.StorageKeys()) * params.TxAccessListStorageKeyGas
   162  	}
   163  	return gas, nil
   164  }
   165  
   166  // NewStateTransition initialises and returns a new state transition object.
   167  func NewStateTransition(evm *vm.EVM, msg Message, gp *GasPool) *StateTransition {
   168  	return &StateTransition{
   169  		gp:        gp,
   170  		evm:       evm,
   171  		msg:       msg,
   172  		gasPrice:  msg.GasPrice(),
   173  		gasFeeCap: msg.GasFeeCap(),
   174  		gasTipCap: msg.GasTipCap(),
   175  		value:     msg.Value(),
   176  		data:      msg.Data(),
   177  		state:     evm.StateDB,
   178  	}
   179  }
   180  
   181  // ApplyMessage computes the new state by applying the given message
   182  // against the old state within the environment.
   183  //
   184  // ApplyMessage returns the bytes returned by any EVM execution (if it took place),
   185  // the gas used (which includes gas refunds) and an error if it failed. An error always
   186  // indicates a core error meaning that the message would always fail for that particular
   187  // state and would never be accepted within a block.
   188  func ApplyMessage(evm *vm.EVM, msg Message, gp *GasPool) (*ExecutionResult, error) {
   189  	return NewStateTransition(evm, msg, gp).TransitionDb()
   190  }
   191  
   192  // to returns the recipient of the message.
   193  func (st *StateTransition) to() common.Address {
   194  	if st.msg == nil || st.msg.To() == nil /* contract creation */ {
   195  		return common.ZeroAddr
   196  	}
   197  	return *st.msg.To()
   198  }
   199  
   200  func (st *StateTransition) buyGas() error {
   201  	mgval := new(big.Int).SetUint64(st.msg.Gas())
   202  	mgval = mgval.Mul(mgval, st.gasPrice)
   203  	balanceCheck := mgval
   204  	if st.gasFeeCap != nil {
   205  		balanceCheck = new(big.Int).SetUint64(st.msg.Gas())
   206  		balanceCheck = balanceCheck.Mul(balanceCheck, st.gasFeeCap)
   207  		balanceCheck.Add(balanceCheck, st.value)
   208  	}
   209  	from, err := st.msg.From().InternalAddress()
   210  	if err != nil {
   211  		return err
   212  	}
   213  	if have, want := st.state.GetBalance(from), balanceCheck; have.Cmp(want) < 0 {
   214  		return fmt.Errorf("%w: address %v have %v want %v", ErrInsufficientFunds, st.msg.From().Hex(), have, want)
   215  	}
   216  	if err := st.gp.SubGas(st.msg.Gas()); err != nil {
   217  		return err
   218  	}
   219  	st.gas += st.msg.Gas()
   220  
   221  	st.initialGas = st.msg.Gas()
   222  	st.state.SubBalance(from, mgval)
   223  	return nil
   224  }
   225  
   226  func (st *StateTransition) preCheck() error {
   227  	from, err := st.msg.From().InternalAddress()
   228  	if err != nil {
   229  		return err
   230  	}
   231  	// Make sure this transaction's nonce is correct.
   232  	if st.msg.CheckNonce() {
   233  		stNonce := st.state.GetNonce(from)
   234  		if msgNonce := st.msg.Nonce(); stNonce < msgNonce {
   235  			return fmt.Errorf("%w: address %v, tx: %d state: %d", ErrNonceTooHigh,
   236  				st.msg.From().Hex(), msgNonce, stNonce)
   237  		} else if stNonce > msgNonce {
   238  			return fmt.Errorf("%w: address %v, tx: %d state: %d", ErrNonceTooLow,
   239  				st.msg.From().Hex(), msgNonce, stNonce)
   240  		}
   241  	}
   242  	// Make sure the sender is an EOA
   243  	if codeHash := st.state.GetCodeHash(from); codeHash != emptyCodeHash && codeHash != (common.Hash{}) {
   244  		return fmt.Errorf("%w: address %v, codehash: %s", ErrSenderNoEOA,
   245  			st.msg.From().Hex(), codeHash)
   246  	}
   247  	// Make sure that transaction gasFeeCap is greater than the baseFee
   248  	// Skip the checks if gas fields are zero and baseFee was explicitly disabled (eth_call)
   249  	if !st.evm.Config.NoBaseFee || st.gasFeeCap.BitLen() > 0 || st.gasTipCap.BitLen() > 0 {
   250  		if l := st.gasFeeCap.BitLen(); l > 256 {
   251  			return fmt.Errorf("%w: address %v, maxFeePerGas bit length: %d", ErrFeeCapVeryHigh,
   252  				st.msg.From().Hex(), l)
   253  		}
   254  		if l := st.gasTipCap.BitLen(); l > 256 {
   255  			return fmt.Errorf("%w: address %v, maxPriorityFeePerGas bit length: %d", ErrTipVeryHigh,
   256  				st.msg.From().Hex(), l)
   257  		}
   258  		if st.gasFeeCap.Cmp(st.gasTipCap) < 0 {
   259  			return fmt.Errorf("%w: address %v, maxPriorityFeePerGas: %s, maxFeePerGas: %s", ErrTipAboveFeeCap,
   260  				st.msg.From().Hex(), st.gasTipCap, st.gasFeeCap)
   261  		}
   262  		// This will panic if baseFee is nil, but basefee presence is verified
   263  		// as part of header validation.
   264  		if st.gasFeeCap.Cmp(st.evm.Context.BaseFee) < 0 {
   265  			return fmt.Errorf("%w: address %v, maxFeePerGas: %s baseFee: %s", ErrFeeCapTooLow,
   266  				st.msg.From().Hex(), st.gasFeeCap, st.evm.Context.BaseFee)
   267  		}
   268  	}
   269  	return st.buyGas()
   270  }
   271  
   272  // TransitionDb will transition the state by applying the current message and
   273  // returning the evm execution result with following fields.
   274  //
   275  //   - used gas:
   276  //     total gas used (including gas being refunded)
   277  //   - returndata:
   278  //     the returned data from evm
   279  //   - concrete execution error:
   280  //     various **EVM** error which aborts the execution,
   281  //     e.g. ErrOutOfGas, ErrExecutionReverted
   282  //
   283  // However if any consensus issue encountered, return the error directly with
   284  // nil evm execution result.
   285  func (st *StateTransition) TransitionDb() (*ExecutionResult, error) {
   286  	// First check this message satisfies all consensus rules before
   287  	// applying the message. The rules include these clauses
   288  	//
   289  	// 1. the nonce of the message caller is correct
   290  	// 2. caller has enough balance to cover transaction fee(gaslimit * gasprice)
   291  	// 3. the amount of gas required is available in the block
   292  	// 4. the purchased gas is enough to cover intrinsic usage
   293  	// 5. there is no overflow when calculating intrinsic gas
   294  	// 6. caller has enough balance to cover asset transfer for **topmost** call
   295  
   296  	// Check clauses 1-3, buy gas if everything is correct
   297  	if err := st.preCheck(); err != nil {
   298  		return nil, err
   299  	}
   300  	msg := st.msg
   301  	sender := vm.AccountRef(msg.From())
   302  	contractCreation := msg.To() == nil
   303  
   304  	// Check clauses 4-5, subtract intrinsic gas if everything is correct
   305  	gas, err := IntrinsicGas(st.data, st.msg.AccessList(), contractCreation)
   306  	if err != nil {
   307  		return nil, err
   308  	}
   309  	if st.gas < gas {
   310  		return nil, fmt.Errorf("%w: have %d, want %d", ErrIntrinsicGas, st.gas, gas)
   311  	}
   312  	st.gas -= gas
   313  
   314  	// Check clause 6
   315  	if msg.Value().Sign() > 0 && !st.evm.Context.CanTransfer(st.state, msg.From(), msg.Value()) {
   316  		return nil, fmt.Errorf("%w: address %v", ErrInsufficientFundsForTransfer, msg.From().Hex())
   317  	}
   318  
   319  	// Set up the initial access list.
   320  	rules := st.evm.ChainConfig().Rules(st.evm.Context.BlockNumber)
   321  	st.state.PrepareAccessList(msg.From(), msg.To(), vm.ActivePrecompiles(rules), msg.AccessList())
   322  
   323  	var (
   324  		ret   []byte
   325  		vmerr error // vm errors do not effect consensus and are therefore not assigned to err
   326  	)
   327  	if contractCreation {
   328  		ret, _, st.gas, vmerr = st.evm.Create(sender, st.data, st.gas, st.value)
   329  	} else {
   330  		// Increment the nonce for the next transaction
   331  		addr, err := sender.Address().InternalAddress()
   332  		if err != nil {
   333  			return nil, err
   334  		}
   335  		from, err := msg.From().InternalAddress()
   336  		if err != nil {
   337  			return nil, err
   338  		}
   339  		st.state.SetNonce(from, st.state.GetNonce(addr)+1)
   340  		ret, st.gas, vmerr = st.evm.Call(sender, st.to(), st.data, st.gas, st.value)
   341  	}
   342  
   343  	// At this point, the execution completed, so the ETX cache can be dumped and reset
   344  	st.evm.ETXCacheLock.Lock()
   345  	etxs := make([]*types.Transaction, len(st.evm.ETXCache))
   346  	copy(etxs, st.evm.ETXCache)
   347  	st.evm.ETXCache = make([]*types.Transaction, 0)
   348  	st.evm.ETXCacheLock.Unlock()
   349  
   350  	// refunds are capped to gasUsed / 5
   351  	st.refundGas(params.RefundQuotient)
   352  
   353  	effectiveTip := cmath.BigMin(st.gasTipCap, new(big.Int).Sub(st.gasFeeCap, st.evm.Context.BaseFee))
   354  	coinbase, err := st.evm.Context.Coinbase.InternalAddress()
   355  	if err != nil {
   356  		return nil, err
   357  	}
   358  	st.state.AddBalance(coinbase, new(big.Int).Mul(new(big.Int).SetUint64(st.gasUsed()), effectiveTip))
   359  
   360  	return &ExecutionResult{
   361  		UsedGas:    st.gasUsed(),
   362  		Err:        vmerr,
   363  		ReturnData: ret,
   364  		Etxs:       etxs,
   365  	}, nil
   366  }
   367  
   368  func (st *StateTransition) refundGas(refundQuotient uint64) {
   369  	// Apply refund counter, capped to a refund quotient
   370  	refund := st.gasUsed() / refundQuotient
   371  	if refund > st.state.GetRefund() {
   372  		refund = st.state.GetRefund()
   373  	}
   374  	st.gas += refund
   375  
   376  	// Return ETH for remaining gas, exchanged at the original rate.
   377  	remaining := new(big.Int).Mul(new(big.Int).SetUint64(st.gas), st.gasPrice)
   378  	from, err := st.msg.From().InternalAddress()
   379  	if err != nil {
   380  		return
   381  	}
   382  	st.state.AddBalance(from, remaining)
   383  
   384  	// Also return remaining gas to the block gas counter so it is
   385  	// available for the next transaction.
   386  	st.gp.AddGas(st.gas)
   387  }
   388  
   389  // gasUsed returns the amount of gas used up by the state transition.
   390  func (st *StateTransition) gasUsed() uint64 {
   391  	return st.initialGas - st.gas
   392  }