github.com/dominant-strategies/go-quai@v0.28.2/crypto/crypto.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package crypto 18 19 import ( 20 "bufio" 21 "crypto/ecdsa" 22 "crypto/elliptic" 23 "crypto/rand" 24 "encoding/binary" 25 "encoding/hex" 26 "errors" 27 "fmt" 28 "hash" 29 "io" 30 "io/ioutil" 31 "math/big" 32 "os" 33 34 "github.com/dominant-strategies/go-quai/common" 35 "github.com/dominant-strategies/go-quai/common/math" 36 "golang.org/x/crypto/sha3" 37 ) 38 39 // SignatureLength indicates the byte length required to carry a signature with recovery id. 40 const SignatureLength = 64 + 1 // 64 bytes ECDSA signature + 1 byte recovery id 41 42 // RecoveryIDOffset points to the byte offset within the signature that contains the recovery id. 43 const RecoveryIDOffset = 64 44 45 // DigestLength sets the signature digest exact length 46 const DigestLength = 32 47 48 var ( 49 secp256k1N, _ = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16) 50 secp256k1halfN = new(big.Int).Div(secp256k1N, big.NewInt(2)) 51 ) 52 53 var errInvalidPubkey = errors.New("invalid secp256k1 public key") 54 55 // KeccakState wraps sha3.state. In addition to the usual hash methods, it also supports 56 // Read to get a variable amount of data from the hash state. Read is faster than Sum 57 // because it doesn't copy the internal state, but also modifies the internal state. 58 type KeccakState interface { 59 hash.Hash 60 Read([]byte) (int, error) 61 } 62 63 // NewKeccakState creates a new KeccakState 64 func NewKeccakState() KeccakState { 65 return sha3.NewLegacyKeccak256().(KeccakState) 66 } 67 68 // HashData hashes the provided data using the KeccakState and returns a 32 byte hash 69 func HashData(kh KeccakState, data []byte) (h common.Hash) { 70 kh.Reset() 71 kh.Write(data) 72 kh.Read(h[:]) 73 return h 74 } 75 76 // Keccak256 calculates and returns the Keccak256 hash of the input data. 77 func Keccak256(data ...[]byte) []byte { 78 b := make([]byte, 32) 79 d := NewKeccakState() 80 for _, b := range data { 81 d.Write(b) 82 } 83 d.Read(b) 84 return b 85 } 86 87 // Keccak256Hash calculates and returns the Keccak256 hash of the input data, 88 // converting it to an internal Hash data structure. 89 func Keccak256Hash(data ...[]byte) (h common.Hash) { 90 d := NewKeccakState() 91 for _, b := range data { 92 d.Write(b) 93 } 94 d.Read(h[:]) 95 return h 96 } 97 98 // Keccak512 calculates and returns the Keccak512 hash of the input data. 99 func Keccak512(data ...[]byte) []byte { 100 d := sha3.NewLegacyKeccak512() 101 for _, b := range data { 102 d.Write(b) 103 } 104 return d.Sum(nil) 105 } 106 107 // CreateAddress creates an quai address given the bytes and the nonce 108 func CreateAddress(b common.Address, nonce uint64, code []byte) common.Address { 109 nonceBytes := make([]byte, 8) 110 binary.BigEndian.PutUint64(nonceBytes, uint64(nonce)) 111 return common.BytesToAddress(Keccak256(b.Bytes(), nonceBytes, code)[12:]) 112 } 113 114 // CreateAddress2 creates an quai address given the address bytes, initial 115 // contract code hash and a salt. 116 func CreateAddress2(b common.Address, salt [32]byte, inithash []byte) common.Address { 117 return common.BytesToAddress(Keccak256([]byte{0xff}, b.Bytes(), salt[:], inithash)[12:]) 118 } 119 120 // ToECDSA creates a private key with the given D value. 121 func ToECDSA(d []byte) (*ecdsa.PrivateKey, error) { 122 return toECDSA(d, true) 123 } 124 125 // ToECDSAUnsafe blindly converts a binary blob to a private key. It should almost 126 // never be used unless you are sure the input is valid and want to avoid hitting 127 // errors due to bad origin encoding (0 prefixes cut off). 128 func ToECDSAUnsafe(d []byte) *ecdsa.PrivateKey { 129 priv, _ := toECDSA(d, false) 130 return priv 131 } 132 133 // toECDSA creates a private key with the given D value. The strict parameter 134 // controls whether the key's length should be enforced at the curve size or 135 // it can also accept legacy encodings (0 prefixes). 136 func toECDSA(d []byte, strict bool) (*ecdsa.PrivateKey, error) { 137 priv := new(ecdsa.PrivateKey) 138 priv.PublicKey.Curve = S256() 139 if strict && 8*len(d) != priv.Params().BitSize { 140 return nil, fmt.Errorf("invalid length, need %d bits", priv.Params().BitSize) 141 } 142 priv.D = new(big.Int).SetBytes(d) 143 144 // The priv.D must < N 145 if priv.D.Cmp(secp256k1N) >= 0 { 146 return nil, fmt.Errorf("invalid private key, >=N") 147 } 148 // The priv.D must not be zero or negative. 149 if priv.D.Sign() <= 0 { 150 return nil, fmt.Errorf("invalid private key, zero or negative") 151 } 152 153 priv.PublicKey.X, priv.PublicKey.Y = priv.PublicKey.Curve.ScalarBaseMult(d) 154 if priv.PublicKey.X == nil { 155 return nil, errors.New("invalid private key") 156 } 157 return priv, nil 158 } 159 160 // FromECDSA exports a private key into a binary dump. 161 func FromECDSA(priv *ecdsa.PrivateKey) []byte { 162 if priv == nil { 163 return nil 164 } 165 return math.PaddedBigBytes(priv.D, priv.Params().BitSize/8) 166 } 167 168 // UnmarshalPubkey converts bytes to a secp256k1 public key. 169 func UnmarshalPubkey(pub []byte) (*ecdsa.PublicKey, error) { 170 x, y := elliptic.Unmarshal(S256(), pub) 171 if x == nil { 172 return nil, errInvalidPubkey 173 } 174 return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil 175 } 176 177 func FromECDSAPub(pub *ecdsa.PublicKey) []byte { 178 if pub == nil || pub.X == nil || pub.Y == nil { 179 return nil 180 } 181 return elliptic.Marshal(S256(), pub.X, pub.Y) 182 } 183 184 // HexToECDSA parses a secp256k1 private key. 185 func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) { 186 b, err := hex.DecodeString(hexkey) 187 if byteErr, ok := err.(hex.InvalidByteError); ok { 188 return nil, fmt.Errorf("invalid hex character %q in private key", byte(byteErr)) 189 } else if err != nil { 190 return nil, errors.New("invalid hex data for private key") 191 } 192 return ToECDSA(b) 193 } 194 195 // LoadECDSA loads a secp256k1 private key from the given file. 196 func LoadECDSA(file string) (*ecdsa.PrivateKey, error) { 197 fd, err := os.Open(file) 198 if err != nil { 199 return nil, err 200 } 201 defer fd.Close() 202 203 r := bufio.NewReader(fd) 204 buf := make([]byte, 64) 205 n, err := readASCII(buf, r) 206 if err != nil { 207 return nil, err 208 } else if n != len(buf) { 209 return nil, fmt.Errorf("key file too short, want 64 hex characters") 210 } 211 if err := checkKeyFileEnd(r); err != nil { 212 return nil, err 213 } 214 215 return HexToECDSA(string(buf)) 216 } 217 218 // readASCII reads into 'buf', stopping when the buffer is full or 219 // when a non-printable control character is encountered. 220 func readASCII(buf []byte, r *bufio.Reader) (n int, err error) { 221 for ; n < len(buf); n++ { 222 buf[n], err = r.ReadByte() 223 switch { 224 case err == io.EOF || buf[n] < '!': 225 return n, nil 226 case err != nil: 227 return n, err 228 } 229 } 230 return n, nil 231 } 232 233 // checkKeyFileEnd skips over additional newlines at the end of a key file. 234 func checkKeyFileEnd(r *bufio.Reader) error { 235 for i := 0; ; i++ { 236 b, err := r.ReadByte() 237 switch { 238 case err == io.EOF: 239 return nil 240 case err != nil: 241 return err 242 case b != '\n' && b != '\r': 243 return fmt.Errorf("invalid character %q at end of key file", b) 244 case i >= 2: 245 return errors.New("key file too long, want 64 hex characters") 246 } 247 } 248 } 249 250 // SaveECDSA saves a secp256k1 private key to the given file with 251 // restrictive permissions. The key data is saved hex-encoded. 252 func SaveECDSA(file string, key *ecdsa.PrivateKey) error { 253 k := hex.EncodeToString(FromECDSA(key)) 254 return ioutil.WriteFile(file, []byte(k), 0600) 255 } 256 257 // GenerateKey generates a new private key. 258 func GenerateKey() (*ecdsa.PrivateKey, error) { 259 return ecdsa.GenerateKey(S256(), rand.Reader) 260 } 261 262 // ValidateSignatureValues verifies whether the signature values are valid with 263 // the given chain rules. The v value is assumed to be either 0 or 1. 264 func ValidateSignatureValues(v byte, r, s *big.Int) bool { 265 if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 { 266 return false 267 } 268 // reject upper range of s values (ECDSA malleability) 269 // see discussion in secp256k1/libsecp256k1/include/secp256k1.h 270 if s.Cmp(secp256k1halfN) > 0 { 271 return false 272 } 273 // allow s to be in full N range 274 return r.Cmp(secp256k1N) < 0 && s.Cmp(secp256k1N) < 0 && (v == 0 || v == 1) 275 } 276 277 func PubkeyToAddress(p ecdsa.PublicKey) common.Address { 278 pubBytes := FromECDSAPub(&p) 279 return common.BytesToAddress(Keccak256(pubBytes[1:])[12:]) 280 } 281 282 func zeroBytes(bytes []byte) { 283 for i := range bytes { 284 bytes[i] = 0 285 } 286 }