github.com/dominant-strategies/go-quai@v0.28.2/trie/trie.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 // Package trie implements Merkle Patricia Tries. 18 package trie 19 20 import ( 21 "bytes" 22 "errors" 23 "fmt" 24 25 "github.com/dominant-strategies/go-quai/common" 26 "github.com/dominant-strategies/go-quai/crypto" 27 "github.com/dominant-strategies/go-quai/log" 28 "sync" 29 ) 30 31 var ( 32 // emptyRoot is the known root hash of an empty trie. 33 emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421") 34 35 // emptyState is the known hash of an empty state trie entry. 36 emptyState = crypto.Keccak256Hash(nil) 37 ) 38 39 // LeafCallback is a callback type invoked when a trie operation reaches a leaf 40 // node. 41 // 42 // The paths is a path tuple identifying a particular trie node either in a single 43 // trie (account) or a layered trie (account -> storage). Each path in the tuple 44 // is in the raw format(32 bytes). 45 // 46 // The hexpath is a composite hexary path identifying the trie node. All the key 47 // bytes are converted to the hexary nibbles and composited with the parent path 48 // if the trie node is in a layered trie. 49 // 50 // It's used by state sync and commit to allow handling external references 51 // between account and storage tries. And also it's used in the state healing 52 // for extracting the raw states(leaf nodes) with corresponding paths. 53 type LeafCallback func(paths [][]byte, hexpath []byte, leaf []byte, parent common.Hash) error 54 55 // Trie is a Merkle Patricia Trie. 56 // The zero value is an empty trie with no database. 57 // Use New to create a trie that sits on top of a database. 58 // 59 // Trie is not safe for concurrent use. 60 type Trie struct { 61 db *Database 62 root node 63 // Keep track of the number leafs which have been inserted since the last 64 // hashing operation. This number will not directly map to the number of 65 // actually unhashed nodes 66 unhashed int 67 } 68 69 // newFlag returns the cache flag value for a newly created node. 70 func (t *Trie) newFlag() nodeFlag { 71 return nodeFlag{dirty: true} 72 } 73 74 // New creates a trie with an existing root node from db. 75 // 76 // If root is the zero hash or the sha3 hash of an empty string, the 77 // trie is initially empty and does not require a database. Otherwise, 78 // New will panic if db is nil and returns a MissingNodeError if root does 79 // not exist in the database. Accessing the trie loads nodes from db on demand. 80 func New(root common.Hash, db *Database) (*Trie, error) { 81 if db == nil { 82 panic("trie.New called without a database") 83 } 84 trie := &Trie{ 85 db: db, 86 } 87 if root != (common.Hash{}) && root != emptyRoot { 88 rootnode, err := trie.resolveHash(root[:], nil) 89 if err != nil { 90 return nil, err 91 } 92 trie.root = rootnode 93 } 94 return trie, nil 95 } 96 97 // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at 98 // the key after the given start key. 99 func (t *Trie) NodeIterator(start []byte) NodeIterator { 100 return newNodeIterator(t, start) 101 } 102 103 // Get returns the value for key stored in the trie. 104 // The value bytes must not be modified by the caller. 105 func (t *Trie) Get(key []byte) []byte { 106 res, err := t.TryGet(key) 107 if err != nil { 108 log.Error(fmt.Sprintf("Unhandled trie error: %v", err)) 109 } 110 return res 111 } 112 113 // TryGet returns the value for key stored in the trie. 114 // The value bytes must not be modified by the caller. 115 // If a node was not found in the database, a MissingNodeError is returned. 116 func (t *Trie) TryGet(key []byte) ([]byte, error) { 117 value, newroot, didResolve, err := t.tryGet(t.root, keybytesToHex(key), 0) 118 if err == nil && didResolve { 119 t.root = newroot 120 } 121 return value, err 122 } 123 124 func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) { 125 switch n := (origNode).(type) { 126 case nil: 127 return nil, nil, false, nil 128 case valueNode: 129 return n, n, false, nil 130 case *shortNode: 131 if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) { 132 // key not found in trie 133 return nil, n, false, nil 134 } 135 value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key)) 136 if err == nil && didResolve { 137 n = n.copy() 138 n.Val = newnode 139 } 140 return value, n, didResolve, err 141 case *fullNode: 142 value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1) 143 if err == nil && didResolve { 144 n = n.copy() 145 n.Children[key[pos]] = newnode 146 } 147 return value, n, didResolve, err 148 case hashNode: 149 child, err := t.resolveHash(n, key[:pos]) 150 if err != nil { 151 return nil, n, true, err 152 } 153 value, newnode, _, err := t.tryGet(child, key, pos) 154 return value, newnode, true, err 155 default: 156 panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode)) 157 } 158 } 159 160 // TryGetNode attempts to retrieve a trie node by compact-encoded path. It is not 161 // possible to use keybyte-encoding as the path might contain odd nibbles. 162 func (t *Trie) TryGetNode(path []byte) ([]byte, int, error) { 163 item, newroot, resolved, err := t.tryGetNode(t.root, compactToHex(path), 0) 164 if err != nil { 165 return nil, resolved, err 166 } 167 if resolved > 0 { 168 t.root = newroot 169 } 170 if item == nil { 171 return nil, resolved, nil 172 } 173 return item, resolved, err 174 } 175 176 func (t *Trie) tryGetNode(origNode node, path []byte, pos int) (item []byte, newnode node, resolved int, err error) { 177 // If we reached the requested path, return the current node 178 if pos >= len(path) { 179 // Although we most probably have the original node expanded, encoding 180 // that into consensus form can be nasty (needs to cascade down) and 181 // time consuming. Instead, just pull the hash up from disk directly. 182 var hash hashNode 183 if node, ok := origNode.(hashNode); ok { 184 hash = node 185 } else { 186 hash, _ = origNode.cache() 187 } 188 if hash == nil { 189 return nil, origNode, 0, errors.New("non-consensus node") 190 } 191 blob, err := t.db.Node(common.BytesToHash(hash)) 192 return blob, origNode, 1, err 193 } 194 // Path still needs to be traversed, descend into children 195 switch n := (origNode).(type) { 196 case nil: 197 // Non-existent path requested, abort 198 return nil, nil, 0, nil 199 200 case valueNode: 201 // Path prematurely ended, abort 202 return nil, nil, 0, nil 203 204 case *shortNode: 205 if len(path)-pos < len(n.Key) || !bytes.Equal(n.Key, path[pos:pos+len(n.Key)]) { 206 // Path branches off from short node 207 return nil, n, 0, nil 208 } 209 item, newnode, resolved, err = t.tryGetNode(n.Val, path, pos+len(n.Key)) 210 if err == nil && resolved > 0 { 211 n = n.copy() 212 n.Val = newnode 213 } 214 return item, n, resolved, err 215 216 case *fullNode: 217 item, newnode, resolved, err = t.tryGetNode(n.Children[path[pos]], path, pos+1) 218 if err == nil && resolved > 0 { 219 n = n.copy() 220 n.Children[path[pos]] = newnode 221 } 222 return item, n, resolved, err 223 224 case hashNode: 225 child, err := t.resolveHash(n, path[:pos]) 226 if err != nil { 227 return nil, n, 1, err 228 } 229 item, newnode, resolved, err := t.tryGetNode(child, path, pos) 230 return item, newnode, resolved + 1, err 231 232 default: 233 panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode)) 234 } 235 } 236 237 // Update associates key with value in the trie. Subsequent calls to 238 // Get will return value. If value has length zero, any existing value 239 // is deleted from the trie and calls to Get will return nil. 240 // 241 // The value bytes must not be modified by the caller while they are 242 // stored in the trie. 243 func (t *Trie) Update(key, value []byte) { 244 if err := t.TryUpdate(key, value); err != nil { 245 log.Error(fmt.Sprintf("Unhandled trie error: %v", err)) 246 } 247 } 248 249 // TryUpdate associates key with value in the trie. Subsequent calls to 250 // Get will return value. If value has length zero, any existing value 251 // is deleted from the trie and calls to Get will return nil. 252 // 253 // The value bytes must not be modified by the caller while they are 254 // stored in the trie. 255 // 256 // If a node was not found in the database, a MissingNodeError is returned. 257 func (t *Trie) TryUpdate(key, value []byte) error { 258 t.unhashed++ 259 k := keybytesToHex(key) 260 if len(value) != 0 { 261 _, n, err := t.insert(t.root, nil, k, valueNode(value)) 262 if err != nil { 263 return err 264 } 265 t.root = n 266 } else { 267 _, n, err := t.delete(t.root, nil, k) 268 if err != nil { 269 return err 270 } 271 t.root = n 272 } 273 return nil 274 } 275 276 func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) { 277 if len(key) == 0 { 278 if v, ok := n.(valueNode); ok { 279 return !bytes.Equal(v, value.(valueNode)), value, nil 280 } 281 return true, value, nil 282 } 283 switch n := n.(type) { 284 case *shortNode: 285 matchlen := prefixLen(key, n.Key) 286 // If the whole key matches, keep this short node as is 287 // and only update the value. 288 if matchlen == len(n.Key) { 289 dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value) 290 if !dirty || err != nil { 291 return false, n, err 292 } 293 return true, &shortNode{n.Key, nn, t.newFlag()}, nil 294 } 295 // Otherwise branch out at the index where they differ. 296 branch := &fullNode{flags: t.newFlag()} 297 var err error 298 _, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val) 299 if err != nil { 300 return false, nil, err 301 } 302 _, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value) 303 if err != nil { 304 return false, nil, err 305 } 306 // Replace this shortNode with the branch if it occurs at index 0. 307 if matchlen == 0 { 308 return true, branch, nil 309 } 310 // Otherwise, replace it with a short node leading up to the branch. 311 return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil 312 313 case *fullNode: 314 dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value) 315 if !dirty || err != nil { 316 return false, n, err 317 } 318 n = n.copy() 319 n.flags = t.newFlag() 320 n.Children[key[0]] = nn 321 return true, n, nil 322 323 case nil: 324 return true, &shortNode{key, value, t.newFlag()}, nil 325 326 case hashNode: 327 // We've hit a part of the trie that isn't loaded yet. Load 328 // the node and insert into it. This leaves all child nodes on 329 // the path to the value in the trie. 330 rn, err := t.resolveHash(n, prefix) 331 if err != nil { 332 return false, nil, err 333 } 334 dirty, nn, err := t.insert(rn, prefix, key, value) 335 if !dirty || err != nil { 336 return false, rn, err 337 } 338 return true, nn, nil 339 340 default: 341 panic(fmt.Sprintf("%T: invalid node: %v", n, n)) 342 } 343 } 344 345 // Delete removes any existing value for key from the trie. 346 func (t *Trie) Delete(key []byte) { 347 if err := t.TryDelete(key); err != nil { 348 log.Error(fmt.Sprintf("Unhandled trie error: %v", err)) 349 } 350 } 351 352 // TryDelete removes any existing value for key from the trie. 353 // If a node was not found in the database, a MissingNodeError is returned. 354 func (t *Trie) TryDelete(key []byte) error { 355 t.unhashed++ 356 k := keybytesToHex(key) 357 _, n, err := t.delete(t.root, nil, k) 358 if err != nil { 359 return err 360 } 361 t.root = n 362 return nil 363 } 364 365 // delete returns the new root of the trie with key deleted. 366 // It reduces the trie to minimal form by simplifying 367 // nodes on the way up after deleting recursively. 368 func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) { 369 switch n := n.(type) { 370 case *shortNode: 371 matchlen := prefixLen(key, n.Key) 372 if matchlen < len(n.Key) { 373 return false, n, nil // don't replace n on mismatch 374 } 375 if matchlen == len(key) { 376 return true, nil, nil // remove n entirely for whole matches 377 } 378 // The key is longer than n.Key. Remove the remaining suffix 379 // from the subtrie. Child can never be nil here since the 380 // subtrie must contain at least two other values with keys 381 // longer than n.Key. 382 dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):]) 383 if !dirty || err != nil { 384 return false, n, err 385 } 386 switch child := child.(type) { 387 case *shortNode: 388 // Deleting from the subtrie reduced it to another 389 // short node. Merge the nodes to avoid creating a 390 // shortNode{..., shortNode{...}}. Use concat (which 391 // always creates a new slice) instead of append to 392 // avoid modifying n.Key since it might be shared with 393 // other nodes. 394 return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil 395 default: 396 return true, &shortNode{n.Key, child, t.newFlag()}, nil 397 } 398 399 case *fullNode: 400 dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:]) 401 if !dirty || err != nil { 402 return false, n, err 403 } 404 n = n.copy() 405 n.flags = t.newFlag() 406 n.Children[key[0]] = nn 407 408 // Because n is a full node, it must've contained at least two children 409 // before the delete operation. If the new child value is non-nil, n still 410 // has at least two children after the deletion, and cannot be reduced to 411 // a short node. 412 if nn != nil { 413 return true, n, nil 414 } 415 // Reduction: 416 // Check how many non-nil entries are left after deleting and 417 // reduce the full node to a short node if only one entry is 418 // left. Since n must've contained at least two children 419 // before deletion (otherwise it would not be a full node) n 420 // can never be reduced to nil. 421 // 422 // When the loop is done, pos contains the index of the single 423 // value that is left in n or -2 if n contains at least two 424 // values. 425 pos := -1 426 for i, cld := range &n.Children { 427 if cld != nil { 428 if pos == -1 { 429 pos = i 430 } else { 431 pos = -2 432 break 433 } 434 } 435 } 436 if pos >= 0 { 437 if pos != 16 { 438 // If the remaining entry is a short node, it replaces 439 // n and its key gets the missing nibble tacked to the 440 // front. This avoids creating an invalid 441 // shortNode{..., shortNode{...}}. Since the entry 442 // might not be loaded yet, resolve it just for this 443 // check. 444 cnode, err := t.resolve(n.Children[pos], prefix) 445 if err != nil { 446 return false, nil, err 447 } 448 if cnode, ok := cnode.(*shortNode); ok { 449 k := append([]byte{byte(pos)}, cnode.Key...) 450 return true, &shortNode{k, cnode.Val, t.newFlag()}, nil 451 } 452 } 453 // Otherwise, n is replaced by a one-nibble short node 454 // containing the child. 455 return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil 456 } 457 // n still contains at least two values and cannot be reduced. 458 return true, n, nil 459 460 case valueNode: 461 return true, nil, nil 462 463 case nil: 464 return false, nil, nil 465 466 case hashNode: 467 // We've hit a part of the trie that isn't loaded yet. Load 468 // the node and delete from it. This leaves all child nodes on 469 // the path to the value in the trie. 470 rn, err := t.resolveHash(n, prefix) 471 if err != nil { 472 return false, nil, err 473 } 474 dirty, nn, err := t.delete(rn, prefix, key) 475 if !dirty || err != nil { 476 return false, rn, err 477 } 478 return true, nn, nil 479 480 default: 481 panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key)) 482 } 483 } 484 485 func concat(s1 []byte, s2 ...byte) []byte { 486 r := make([]byte, len(s1)+len(s2)) 487 copy(r, s1) 488 copy(r[len(s1):], s2) 489 return r 490 } 491 492 func (t *Trie) resolve(n node, prefix []byte) (node, error) { 493 if n, ok := n.(hashNode); ok { 494 return t.resolveHash(n, prefix) 495 } 496 return n, nil 497 } 498 499 func (t *Trie) resolveHash(n hashNode, prefix []byte) (node, error) { 500 hash := common.BytesToHash(n) 501 if node := t.db.node(hash); node != nil { 502 return node, nil 503 } 504 return nil, &MissingNodeError{NodeHash: hash, Path: prefix} 505 } 506 507 // Hash returns the root hash of the trie. It does not write to the 508 // database and can be used even if the trie doesn't have one. 509 func (t *Trie) Hash() common.Hash { 510 hash, cached, _ := t.hashRoot() 511 t.root = cached 512 return common.BytesToHash(hash.(hashNode)) 513 } 514 515 // Commit writes all nodes to the trie's memory database, tracking the internal 516 // and external (for account tries) references. 517 func (t *Trie) Commit(onleaf LeafCallback) (root common.Hash, err error) { 518 if t.db == nil { 519 panic("commit called on trie with nil database") 520 } 521 if t.root == nil { 522 return emptyRoot, nil 523 } 524 // Derive the hash for all dirty nodes first. We hold the assumption 525 // in the following procedure that all nodes are hashed. 526 rootHash := t.Hash() 527 h := newCommitter() 528 defer returnCommitterToPool(h) 529 530 // Do a quick check if we really need to commit, before we spin 531 // up goroutines. This can happen e.g. if we load a trie for reading storage 532 // values, but don't write to it. 533 if _, dirty := t.root.cache(); !dirty { 534 return rootHash, nil 535 } 536 var wg sync.WaitGroup 537 if onleaf != nil { 538 h.onleaf = onleaf 539 h.leafCh = make(chan *leaf, leafChanSize) 540 wg.Add(1) 541 go func() { 542 defer wg.Done() 543 h.commitLoop(t.db) 544 }() 545 } 546 var newRoot hashNode 547 newRoot, err = h.Commit(t.root, t.db) 548 if onleaf != nil { 549 // The leafch is created in newCommitter if there was an onleaf callback 550 // provided. The commitLoop only _reads_ from it, and the commit 551 // operation was the sole writer. Therefore, it's safe to close this 552 // channel here. 553 close(h.leafCh) 554 wg.Wait() 555 } 556 if err != nil { 557 return common.Hash{}, err 558 } 559 t.root = newRoot 560 return rootHash, nil 561 } 562 563 // hashRoot calculates the root hash of the given trie 564 func (t *Trie) hashRoot() (node, node, error) { 565 if t.root == nil { 566 return hashNode(emptyRoot.Bytes()), nil, nil 567 } 568 // If the number of changes is below 100, we let one thread handle it 569 h := newHasher(t.unhashed >= 100) 570 defer returnHasherToPool(h) 571 hashed, cached := h.hash(t.root, true) 572 t.unhashed = 0 573 return hashed, cached, nil 574 } 575 576 // Reset drops the referenced root node and cleans all internal state. 577 func (t *Trie) Reset() { 578 t.root = nil 579 t.unhashed = 0 580 }