github.com/dougneal/terraform@v0.6.15-0.20170330092735-b6a3840768a4/helper/schema/field_reader.go (about)

     1  package schema
     2  
     3  import (
     4  	"fmt"
     5  	"strconv"
     6  )
     7  
     8  // FieldReaders are responsible for decoding fields out of data into
     9  // the proper typed representation. ResourceData uses this to query data
    10  // out of multiple sources: config, state, diffs, etc.
    11  type FieldReader interface {
    12  	ReadField([]string) (FieldReadResult, error)
    13  }
    14  
    15  // FieldReadResult encapsulates all the resulting data from reading
    16  // a field.
    17  type FieldReadResult struct {
    18  	// Value is the actual read value. NegValue is the _negative_ value
    19  	// or the items that should be removed (if they existed). NegValue
    20  	// doesn't make sense for primitives but is important for any
    21  	// container types such as maps, sets, lists.
    22  	Value          interface{}
    23  	ValueProcessed interface{}
    24  
    25  	// Exists is true if the field was found in the data. False means
    26  	// it wasn't found if there was no error.
    27  	Exists bool
    28  
    29  	// Computed is true if the field was found but the value
    30  	// is computed.
    31  	Computed bool
    32  }
    33  
    34  // ValueOrZero returns the value of this result or the zero value of the
    35  // schema type, ensuring a consistent non-nil return value.
    36  func (r *FieldReadResult) ValueOrZero(s *Schema) interface{} {
    37  	if r.Value != nil {
    38  		return r.Value
    39  	}
    40  
    41  	return s.ZeroValue()
    42  }
    43  
    44  // addrToSchema finds the final element schema for the given address
    45  // and the given schema. It returns all the schemas that led to the final
    46  // schema. These are in order of the address (out to in).
    47  func addrToSchema(addr []string, schemaMap map[string]*Schema) []*Schema {
    48  	current := &Schema{
    49  		Type: typeObject,
    50  		Elem: schemaMap,
    51  	}
    52  
    53  	// If we aren't given an address, then the user is requesting the
    54  	// full object, so we return the special value which is the full object.
    55  	if len(addr) == 0 {
    56  		return []*Schema{current}
    57  	}
    58  
    59  	result := make([]*Schema, 0, len(addr))
    60  	for len(addr) > 0 {
    61  		k := addr[0]
    62  		addr = addr[1:]
    63  
    64  	REPEAT:
    65  		// We want to trim off the first "typeObject" since its not a
    66  		// real lookup that people do. i.e. []string{"foo"} in a structure
    67  		// isn't {typeObject, typeString}, its just a {typeString}.
    68  		if len(result) > 0 || current.Type != typeObject {
    69  			result = append(result, current)
    70  		}
    71  
    72  		switch t := current.Type; t {
    73  		case TypeBool, TypeInt, TypeFloat, TypeString:
    74  			if len(addr) > 0 {
    75  				return nil
    76  			}
    77  		case TypeList, TypeSet:
    78  			isIndex := len(addr) > 0 && addr[0] == "#"
    79  
    80  			switch v := current.Elem.(type) {
    81  			case *Resource:
    82  				current = &Schema{
    83  					Type: typeObject,
    84  					Elem: v.Schema,
    85  				}
    86  			case *Schema:
    87  				current = v
    88  			case ValueType:
    89  				current = &Schema{Type: v}
    90  			default:
    91  				// we may not know the Elem type and are just looking for the
    92  				// index
    93  				if isIndex {
    94  					break
    95  				}
    96  
    97  				if len(addr) == 0 {
    98  					// we've processed the address, so return what we've
    99  					// collected
   100  					return result
   101  				}
   102  
   103  				if len(addr) == 1 {
   104  					if _, err := strconv.Atoi(addr[0]); err == nil {
   105  						// we're indexing a value without a schema. This can
   106  						// happen if the list is nested in another schema type.
   107  						// Default to a TypeString like we do with a map
   108  						current = &Schema{Type: TypeString}
   109  						break
   110  					}
   111  				}
   112  
   113  				return nil
   114  			}
   115  
   116  			// If we only have one more thing and the next thing
   117  			// is a #, then we're accessing the index which is always
   118  			// an int.
   119  			if isIndex {
   120  				current = &Schema{Type: TypeInt}
   121  				break
   122  			}
   123  
   124  		case TypeMap:
   125  			if len(addr) > 0 {
   126  				switch v := current.Elem.(type) {
   127  				case ValueType:
   128  					current = &Schema{Type: v}
   129  				default:
   130  					// maps default to string values. This is all we can have
   131  					// if this is nested in another list or map.
   132  					current = &Schema{Type: TypeString}
   133  				}
   134  			}
   135  		case typeObject:
   136  			// If we're already in the object, then we want to handle Sets
   137  			// and Lists specially. Basically, their next key is the lookup
   138  			// key (the set value or the list element). For these scenarios,
   139  			// we just want to skip it and move to the next element if there
   140  			// is one.
   141  			if len(result) > 0 {
   142  				lastType := result[len(result)-2].Type
   143  				if lastType == TypeSet || lastType == TypeList {
   144  					if len(addr) == 0 {
   145  						break
   146  					}
   147  
   148  					k = addr[0]
   149  					addr = addr[1:]
   150  				}
   151  			}
   152  
   153  			m := current.Elem.(map[string]*Schema)
   154  			val, ok := m[k]
   155  			if !ok {
   156  				return nil
   157  			}
   158  
   159  			current = val
   160  			goto REPEAT
   161  		}
   162  	}
   163  
   164  	return result
   165  }
   166  
   167  // readListField is a generic method for reading a list field out of a
   168  // a FieldReader. It does this based on the assumption that there is a key
   169  // "foo.#" for a list "foo" and that the indexes are "foo.0", "foo.1", etc.
   170  // after that point.
   171  func readListField(
   172  	r FieldReader, addr []string, schema *Schema) (FieldReadResult, error) {
   173  	addrPadded := make([]string, len(addr)+1)
   174  	copy(addrPadded, addr)
   175  	addrPadded[len(addrPadded)-1] = "#"
   176  
   177  	// Get the number of elements in the list
   178  	countResult, err := r.ReadField(addrPadded)
   179  	if err != nil {
   180  		return FieldReadResult{}, err
   181  	}
   182  	if !countResult.Exists {
   183  		// No count, means we have no list
   184  		countResult.Value = 0
   185  	}
   186  
   187  	// If we have an empty list, then return an empty list
   188  	if countResult.Computed || countResult.Value.(int) == 0 {
   189  		return FieldReadResult{
   190  			Value:    []interface{}{},
   191  			Exists:   countResult.Exists,
   192  			Computed: countResult.Computed,
   193  		}, nil
   194  	}
   195  
   196  	// Go through each count, and get the item value out of it
   197  	result := make([]interface{}, countResult.Value.(int))
   198  	for i, _ := range result {
   199  		is := strconv.FormatInt(int64(i), 10)
   200  		addrPadded[len(addrPadded)-1] = is
   201  		rawResult, err := r.ReadField(addrPadded)
   202  		if err != nil {
   203  			return FieldReadResult{}, err
   204  		}
   205  		if !rawResult.Exists {
   206  			// This should never happen, because by the time the data
   207  			// gets to the FieldReaders, all the defaults should be set by
   208  			// Schema.
   209  			rawResult.Value = nil
   210  		}
   211  
   212  		result[i] = rawResult.Value
   213  	}
   214  
   215  	return FieldReadResult{
   216  		Value:  result,
   217  		Exists: true,
   218  	}, nil
   219  }
   220  
   221  // readObjectField is a generic method for reading objects out of FieldReaders
   222  // based on the assumption that building an address of []string{k, FIELD}
   223  // will result in the proper field data.
   224  func readObjectField(
   225  	r FieldReader,
   226  	addr []string,
   227  	schema map[string]*Schema) (FieldReadResult, error) {
   228  	result := make(map[string]interface{})
   229  	exists := false
   230  	for field, s := range schema {
   231  		addrRead := make([]string, len(addr), len(addr)+1)
   232  		copy(addrRead, addr)
   233  		addrRead = append(addrRead, field)
   234  		rawResult, err := r.ReadField(addrRead)
   235  		if err != nil {
   236  			return FieldReadResult{}, err
   237  		}
   238  		if rawResult.Exists {
   239  			exists = true
   240  		}
   241  
   242  		result[field] = rawResult.ValueOrZero(s)
   243  	}
   244  
   245  	return FieldReadResult{
   246  		Value:  result,
   247  		Exists: exists,
   248  	}, nil
   249  }
   250  
   251  // convert map values to the proper primitive type based on schema.Elem
   252  func mapValuesToPrimitive(m map[string]interface{}, schema *Schema) error {
   253  
   254  	elemType := TypeString
   255  	if et, ok := schema.Elem.(ValueType); ok {
   256  		elemType = et
   257  	}
   258  
   259  	switch elemType {
   260  	case TypeInt, TypeFloat, TypeBool:
   261  		for k, v := range m {
   262  			vs, ok := v.(string)
   263  			if !ok {
   264  				continue
   265  			}
   266  
   267  			v, err := stringToPrimitive(vs, false, &Schema{Type: elemType})
   268  			if err != nil {
   269  				return err
   270  			}
   271  
   272  			m[k] = v
   273  		}
   274  	}
   275  	return nil
   276  }
   277  
   278  func stringToPrimitive(
   279  	value string, computed bool, schema *Schema) (interface{}, error) {
   280  	var returnVal interface{}
   281  	switch schema.Type {
   282  	case TypeBool:
   283  		if value == "" {
   284  			returnVal = false
   285  			break
   286  		}
   287  		if computed {
   288  			break
   289  		}
   290  
   291  		v, err := strconv.ParseBool(value)
   292  		if err != nil {
   293  			return nil, err
   294  		}
   295  
   296  		returnVal = v
   297  	case TypeFloat:
   298  		if value == "" {
   299  			returnVal = 0.0
   300  			break
   301  		}
   302  		if computed {
   303  			break
   304  		}
   305  
   306  		v, err := strconv.ParseFloat(value, 64)
   307  		if err != nil {
   308  			return nil, err
   309  		}
   310  
   311  		returnVal = v
   312  	case TypeInt:
   313  		if value == "" {
   314  			returnVal = 0
   315  			break
   316  		}
   317  		if computed {
   318  			break
   319  		}
   320  
   321  		v, err := strconv.ParseInt(value, 0, 0)
   322  		if err != nil {
   323  			return nil, err
   324  		}
   325  
   326  		returnVal = int(v)
   327  	case TypeString:
   328  		returnVal = value
   329  	default:
   330  		panic(fmt.Sprintf("Unknown type: %s", schema.Type))
   331  	}
   332  
   333  	return returnVal, nil
   334  }