github.com/eh-steve/goloader@v0.0.0-20240111193454-90ff3cfdae39/reflectlite/reflectlite1.18/value.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package reflectlite
     6  
     7  import (
     8  	"errors"
     9  	"github.com/eh-steve/goloader/reflectlite/internal/goarch"
    10  	"github.com/eh-steve/goloader/reflectlite/internal/itoa"
    11  	"github.com/eh-steve/goloader/reflectlite/internal/unsafeheader"
    12  	"math"
    13  	"runtime"
    14  	"unsafe"
    15  )
    16  
    17  // Value is the reflection interface to a Go value.
    18  //
    19  // Not all methods apply to all kinds of values. Restrictions,
    20  // if interface{}, are noted in the documentation for each method.
    21  // Use the Kind method to find out the kind of value before
    22  // calling kind-specific methods. Calling a method
    23  // inappropriate to the kind of type causes a run time panic.
    24  //
    25  // The zero Value represents no value.
    26  // Its IsValid method returns false, its Kind method returns Invalid,
    27  // its String method returns "<invalid Value>", and all other methods panic.
    28  // Most functions and methods never return an invalid value.
    29  // If one does, its documentation states the conditions explicitly.
    30  //
    31  // A Value can be used concurrently by multiple goroutines provided that
    32  // the underlying Go value can be used concurrently for the equivalent
    33  // direct operations.
    34  //
    35  // To compare two Values, compare the results of the Interface method.
    36  // Using == on two Values does not compare the underlying values
    37  // they represent.
    38  type Value struct {
    39  	// typ holds the type of the value represented by a Value.
    40  	typ *rtype
    41  
    42  	// Pointer-valued data or, if flagIndir is set, pointer to data.
    43  	// Valid when either flagIndir is set or typ.pointers() is true.
    44  	ptr unsafe.Pointer
    45  
    46  	// flag holds metadata about the value.
    47  	// The lowest bits are flag bits:
    48  	//	- flagStickyRO: obtained via unexported not embedded field, so read-only
    49  	//	- flagEmbedRO: obtained via unexported embedded field, so read-only
    50  	//	- flagIndir: val holds a pointer to the data
    51  	//	- flagAddr: v.CanAddr is true (implies flagIndir)
    52  	//	- flagMethod: v is a method value.
    53  	// The next five bits give the Kind of the value.
    54  	// This repeats typ.Kind() except for method values.
    55  	// The remaining 23+ bits give a method number for method values.
    56  	// If flag.kind() != Func, code can assume that flagMethod is unset.
    57  	// If ifaceIndir(typ), code can assume that flagIndir is set.
    58  	flag
    59  
    60  	// A method value represents a curried method invocation
    61  	// like r.Read for some receiver r. The typ+val+flag bits describe
    62  	// the receiver r, but the flag's Kind bits say Func (methods are
    63  	// functions), and the top bits of the flag give the method number
    64  	// in r's type's method table.
    65  }
    66  
    67  type flag uintptr
    68  
    69  const (
    70  	flagKindWidth        = 5 // there are 27 kinds
    71  	flagKindMask    flag = 1<<flagKindWidth - 1
    72  	flagStickyRO    flag = 1 << 5
    73  	flagEmbedRO     flag = 1 << 6
    74  	flagIndir       flag = 1 << 7
    75  	flagAddr        flag = 1 << 8
    76  	flagMethod      flag = 1 << 9
    77  	flagMethodShift      = 10
    78  	flagRO          flag = flagStickyRO | flagEmbedRO
    79  )
    80  
    81  func (f flag) kind() Kind {
    82  	return Kind(f & flagKindMask)
    83  }
    84  
    85  func (f flag) ro() flag {
    86  	if f&flagRO != 0 {
    87  		return flagStickyRO
    88  	}
    89  	return 0
    90  }
    91  
    92  // pointer returns the underlying pointer represented by v.
    93  // v.Kind() must be Pointer, Map, Chan, Func, or UnsafePointer
    94  // if v.Kind() == Pointer, the base type must not be go:notinheap.
    95  func (v Value) pointer() unsafe.Pointer {
    96  	if v.typ.size != goarch.PtrSize || !v.typ.pointers() {
    97  		panic("can't call pointer on a non-pointer Value")
    98  	}
    99  	if v.flag&flagIndir != 0 {
   100  		return *(*unsafe.Pointer)(v.ptr)
   101  	}
   102  	return v.ptr
   103  }
   104  
   105  // packEface converts v to the empty interface.
   106  func packEface(v Value) interface{} {
   107  	t := v.typ
   108  	var i interface{}
   109  	e := (*emptyInterface)(unsafe.Pointer(&i))
   110  	// First, fill in the data portion of the interface.
   111  	switch {
   112  	case ifaceIndir(t):
   113  		if v.flag&flagIndir == 0 {
   114  			panic("bad indir")
   115  		}
   116  		// Value is indirect, and so is the interface we're making.
   117  		ptr := v.ptr
   118  		if v.flag&flagAddr != 0 {
   119  			// TODO: pass safe boolean from valueInterface so
   120  			// we don't need to copy if safe==true?
   121  			c := unsafe_New(t)
   122  			typedmemmove(t, c, ptr)
   123  			ptr = c
   124  		}
   125  		e.word = ptr
   126  	case v.flag&flagIndir != 0:
   127  		// Value is indirect, but interface is direct. We need
   128  		// to load the data at v.ptr into the interface data word.
   129  		e.word = *(*unsafe.Pointer)(v.ptr)
   130  	default:
   131  		// Value is direct, and so is the interface.
   132  		e.word = v.ptr
   133  	}
   134  	// Now, fill in the type portion. We're very careful here not
   135  	// to have interface{} operation between the e.word and e.typ assignments
   136  	// that would let the garbage collector observe the partially-built
   137  	// interface value.
   138  	e.typ = t
   139  	return i
   140  }
   141  
   142  // unpackEface converts the empty interface i to a Value.
   143  func unpackEface(i interface{}) Value {
   144  	e := (*emptyInterface)(unsafe.Pointer(&i))
   145  	// NOTE: don't read e.word until we know whether it is really a pointer or not.
   146  	t := e.typ
   147  	if t == nil {
   148  		return Value{}
   149  	}
   150  	f := flag(t.Kind())
   151  	if ifaceIndir(t) {
   152  		f |= flagIndir
   153  	}
   154  	return Value{t, e.word, f}
   155  }
   156  
   157  // A ValueError occurs when a Value method is invoked on
   158  // a Value that does not support it. Such cases are documented
   159  // in the description of each method.
   160  type ValueError struct {
   161  	Method string
   162  	Kind   Kind
   163  }
   164  
   165  func (e *ValueError) Error() string {
   166  	if e.Kind == 0 {
   167  		return "reflect: call of " + e.Method + " on zero Value"
   168  	}
   169  	return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
   170  }
   171  
   172  // methodName returns the name of the calling method,
   173  // assumed to be two stack frames above.
   174  func methodName() string {
   175  	pc, _, _, _ := runtime.Caller(2)
   176  	f := runtime.FuncForPC(pc)
   177  	if f == nil {
   178  		return "unknown method"
   179  	}
   180  	return f.Name()
   181  }
   182  
   183  // methodNameSkip is like methodName, but skips another stack frame.
   184  // This is a separate function so that reflect.flag.mustBe will be inlined.
   185  func methodNameSkip() string {
   186  	pc, _, _, _ := runtime.Caller(3)
   187  	f := runtime.FuncForPC(pc)
   188  	if f == nil {
   189  		return "unknown method"
   190  	}
   191  	return f.Name()
   192  }
   193  
   194  // emptyInterface is the header for an interface{} value.
   195  type emptyInterface struct {
   196  	typ  *rtype
   197  	word unsafe.Pointer
   198  }
   199  
   200  // mustBe panics if f's kind is not expected.
   201  // Making this a method on flag instead of on Value
   202  // (and embedding flag in Value) means that we can write
   203  // the very clear v.mustBe(Bool) and have it compile into
   204  // v.flag.mustBe(Bool), which will only bother to copy the
   205  // single important word for the receiver.
   206  func (f flag) mustBe(expected Kind) {
   207  	// TODO(mvdan): use f.kind() again once mid-stack inlining gets better
   208  	if Kind(f&flagKindMask) != expected {
   209  		panic(&ValueError{methodName(), f.kind()})
   210  	}
   211  }
   212  
   213  // mustBeAssignable panics if f records that the value is not assignable,
   214  // which is to say that either it was obtained using an unexported field
   215  // or it is not addressable.
   216  func (f flag) mustBeAssignable() {
   217  	if f&flagRO != 0 || f&flagAddr == 0 {
   218  		f.mustBeAssignableSlow()
   219  	}
   220  }
   221  
   222  func (f flag) mustBeAssignableSlow() {
   223  	if f == 0 {
   224  		panic(&ValueError{methodNameSkip(), Invalid})
   225  	}
   226  	// Assignable if addressable.
   227  	if f&flagAddr == 0 {
   228  		panic("reflect: " + methodNameSkip() + " using unaddressable value")
   229  	}
   230  }
   231  
   232  // Addr returns a pointer value representing the address of v.
   233  // It panics if CanAddr() returns false.
   234  // Addr is typically used to obtain a pointer to a struct field
   235  // or slice element in order to call a method that requires a
   236  // pointer receiver.
   237  func (v Value) Addr() Value {
   238  	if v.flag&flagAddr == 0 {
   239  		panic("reflect.Value.Addr of unaddressable value")
   240  	}
   241  	// Preserve flagRO instead of using v.flag.ro() so that
   242  	// v.Addr().Elem() is equivalent to v (#32772)
   243  	fl := v.flag & flagRO
   244  	return Value{v.typ.ptrTo(), v.ptr, fl | flag(Pointer)}
   245  }
   246  
   247  // Bool returns v's underlying value.
   248  // It panics if v's kind is not Bool.
   249  func (v Value) Bool() bool {
   250  	v.mustBe(Bool)
   251  	return *(*bool)(v.ptr)
   252  }
   253  
   254  // Bytes returns v's underlying value.
   255  // It panics if v's underlying value is not a slice of bytes.
   256  func (v Value) Bytes() []byte {
   257  	v.mustBe(Slice)
   258  	if v.typ.Elem().Kind() != Uint8 {
   259  		panic("reflect.Value.Bytes of non-byte slice")
   260  	}
   261  	// Slice is always bigger than a word; assume flagIndir.
   262  	return *(*[]byte)(v.ptr)
   263  }
   264  
   265  // runes returns v's underlying value.
   266  // It panics if v's underlying value is not a slice of runes (int32s).
   267  func (v Value) runes() []rune {
   268  	v.mustBe(Slice)
   269  	if v.typ.Elem().Kind() != Int32 {
   270  		panic("reflect.Value.Bytes of non-rune slice")
   271  	}
   272  	// Slice is always bigger than a word; assume flagIndir.
   273  	return *(*[]rune)(v.ptr)
   274  }
   275  
   276  // CanAddr reports whether the value's address can be obtained with Addr.
   277  // Such values are called addressable. A value is addressable if it is
   278  // an element of a slice, an element of an addressable array,
   279  // a field of an addressable struct, or the result of dereferencing a pointer.
   280  // If CanAddr returns false, calling Addr will panic.
   281  func (v Value) CanAddr() bool {
   282  	return v.flag&flagAddr != 0
   283  }
   284  
   285  // CanSet reports whether the value of v can be changed.
   286  // A Value can be changed only if it is addressable and was not
   287  // obtained by the use of unexported struct fields.
   288  // If CanSet returns false, calling Set or interface{} type-specific
   289  // setter (e.g., SetBool, SetInt) will panic.
   290  func (v Value) CanSet() bool {
   291  	return v.flag&(flagAddr|flagRO) == flagAddr
   292  }
   293  
   294  // CanComplex reports whether Complex can be used without panicking.
   295  func (v Value) CanComplex() bool {
   296  	switch v.kind() {
   297  	case Complex64, Complex128:
   298  		return true
   299  	default:
   300  		return false
   301  	}
   302  }
   303  
   304  // Complex returns v's underlying value, as a complex128.
   305  // It panics if v's Kind is not Complex64 or Complex128
   306  func (v Value) Complex() complex128 {
   307  	k := v.kind()
   308  	switch k {
   309  	case Complex64:
   310  		return complex128(*(*complex64)(v.ptr))
   311  	case Complex128:
   312  		return *(*complex128)(v.ptr)
   313  	}
   314  	panic(&ValueError{"reflect.Value.Complex", v.kind()})
   315  }
   316  
   317  // Elem returns the value that the interface v contains
   318  // or that the pointer v points to.
   319  // It panics if v's Kind is not Interface or Pointer.
   320  // It returns the zero Value if v is nil.
   321  func (v Value) Elem() Value {
   322  	k := v.kind()
   323  	switch k {
   324  	case Interface:
   325  		var eface interface{}
   326  		if v.typ.NumMethod() == 0 {
   327  			eface = *(*interface{})(v.ptr)
   328  		} else {
   329  			eface = (interface{})(*(*interface {
   330  				M()
   331  			})(v.ptr))
   332  		}
   333  		x := unpackEface(eface)
   334  		if x.flag != 0 {
   335  			x.flag |= v.flag.ro()
   336  		}
   337  		return x
   338  	case Pointer:
   339  		ptr := v.ptr
   340  		if v.flag&flagIndir != 0 {
   341  			if ifaceIndir(v.typ) {
   342  				// This is a pointer to a not-in-heap object. ptr points to a uintptr
   343  				// in the heap. That uintptr is the address of a not-in-heap object.
   344  				// In general, pointers to not-in-heap objects can be total junk.
   345  				// But Elem() is asking to dereference it, so the user has asserted
   346  				// that at least it is a valid pointer (not just an integer stored in
   347  				// a pointer slot). So let's check, to make sure that it isn't a pointer
   348  				// that the runtime will crash on if it sees it during GC or write barriers.
   349  				// Since it is a not-in-heap pointer, all pointers to the heap are
   350  				// forbidden! That makes the test pretty easy.
   351  				// See issue 48399.
   352  				if !verifyNotInHeapPtr(*(*uintptr)(ptr)) {
   353  					panic("reflect: reflect.Value.Elem on an invalid notinheap pointer")
   354  				}
   355  			}
   356  			ptr = *(*unsafe.Pointer)(ptr)
   357  		}
   358  		// The returned value's address is v's value.
   359  		if ptr == nil {
   360  			return Value{}
   361  		}
   362  		tt := (*ptrType)(unsafe.Pointer(v.typ))
   363  		typ := tt.elem
   364  		fl := v.flag&flagRO | flagIndir | flagAddr
   365  		fl |= flag(typ.Kind())
   366  		return Value{typ, ptr, fl}
   367  	}
   368  	panic(&ValueError{"reflect.Value.Elem", v.kind()})
   369  }
   370  
   371  // Field returns the i'th field of the struct v.
   372  // It panics if v's Kind is not Struct or i is out of range.
   373  func (v Value) Field(i int) Value {
   374  	if v.kind() != Struct {
   375  		panic(&ValueError{"reflect.Value.Field", v.kind()})
   376  	}
   377  	tt := (*structType)(unsafe.Pointer(v.typ))
   378  	if uint(i) >= uint(len(tt.fields)) {
   379  		panic("reflect: Field index out of range")
   380  	}
   381  	field := &tt.fields[i]
   382  	typ := field.typ
   383  
   384  	// Inherit permission bits from v, but clear flagEmbedRO.
   385  	fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind())
   386  	// Using an unexported field forces flagRO.
   387  	if !field.name.isExported() {
   388  		if field.embedded() {
   389  			fl |= flagEmbedRO
   390  		} else {
   391  			fl |= flagStickyRO
   392  		}
   393  	}
   394  	// Either flagIndir is set and v.ptr points at struct,
   395  	// or flagIndir is not set and v.ptr is the actual struct data.
   396  	// In the former case, we want v.ptr + offset.
   397  	// In the latter case, we must have field.offset = 0,
   398  	// so v.ptr + field.offset is still the correct address.
   399  	ptr := add(v.ptr, field.offset(), "same as non-reflect &v.field")
   400  	return Value{typ, ptr, fl}
   401  }
   402  
   403  // FieldByIndex returns the nested field corresponding to index.
   404  // It panics if evaluation requires stepping through a nil
   405  // pointer or a field that is not a struct.
   406  func (v Value) FieldByIndex(index []int) Value {
   407  	if len(index) == 1 {
   408  		return v.Field(index[0])
   409  	}
   410  	v.mustBe(Struct)
   411  	for i, x := range index {
   412  		if i > 0 {
   413  			if v.Kind() == Pointer && v.typ.Elem().Kind() == Struct {
   414  				if v.IsNil() {
   415  					panic("reflect: indirection through nil pointer to embedded struct")
   416  				}
   417  				v = v.Elem()
   418  			}
   419  		}
   420  		v = v.Field(x)
   421  	}
   422  	return v
   423  }
   424  
   425  // FieldByIndexErr returns the nested field corresponding to index.
   426  // It returns an error if evaluation requires stepping through a nil
   427  // pointer, but panics if it must step through a field that
   428  // is not a struct.
   429  func (v Value) FieldByIndexErr(index []int) (Value, error) {
   430  	if len(index) == 1 {
   431  		return v.Field(index[0]), nil
   432  	}
   433  	v.mustBe(Struct)
   434  	for i, x := range index {
   435  		if i > 0 {
   436  			if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct {
   437  				if v.IsNil() {
   438  					return Value{}, errors.New("reflect: indirection through nil pointer to embedded struct field " + v.typ.Elem().Name())
   439  				}
   440  				v = v.Elem()
   441  			}
   442  		}
   443  		v = v.Field(x)
   444  	}
   445  	return v, nil
   446  }
   447  
   448  // FieldByName returns the struct field with the given name.
   449  // It returns the zero Value if no field was found.
   450  // It panics if v's Kind is not struct.
   451  func (v Value) FieldByName(name string) Value {
   452  	v.mustBe(Struct)
   453  	if f, ok := v.typ.FieldByName(name); ok {
   454  		return v.FieldByIndex(f.Index)
   455  	}
   456  	return Value{}
   457  }
   458  
   459  // FieldByNameFunc returns the struct field with a name
   460  // that satisfies the match function.
   461  // It panics if v's Kind is not struct.
   462  // It returns the zero Value if no field was found.
   463  func (v Value) FieldByNameFunc(match func(string) bool) Value {
   464  	if f, ok := v.typ.FieldByNameFunc(match); ok {
   465  		return v.FieldByIndex(f.Index)
   466  	}
   467  	return Value{}
   468  }
   469  
   470  // CanFloat reports whether Float can be used without panicking.
   471  func (v Value) CanFloat() bool {
   472  	switch v.kind() {
   473  	case Float32, Float64:
   474  		return true
   475  	default:
   476  		return false
   477  	}
   478  }
   479  
   480  // Float returns v's underlying value, as a float64.
   481  // It panics if v's Kind is not Float32 or Float64
   482  func (v Value) Float() float64 {
   483  	k := v.kind()
   484  	switch k {
   485  	case Float32:
   486  		return float64(*(*float32)(v.ptr))
   487  	case Float64:
   488  		return *(*float64)(v.ptr)
   489  	}
   490  	panic(&ValueError{"reflect.Value.Float", v.kind()})
   491  }
   492  
   493  var uint8Type = TypeOf(uint8(0)).(*rtype)
   494  
   495  // Index returns v's i'th element.
   496  // It panics if v's Kind is not Array, Slice, or String or i is out of range.
   497  func (v Value) Index(i int) Value {
   498  	switch v.kind() {
   499  	case Array:
   500  		tt := (*arrayType)(unsafe.Pointer(v.typ))
   501  		if uint(i) >= uint(tt.len) {
   502  			panic("reflect: array index out of range")
   503  		}
   504  		typ := tt.elem
   505  		offset := uintptr(i) * typ.size
   506  
   507  		// Either flagIndir is set and v.ptr points at array,
   508  		// or flagIndir is not set and v.ptr is the actual array data.
   509  		// In the former case, we want v.ptr + offset.
   510  		// In the latter case, we must be doing Index(0), so offset = 0,
   511  		// so v.ptr + offset is still the correct address.
   512  		val := add(v.ptr, offset, "same as &v[i], i < tt.len")
   513  		fl := (flagIndir | flagAddr) | v.flag.ro() | flag(typ.Kind()) // bits same as overall array
   514  		return Value{typ, val, fl}
   515  
   516  	case Slice:
   517  		// Element flag same as Elem of Pointer.
   518  		// Addressable, indirect, possibly read-only.
   519  		s := (*unsafeheader.Slice)(v.ptr)
   520  		if uint(i) >= uint(s.Len) {
   521  			panic("reflect: slice index out of range")
   522  		}
   523  		tt := (*sliceType)(unsafe.Pointer(v.typ))
   524  		typ := tt.elem
   525  		val := arrayAt(s.Data, i, typ.size, "i < s.Len")
   526  		fl := flagAddr | flagIndir | v.flag.ro() | flag(typ.Kind())
   527  		return Value{typ, val, fl}
   528  
   529  	case String:
   530  		s := (*unsafeheader.String)(v.ptr)
   531  		if uint(i) >= uint(s.Len) {
   532  			panic("reflect: string index out of range")
   533  		}
   534  		p := arrayAt(s.Data, i, 1, "i < s.Len")
   535  		fl := v.flag.ro() | flag(Uint8) | flagIndir
   536  		return Value{uint8Type, p, fl}
   537  	}
   538  	panic(&ValueError{"reflect.Value.Index", v.kind()})
   539  }
   540  
   541  // CanInt reports whether Int can be used without panicking.
   542  func (v Value) CanInt() bool {
   543  	switch v.kind() {
   544  	case Int, Int8, Int16, Int32, Int64:
   545  		return true
   546  	default:
   547  		return false
   548  	}
   549  }
   550  
   551  // Int returns v's underlying value, as an int64.
   552  // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
   553  func (v Value) Int() int64 {
   554  	k := v.kind()
   555  	p := v.ptr
   556  	switch k {
   557  	case Int:
   558  		return int64(*(*int)(p))
   559  	case Int8:
   560  		return int64(*(*int8)(p))
   561  	case Int16:
   562  		return int64(*(*int16)(p))
   563  	case Int32:
   564  		return int64(*(*int32)(p))
   565  	case Int64:
   566  		return *(*int64)(p)
   567  	}
   568  	panic(&ValueError{"reflect.Value.Int", v.kind()})
   569  }
   570  
   571  // CanInterface reports whether Interface can be used without panicking.
   572  func (v Value) CanInterface() bool {
   573  	if v.flag == 0 {
   574  		panic(&ValueError{"reflect.Value.CanInterface", Invalid})
   575  	}
   576  	return v.flag&flagRO == 0
   577  }
   578  
   579  // Interface returns v's current value as an interface{}.
   580  // It is equivalent to:
   581  //
   582  //	var i interface{} = (v's underlying value)
   583  //
   584  // It panics if the Value was obtained by accessing
   585  // unexported struct fields.
   586  func (v Value) Interface() (i interface{}) {
   587  	return valueInterface(v, true)
   588  }
   589  
   590  func valueInterface(v Value, safe bool) interface{} {
   591  	if v.flag == 0 {
   592  		panic(&ValueError{"reflect.Value.Interface", Invalid})
   593  	}
   594  	if safe && v.flag&flagRO != 0 {
   595  		// Do not allow access to unexported values via Interface,
   596  		// because they might be pointers that should not be
   597  		// writable or methods or function that should not be callable.
   598  		panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
   599  	}
   600  	if v.flag&flagMethod != 0 {
   601  		panic("method values not supported in reflectlite")
   602  	}
   603  
   604  	if v.kind() == Interface {
   605  		// Special case: return the element inside the interface.
   606  		// Empty interface has one layout, all interfaces with
   607  		// methods have a second layout.
   608  		if v.NumMethod() == 0 {
   609  			return *(*interface{})(v.ptr)
   610  		}
   611  		return *(*interface {
   612  			M()
   613  		})(v.ptr)
   614  	}
   615  
   616  	// TODO: pass safe to packEface so we don't need to copy if safe==true?
   617  	return packEface(v)
   618  }
   619  
   620  // InterfaceData returns a pair of unspecified uintptr values.
   621  // It panics if v's Kind is not Interface.
   622  //
   623  // In earlier versions of Go, this function returned the interface's
   624  // value as a uintptr pair. As of Go 1.4, the implementation of
   625  // interface values precludes interface{} defined use of InterfaceData.
   626  //
   627  // Deprecated: The memory representation of interface values is not
   628  // compatible with InterfaceData.
   629  func (v Value) InterfaceData() [2]uintptr {
   630  	v.mustBe(Interface)
   631  	// We treat this as a read operation, so we allow
   632  	// it even for unexported data, because the caller
   633  	// has to import "unsafe" to turn it into something
   634  	// that can be abused.
   635  	// Interface value is always bigger than a word; assume flagIndir.
   636  	return *(*[2]uintptr)(v.ptr)
   637  }
   638  
   639  // IsNil reports whether its argument v is nil. The argument must be
   640  // a chan, func, interface, map, pointer, or slice value; if it is
   641  // not, IsNil panics. Note that IsNil is not always equivalent to a
   642  // regular comparison with nil in Go. For example, if v was created
   643  // by calling ValueOf with an uninitialized interface variable i,
   644  // i==nil will be true but v.IsNil will panic as v will be the zero
   645  // Value.
   646  func (v Value) IsNil() bool {
   647  	k := v.kind()
   648  	switch k {
   649  	case Chan, Func, Map, Pointer, UnsafePointer:
   650  		if v.flag&flagMethod != 0 {
   651  			return false
   652  		}
   653  		ptr := v.ptr
   654  		if v.flag&flagIndir != 0 {
   655  			ptr = *(*unsafe.Pointer)(ptr)
   656  		}
   657  		return ptr == nil
   658  	case Interface, Slice:
   659  		// Both interface and slice are nil if first word is 0.
   660  		// Both are always bigger than a word; assume flagIndir.
   661  		return *(*unsafe.Pointer)(v.ptr) == nil
   662  	}
   663  	panic(&ValueError{"reflect.Value.IsNil", v.kind()})
   664  }
   665  
   666  // IsValid reports whether v represents a value.
   667  // It returns false if v is the zero Value.
   668  // If IsValid returns false, all other methods except String panic.
   669  // Most functions and methods never return an invalid Value.
   670  // If one does, its documentation states the conditions explicitly.
   671  func (v Value) IsValid() bool {
   672  	return v.flag != 0
   673  }
   674  
   675  // IsZero reports whether v is the zero value for its type.
   676  // It panics if the argument is invalid.
   677  func (v Value) IsZero() bool {
   678  	switch v.kind() {
   679  	case Bool:
   680  		return !v.Bool()
   681  	case Int, Int8, Int16, Int32, Int64:
   682  		return v.Int() == 0
   683  	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
   684  		return v.Uint() == 0
   685  	case Float32, Float64:
   686  		return math.Float64bits(v.Float()) == 0
   687  	case Complex64, Complex128:
   688  		c := v.Complex()
   689  		return math.Float64bits(real(c)) == 0 && math.Float64bits(imag(c)) == 0
   690  	case Array:
   691  		for i := 0; i < v.Len(); i++ {
   692  			if !v.Index(i).IsZero() {
   693  				return false
   694  			}
   695  		}
   696  		return true
   697  	case Chan, Func, Interface, Map, Pointer, Slice, UnsafePointer:
   698  		return v.IsNil()
   699  	case String:
   700  		return v.Len() == 0
   701  	case Struct:
   702  		for i := 0; i < v.NumField(); i++ {
   703  			if !v.Field(i).IsZero() {
   704  				return false
   705  			}
   706  		}
   707  		return true
   708  	default:
   709  		// This should never happens, but will act as a safeguard for
   710  		// later, as a default value doesn't makes sense here.
   711  		panic(&ValueError{"reflect.Value.IsZero", v.Kind()})
   712  	}
   713  }
   714  
   715  // Kind returns v's Kind.
   716  // If v is the zero Value (IsValid returns false), Kind returns Invalid.
   717  func (v Value) Kind() Kind {
   718  	return v.kind()
   719  }
   720  
   721  // Len returns v's length.
   722  // It panics if v's Kind is not Array, Chan, Map, Slice, or String.
   723  func (v Value) Len() int {
   724  	k := v.kind()
   725  	switch k {
   726  	case Array:
   727  		tt := (*arrayType)(unsafe.Pointer(v.typ))
   728  		return int(tt.len)
   729  	case Chan:
   730  		return chanlen(v.pointer())
   731  	case Map:
   732  		return maplen(v.pointer())
   733  	case Slice:
   734  		// Slice is bigger than a word; assume flagIndir.
   735  		return (*unsafeheader.Slice)(v.ptr).Len
   736  	case String:
   737  		// String is bigger than a word; assume flagIndir.
   738  		return (*unsafeheader.String)(v.ptr).Len
   739  	}
   740  	panic(&ValueError{"reflect.Value.Len", v.kind()})
   741  }
   742  
   743  var stringType = TypeOf("").(*rtype)
   744  
   745  // MapIndex returns the value associated with key in the map v.
   746  // It panics if v's Kind is not Map.
   747  // It returns the zero Value if key is not found in the map or if v represents a nil map.
   748  // As in Go, the key's value must be assignable to the map's key type.
   749  func (v Value) MapIndex(key Value) Value {
   750  	v.mustBe(Map)
   751  	tt := (*mapType)(unsafe.Pointer(v.typ))
   752  
   753  	// Do not require key to be exported, so that DeepEqual
   754  	// and other programs can use all the keys returned by
   755  	// MapKeys as arguments to MapIndex. If either the map
   756  	// or the key is unexported, though, the result will be
   757  	// considered unexported. This is consistent with the
   758  	// behavior for structs, which allow read but not write
   759  	// of unexported fields.
   760  
   761  	var e unsafe.Pointer
   762  	if (tt.key == stringType || key.kind() == String) && tt.key == key.typ && tt.elem.size <= maxValSize {
   763  		k := *(*string)(key.ptr)
   764  		e = mapaccess_faststr(v.typ, v.pointer(), k)
   765  	} else {
   766  		key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)
   767  		var k unsafe.Pointer
   768  		if key.flag&flagIndir != 0 {
   769  			k = key.ptr
   770  		} else {
   771  			k = unsafe.Pointer(&key.ptr)
   772  		}
   773  		e = mapaccess(v.typ, v.pointer(), k)
   774  	}
   775  	if e == nil {
   776  		return Value{}
   777  	}
   778  	typ := tt.elem
   779  	fl := (v.flag | key.flag).ro()
   780  	fl |= flag(typ.Kind())
   781  	return copyVal(typ, fl, e)
   782  }
   783  
   784  // MapKeys returns a slice containing all the keys present in the map,
   785  // in unspecified order.
   786  // It panics if v's Kind is not Map.
   787  // It returns an empty slice if v represents a nil map.
   788  func (v Value) MapKeys() []Value {
   789  	v.mustBe(Map)
   790  	tt := (*mapType)(unsafe.Pointer(v.typ))
   791  	keyType := tt.key
   792  
   793  	fl := v.flag.ro() | flag(keyType.Kind())
   794  
   795  	m := v.pointer()
   796  	mlen := int(0)
   797  	if m != nil {
   798  		mlen = maplen(m)
   799  	}
   800  	var it hiter
   801  	mapiterinit(v.typ, m, &it)
   802  	a := make([]Value, mlen)
   803  	var i int
   804  	for i = 0; i < len(a); i++ {
   805  		key := mapiterkey(&it)
   806  		if key == nil {
   807  			// Someone deleted an entry from the map since we
   808  			// called maplen above. It's a data race, but nothing
   809  			// we can do about it.
   810  			break
   811  		}
   812  		a[i] = copyVal(keyType, fl, key)
   813  		mapiternext(&it)
   814  	}
   815  	return a[:i]
   816  }
   817  
   818  // hiter's structure matches runtime.hiter's structure.
   819  // Having a clone here allows us to embed a map iterator
   820  // inside type MapIter so that MapIters can be re-used
   821  // without doing interface{} allocations.
   822  type hiter struct {
   823  	key         unsafe.Pointer
   824  	elem        unsafe.Pointer
   825  	t           unsafe.Pointer
   826  	h           unsafe.Pointer
   827  	buckets     unsafe.Pointer
   828  	bptr        unsafe.Pointer
   829  	overflow    *[]unsafe.Pointer
   830  	oldoverflow *[]unsafe.Pointer
   831  	startBucket uintptr
   832  	offset      uint8
   833  	wrapped     bool
   834  	B           uint8
   835  	i           uint8
   836  	bucket      uintptr
   837  	checkBucket uintptr
   838  }
   839  
   840  func (h *hiter) initialized() bool {
   841  	return h.t != nil
   842  }
   843  
   844  // A MapIter is an iterator for ranging over a map.
   845  // See Value.MapRange.
   846  type MapIter struct {
   847  	m     Value
   848  	hiter hiter
   849  }
   850  
   851  // Key returns the key of iter's current map entry.
   852  func (iter *MapIter) Key() Value {
   853  	if !iter.hiter.initialized() {
   854  		panic("MapIter.Key called before Next")
   855  	}
   856  	iterkey := mapiterkey(&iter.hiter)
   857  	if iterkey == nil {
   858  		panic("MapIter.Key called on exhausted iterator")
   859  	}
   860  
   861  	t := (*mapType)(unsafe.Pointer(iter.m.typ))
   862  	ktype := t.key
   863  	return copyVal(ktype, iter.m.flag.ro()|flag(ktype.Kind()), iterkey)
   864  }
   865  
   866  // SetIterKey assigns to v the key of iter's current map entry.
   867  // It is equivalent to v.Set(iter.Key()), but it avoids allocating a new Value.
   868  // As in Go, the key must be assignable to v's type.
   869  func (v Value) SetIterKey(iter *MapIter) {
   870  	if !iter.hiter.initialized() {
   871  		panic("reflect: Value.SetIterKey called before Next")
   872  	}
   873  	iterkey := mapiterkey(&iter.hiter)
   874  	if iterkey == nil {
   875  		panic("reflect: Value.SetIterKey called on exhausted iterator")
   876  	}
   877  
   878  	v.mustBeAssignable()
   879  	var target unsafe.Pointer
   880  	if v.kind() == Interface {
   881  		target = v.ptr
   882  	}
   883  
   884  	t := (*mapType)(unsafe.Pointer(iter.m.typ))
   885  	ktype := t.key
   886  
   887  	key := Value{ktype, iterkey, iter.m.flag | flag(ktype.Kind()) | flagIndir}
   888  	key = key.assignTo("reflect.MapIter.SetKey", v.typ, target)
   889  	typedmemmove(v.typ, v.ptr, key.ptr)
   890  }
   891  
   892  // Value returns the value of iter's current map entry.
   893  func (iter *MapIter) Value() Value {
   894  	if !iter.hiter.initialized() {
   895  		panic("MapIter.Value called before Next")
   896  	}
   897  	iterelem := mapiterelem(&iter.hiter)
   898  	if iterelem == nil {
   899  		panic("MapIter.Value called on exhausted iterator")
   900  	}
   901  
   902  	t := (*mapType)(unsafe.Pointer(iter.m.typ))
   903  	vtype := t.elem
   904  	return copyVal(vtype, iter.m.flag.ro()|flag(vtype.Kind()), iterelem)
   905  }
   906  
   907  // SetIterValue assigns to v the value of iter's current map entry.
   908  // It is equivalent to v.Set(iter.Value()), but it avoids allocating a new Value.
   909  // As in Go, the value must be assignable to v's type.
   910  func (v Value) SetIterValue(iter *MapIter) {
   911  	if !iter.hiter.initialized() {
   912  		panic("reflect: Value.SetIterValue called before Next")
   913  	}
   914  	iterelem := mapiterelem(&iter.hiter)
   915  	if iterelem == nil {
   916  		panic("reflect: Value.SetIterValue called on exhausted iterator")
   917  	}
   918  
   919  	v.mustBeAssignable()
   920  	var target unsafe.Pointer
   921  	if v.kind() == Interface {
   922  		target = v.ptr
   923  	}
   924  
   925  	t := (*mapType)(unsafe.Pointer(iter.m.typ))
   926  	vtype := t.elem
   927  
   928  	elem := Value{vtype, iterelem, iter.m.flag | flag(vtype.Kind()) | flagIndir}
   929  	elem = elem.assignTo("reflect.MapIter.SetValue", v.typ, target)
   930  	typedmemmove(v.typ, v.ptr, elem.ptr)
   931  }
   932  
   933  // Next advances the map iterator and reports whether there is another
   934  // entry. It returns false when iter is exhausted; subsequent
   935  // calls to Key, Value, or Next will panic.
   936  func (iter *MapIter) Next() bool {
   937  	if !iter.m.IsValid() {
   938  		panic("MapIter.Next called on an iterator that does not have an associated map Value")
   939  	}
   940  	if !iter.hiter.initialized() {
   941  		mapiterinit(iter.m.typ, iter.m.pointer(), &iter.hiter)
   942  	} else {
   943  		if mapiterkey(&iter.hiter) == nil {
   944  			panic("MapIter.Next called on exhausted iterator")
   945  		}
   946  		mapiternext(&iter.hiter)
   947  	}
   948  	return mapiterkey(&iter.hiter) != nil
   949  }
   950  
   951  // Reset modifies iter to iterate over v.
   952  // It panics if v's Kind is not Map and v is not the zero Value.
   953  // Reset(Value{}) causes iter to not to refer to interface{} map,
   954  // which may allow the previously iterated-over map to be garbage collected.
   955  func (iter *MapIter) Reset(v Value) {
   956  	if v.IsValid() {
   957  		v.mustBe(Map)
   958  	}
   959  	iter.m = v
   960  	iter.hiter = hiter{}
   961  }
   962  
   963  // MapRange returns a range iterator for a map.
   964  // It panics if v's Kind is not Map.
   965  //
   966  // Call Next to advance the iterator, and Key/Value to access each entry.
   967  // Next returns false when the iterator is exhausted.
   968  // MapRange follows the same iteration semantics as a range statement.
   969  //
   970  // Example:
   971  //
   972  //	iter := reflect.ValueOf(m).MapRange()
   973  //	for iter.Next() {
   974  //		k := iter.Key()
   975  //		v := iter.Value()
   976  //		...
   977  //	}
   978  func (v Value) MapRange() *MapIter {
   979  	v.mustBe(Map)
   980  	return &MapIter{m: v}
   981  }
   982  
   983  // copyVal returns a Value containing the map key or value at ptr,
   984  // allocating a new variable as needed.
   985  func copyVal(typ *rtype, fl flag, ptr unsafe.Pointer) Value {
   986  	if ifaceIndir(typ) {
   987  		// Copy result so future changes to the map
   988  		// won't change the underlying value.
   989  		c := unsafe_New(typ)
   990  		typedmemmove(typ, c, ptr)
   991  		return Value{typ, c, fl | flagIndir}
   992  	}
   993  	return Value{typ, *(*unsafe.Pointer)(ptr), fl}
   994  }
   995  
   996  // Method returns a function value corresponding to v's i'th method.
   997  // The arguments to a Call on the returned function should not include
   998  // a receiver; the returned function will always use v as the receiver.
   999  // Method panics if i is out of range or if v is a nil interface value.
  1000  func (v Value) Method(i int) Value {
  1001  	if v.typ == nil {
  1002  		panic(&ValueError{"reflect.Value.Method", Invalid})
  1003  	}
  1004  	if v.flag&flagMethod != 0 || uint(i) >= uint(v.typ.NumMethod()) {
  1005  		panic("reflect: Method index out of range")
  1006  	}
  1007  	if v.typ.Kind() == Interface && v.IsNil() {
  1008  		panic("reflect: Method on nil interface value")
  1009  	}
  1010  	fl := v.flag.ro() | (v.flag & flagIndir)
  1011  	fl |= flag(Func)
  1012  	fl |= flag(i)<<flagMethodShift | flagMethod
  1013  	return Value{v.typ, v.ptr, fl}
  1014  }
  1015  
  1016  // NumMethod returns the number of exported methods in the value's method set.
  1017  func (v Value) NumMethod() int {
  1018  	if v.typ == nil {
  1019  		panic(&ValueError{"reflect.Value.NumMethod", Invalid})
  1020  	}
  1021  	if v.flag&flagMethod != 0 {
  1022  		return 0
  1023  	}
  1024  	return v.typ.NumMethod()
  1025  }
  1026  
  1027  // NumField returns the number of fields in the struct v.
  1028  // It panics if v's Kind is not Struct.
  1029  func (v Value) NumField() int {
  1030  	v.mustBe(Struct)
  1031  	tt := (*structType)(unsafe.Pointer(v.typ))
  1032  	return len(tt.fields)
  1033  }
  1034  
  1035  // OverflowComplex reports whether the complex128 x cannot be represented by v's type.
  1036  // It panics if v's Kind is not Complex64 or Complex128.
  1037  func (v Value) OverflowComplex(x complex128) bool {
  1038  	k := v.kind()
  1039  	switch k {
  1040  	case Complex64:
  1041  		return overflowFloat32(real(x)) || overflowFloat32(imag(x))
  1042  	case Complex128:
  1043  		return false
  1044  	}
  1045  	panic(&ValueError{"reflect.Value.OverflowComplex", v.kind()})
  1046  }
  1047  
  1048  // OverflowFloat reports whether the float64 x cannot be represented by v's type.
  1049  // It panics if v's Kind is not Float32 or Float64.
  1050  func (v Value) OverflowFloat(x float64) bool {
  1051  	k := v.kind()
  1052  	switch k {
  1053  	case Float32:
  1054  		return overflowFloat32(x)
  1055  	case Float64:
  1056  		return false
  1057  	}
  1058  	panic(&ValueError{"reflect.Value.OverflowFloat", v.kind()})
  1059  }
  1060  
  1061  func overflowFloat32(x float64) bool {
  1062  	if x < 0 {
  1063  		x = -x
  1064  	}
  1065  	return math.MaxFloat32 < x && x <= math.MaxFloat64
  1066  }
  1067  
  1068  // OverflowInt reports whether the int64 x cannot be represented by v's type.
  1069  // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
  1070  func (v Value) OverflowInt(x int64) bool {
  1071  	k := v.kind()
  1072  	switch k {
  1073  	case Int, Int8, Int16, Int32, Int64:
  1074  		bitSize := v.typ.size * 8
  1075  		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
  1076  		return x != trunc
  1077  	}
  1078  	panic(&ValueError{"reflect.Value.OverflowInt", v.kind()})
  1079  }
  1080  
  1081  // OverflowUint reports whether the uint64 x cannot be represented by v's type.
  1082  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
  1083  func (v Value) OverflowUint(x uint64) bool {
  1084  	k := v.kind()
  1085  	switch k {
  1086  	case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
  1087  		bitSize := v.typ.size * 8
  1088  		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
  1089  		return x != trunc
  1090  	}
  1091  	panic(&ValueError{"reflect.Value.OverflowUint", v.kind()})
  1092  }
  1093  
  1094  //go:nocheckptr
  1095  // This prevents inlining Value.Pointer when -d=checkptr is enabled,
  1096  // which ensures cmd/compile can recognize unsafe.Pointer(v.Pointer())
  1097  // and make an exception.
  1098  
  1099  // Pointer returns v's value as a uintptr.
  1100  // It returns uintptr instead of unsafe.Pointer so that
  1101  // code using reflect cannot obtain unsafe.Pointers
  1102  // without importing the unsafe package explicitly.
  1103  // It panics if v's Kind is not Chan, Func, Map, Pointer, Slice, or UnsafePointer.
  1104  //
  1105  // If v's Kind is Func, the returned pointer is an underlying
  1106  // code pointer, but not necessarily enough to identify a
  1107  // single function uniquely. The only guarantee is that the
  1108  // result is zero if and only if v is a nil func Value.
  1109  //
  1110  // If v's Kind is Slice, the returned pointer is to the first
  1111  // element of the slice. If the slice is nil the returned value
  1112  // is 0.  If the slice is empty but non-nil the return value is non-zero.
  1113  //
  1114  // It's preferred to use uintptr(Value.UnsafePointer()) to get the equivalent result.
  1115  func (v Value) Pointer() uintptr {
  1116  	k := v.kind()
  1117  	switch k {
  1118  	case Pointer:
  1119  		if v.typ.ptrdata == 0 {
  1120  			val := *(*uintptr)(v.ptr)
  1121  			// Since it is a not-in-heap pointer, all pointers to the heap are
  1122  			// forbidden! See comment in Value.Elem and issue #48399.
  1123  			if !verifyNotInHeapPtr(val) {
  1124  				panic("reflect: reflect.Value.Pointer on an invalid notinheap pointer")
  1125  			}
  1126  			return val
  1127  		}
  1128  		fallthrough
  1129  	case Chan, Map, UnsafePointer:
  1130  		return uintptr(v.pointer())
  1131  	case Func:
  1132  		if v.flag&flagMethod != 0 {
  1133  			panic("method values not supported in reflectlite")
  1134  		}
  1135  		p := v.pointer()
  1136  		// Non-nil func value points at data block.
  1137  		// First word of data block is actual code.
  1138  		if p != nil {
  1139  			p = *(*unsafe.Pointer)(p)
  1140  		}
  1141  		return uintptr(p)
  1142  
  1143  	case Slice:
  1144  		return (*SliceHeader)(v.ptr).Data
  1145  	}
  1146  	panic(&ValueError{"reflect.Value.Pointer", v.kind()})
  1147  }
  1148  
  1149  // Set assigns x to the value v.
  1150  // It panics if CanSet returns false.
  1151  // As in Go, x's value must be assignable to v's type.
  1152  func (v Value) Set(x Value) {
  1153  	v.mustBeAssignable()
  1154  	var target unsafe.Pointer
  1155  	if v.kind() == Interface {
  1156  		target = v.ptr
  1157  	}
  1158  	x = x.assignTo("reflect.Set", v.typ, target)
  1159  	if x.flag&flagIndir != 0 {
  1160  		if x.ptr == unsafe.Pointer(&zeroVal[0]) {
  1161  			typedmemclr(v.typ, v.ptr)
  1162  		} else {
  1163  			typedmemmove(v.typ, v.ptr, x.ptr)
  1164  		}
  1165  	} else {
  1166  		*(*unsafe.Pointer)(v.ptr) = x.ptr
  1167  	}
  1168  }
  1169  
  1170  // SetBool sets v's underlying value.
  1171  // It panics if v's Kind is not Bool or if CanSet() is false.
  1172  func (v Value) SetBool(x bool) {
  1173  	v.mustBeAssignable()
  1174  	v.mustBe(Bool)
  1175  	*(*bool)(v.ptr) = x
  1176  }
  1177  
  1178  // SetBytes sets v's underlying value.
  1179  // It panics if v's underlying value is not a slice of bytes.
  1180  func (v Value) SetBytes(x []byte) {
  1181  	v.mustBeAssignable()
  1182  	v.mustBe(Slice)
  1183  	if v.typ.Elem().Kind() != Uint8 {
  1184  		panic("reflect.Value.SetBytes of non-byte slice")
  1185  	}
  1186  	*(*[]byte)(v.ptr) = x
  1187  }
  1188  
  1189  // setRunes sets v's underlying value.
  1190  // It panics if v's underlying value is not a slice of runes (int32s).
  1191  func (v Value) setRunes(x []rune) {
  1192  	v.mustBeAssignable()
  1193  	v.mustBe(Slice)
  1194  	if v.typ.Elem().Kind() != Int32 {
  1195  		panic("reflect.Value.setRunes of non-rune slice")
  1196  	}
  1197  	*(*[]rune)(v.ptr) = x
  1198  }
  1199  
  1200  // SetComplex sets v's underlying value to x.
  1201  // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
  1202  func (v Value) SetComplex(x complex128) {
  1203  	v.mustBeAssignable()
  1204  	switch k := v.kind(); k {
  1205  	default:
  1206  		panic(&ValueError{"reflect.Value.SetComplex", v.kind()})
  1207  	case Complex64:
  1208  		*(*complex64)(v.ptr) = complex64(x)
  1209  	case Complex128:
  1210  		*(*complex128)(v.ptr) = x
  1211  	}
  1212  }
  1213  
  1214  // SetFloat sets v's underlying value to x.
  1215  // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
  1216  func (v Value) SetFloat(x float64) {
  1217  	v.mustBeAssignable()
  1218  	switch k := v.kind(); k {
  1219  	default:
  1220  		panic(&ValueError{"reflect.Value.SetFloat", v.kind()})
  1221  	case Float32:
  1222  		*(*float32)(v.ptr) = float32(x)
  1223  	case Float64:
  1224  		*(*float64)(v.ptr) = x
  1225  	}
  1226  }
  1227  
  1228  // SetInt sets v's underlying value to x.
  1229  // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
  1230  func (v Value) SetInt(x int64) {
  1231  	v.mustBeAssignable()
  1232  	switch k := v.kind(); k {
  1233  	default:
  1234  		panic(&ValueError{"reflect.Value.SetInt", v.kind()})
  1235  	case Int:
  1236  		*(*int)(v.ptr) = int(x)
  1237  	case Int8:
  1238  		*(*int8)(v.ptr) = int8(x)
  1239  	case Int16:
  1240  		*(*int16)(v.ptr) = int16(x)
  1241  	case Int32:
  1242  		*(*int32)(v.ptr) = int32(x)
  1243  	case Int64:
  1244  		*(*int64)(v.ptr) = x
  1245  	}
  1246  }
  1247  
  1248  // SetLen sets v's length to n.
  1249  // It panics if v's Kind is not Slice or if n is negative or
  1250  // greater than the capacity of the slice.
  1251  func (v Value) SetLen(n int) {
  1252  	v.mustBeAssignable()
  1253  	v.mustBe(Slice)
  1254  	s := (*unsafeheader.Slice)(v.ptr)
  1255  	if uint(n) > uint(s.Cap) {
  1256  		panic("reflect: slice length out of range in SetLen")
  1257  	}
  1258  	s.Len = n
  1259  }
  1260  
  1261  // SetCap sets v's capacity to n.
  1262  // It panics if v's Kind is not Slice or if n is smaller than the length or
  1263  // greater than the capacity of the slice.
  1264  func (v Value) SetCap(n int) {
  1265  	v.mustBeAssignable()
  1266  	v.mustBe(Slice)
  1267  	s := (*unsafeheader.Slice)(v.ptr)
  1268  	if n < s.Len || n > s.Cap {
  1269  		panic("reflect: slice capacity out of range in SetCap")
  1270  	}
  1271  	s.Cap = n
  1272  }
  1273  
  1274  // SetMapIndex sets the element associated with key in the map v to elem.
  1275  // It panics if v's Kind is not Map.
  1276  // If elem is the zero Value, SetMapIndex deletes the key from the map.
  1277  // Otherwise if v holds a nil map, SetMapIndex will panic.
  1278  // As in Go, key's elem must be assignable to the map's key type,
  1279  // and elem's value must be assignable to the map's elem type.
  1280  func (v Value) SetMapIndex(key, elem Value) {
  1281  	v.mustBe(Map)
  1282  	tt := (*mapType)(unsafe.Pointer(v.typ))
  1283  
  1284  	if (tt.key == stringType || key.kind() == String) && tt.key == key.typ && tt.elem.size <= maxValSize {
  1285  		k := *(*string)(key.ptr)
  1286  		if elem.typ == nil {
  1287  			mapdelete_faststr(v.typ, v.pointer(), k)
  1288  			return
  1289  		}
  1290  		elem = elem.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
  1291  		var e unsafe.Pointer
  1292  		if elem.flag&flagIndir != 0 {
  1293  			e = elem.ptr
  1294  		} else {
  1295  			e = unsafe.Pointer(&elem.ptr)
  1296  		}
  1297  		mapassign_faststr(v.typ, v.pointer(), k, e)
  1298  		return
  1299  	}
  1300  
  1301  	key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
  1302  	var k unsafe.Pointer
  1303  	if key.flag&flagIndir != 0 {
  1304  		k = key.ptr
  1305  	} else {
  1306  		k = unsafe.Pointer(&key.ptr)
  1307  	}
  1308  	if elem.typ == nil {
  1309  		mapdelete(v.typ, v.pointer(), k)
  1310  		return
  1311  	}
  1312  	elem = elem.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
  1313  	var e unsafe.Pointer
  1314  	if elem.flag&flagIndir != 0 {
  1315  		e = elem.ptr
  1316  	} else {
  1317  		e = unsafe.Pointer(&elem.ptr)
  1318  	}
  1319  	mapassign(v.typ, v.pointer(), k, e)
  1320  }
  1321  
  1322  // SetUint sets v's underlying value to x.
  1323  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
  1324  func (v Value) SetUint(x uint64) {
  1325  	v.mustBeAssignable()
  1326  	switch k := v.kind(); k {
  1327  	default:
  1328  		panic(&ValueError{"reflect.Value.SetUint", v.kind()})
  1329  	case Uint:
  1330  		*(*uint)(v.ptr) = uint(x)
  1331  	case Uint8:
  1332  		*(*uint8)(v.ptr) = uint8(x)
  1333  	case Uint16:
  1334  		*(*uint16)(v.ptr) = uint16(x)
  1335  	case Uint32:
  1336  		*(*uint32)(v.ptr) = uint32(x)
  1337  	case Uint64:
  1338  		*(*uint64)(v.ptr) = x
  1339  	case Uintptr:
  1340  		*(*uintptr)(v.ptr) = uintptr(x)
  1341  	}
  1342  }
  1343  
  1344  // SetPointer sets the unsafe.Pointer value v to x.
  1345  // It panics if v's Kind is not UnsafePointer.
  1346  func (v Value) SetPointer(x unsafe.Pointer) {
  1347  	v.mustBeAssignable()
  1348  	v.mustBe(UnsafePointer)
  1349  	*(*unsafe.Pointer)(v.ptr) = x
  1350  }
  1351  
  1352  // SetString sets v's underlying value to x.
  1353  // It panics if v's Kind is not String or if CanSet() is false.
  1354  func (v Value) SetString(x string) {
  1355  	v.mustBeAssignable()
  1356  	v.mustBe(String)
  1357  	*(*string)(v.ptr) = x
  1358  }
  1359  
  1360  // Slice returns v[i:j].
  1361  // It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array,
  1362  // or if the indexes are out of bounds.
  1363  func (v Value) Slice(i, j int) Value {
  1364  	var (
  1365  		cap  int
  1366  		typ  *sliceType
  1367  		base unsafe.Pointer
  1368  	)
  1369  	switch kind := v.kind(); kind {
  1370  	default:
  1371  		panic(&ValueError{"reflect.Value.Slice", v.kind()})
  1372  
  1373  	case Array:
  1374  		if v.flag&flagAddr == 0 {
  1375  			panic("reflect.Value.Slice: slice of unaddressable array")
  1376  		}
  1377  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  1378  		cap = int(tt.len)
  1379  		typ = (*sliceType)(unsafe.Pointer(tt.slice))
  1380  		base = v.ptr
  1381  
  1382  	case Slice:
  1383  		typ = (*sliceType)(unsafe.Pointer(v.typ))
  1384  		s := (*unsafeheader.Slice)(v.ptr)
  1385  		base = s.Data
  1386  		cap = s.Cap
  1387  
  1388  	case String:
  1389  		s := (*unsafeheader.String)(v.ptr)
  1390  		if i < 0 || j < i || j > s.Len {
  1391  			panic("reflect.Value.Slice: string slice index out of bounds")
  1392  		}
  1393  		var t unsafeheader.String
  1394  		if i < s.Len {
  1395  			t = unsafeheader.String{Data: arrayAt(s.Data, i, 1, "i < s.Len"), Len: j - i}
  1396  		}
  1397  		return Value{v.typ, unsafe.Pointer(&t), v.flag}
  1398  	}
  1399  
  1400  	if i < 0 || j < i || j > cap {
  1401  		panic("reflect.Value.Slice: slice index out of bounds")
  1402  	}
  1403  
  1404  	// Declare slice so that gc can see the base pointer in it.
  1405  	var x []unsafe.Pointer
  1406  
  1407  	// Reinterpret as *unsafeheader.Slice to edit.
  1408  	s := (*unsafeheader.Slice)(unsafe.Pointer(&x))
  1409  	s.Len = j - i
  1410  	s.Cap = cap - i
  1411  	if cap-i > 0 {
  1412  		s.Data = arrayAt(base, i, typ.elem.Size(), "i < cap")
  1413  	} else {
  1414  		// do not advance pointer, to avoid pointing beyond end of slice
  1415  		s.Data = base
  1416  	}
  1417  
  1418  	fl := v.flag.ro() | flagIndir | flag(Slice)
  1419  	return Value{typ.common(), unsafe.Pointer(&x), fl}
  1420  }
  1421  
  1422  // String returns the string v's underlying value, as a string.
  1423  // String is a special case because of Go's String method convention.
  1424  // Unlike the other getters, it does not panic if v's Kind is not String.
  1425  // Instead, it returns a string of the form "<T value>" where T is v's type.
  1426  // The fmt package treats Values specially. It does not call their String
  1427  // method implicitly but instead prints the concrete values they hold.
  1428  func (v Value) String() string {
  1429  	switch k := v.kind(); k {
  1430  	case Invalid:
  1431  		return "<invalid Value>"
  1432  	case String:
  1433  		return *(*string)(v.ptr)
  1434  	}
  1435  	// If you call String on a reflect.Value of other type, it's better to
  1436  	// print something than to panic. Useful in debugging.
  1437  	return "<" + v.Type().String() + " Value>"
  1438  }
  1439  
  1440  // Type returns v's type.
  1441  func (v Value) Type() Type {
  1442  	f := v.flag
  1443  	if f == 0 {
  1444  		panic(&ValueError{"reflect.Value.Type", Invalid})
  1445  	}
  1446  	if f&flagMethod == 0 {
  1447  		// Easy case
  1448  		return v.typ
  1449  	}
  1450  
  1451  	// Method value.
  1452  	// v.typ describes the receiver, not the method type.
  1453  	i := int(v.flag) >> flagMethodShift
  1454  	if v.typ.Kind() == Interface {
  1455  		// Method on interface.
  1456  		tt := (*interfaceType)(unsafe.Pointer(v.typ))
  1457  		if uint(i) >= uint(len(tt.methods)) {
  1458  			panic("reflect: internal error: invalid method index")
  1459  		}
  1460  		m := &tt.methods[i]
  1461  		return v.typ.typeOff(m.typ)
  1462  	}
  1463  	// Method on concrete type.
  1464  	ms := v.typ.exportedMethods()
  1465  	if uint(i) >= uint(len(ms)) {
  1466  		panic("reflect: internal error: invalid method index")
  1467  	}
  1468  	m := ms[i]
  1469  	return v.typ.typeOff(m.mtyp)
  1470  }
  1471  
  1472  // CanUint reports whether Uint can be used without panicking.
  1473  func (v Value) CanUint() bool {
  1474  	switch v.kind() {
  1475  	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  1476  		return true
  1477  	default:
  1478  		return false
  1479  	}
  1480  }
  1481  
  1482  // Uint returns v's underlying value, as a uint64.
  1483  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
  1484  func (v Value) Uint() uint64 {
  1485  	k := v.kind()
  1486  	p := v.ptr
  1487  	switch k {
  1488  	case Uint:
  1489  		return uint64(*(*uint)(p))
  1490  	case Uint8:
  1491  		return uint64(*(*uint8)(p))
  1492  	case Uint16:
  1493  		return uint64(*(*uint16)(p))
  1494  	case Uint32:
  1495  		return uint64(*(*uint32)(p))
  1496  	case Uint64:
  1497  		return *(*uint64)(p)
  1498  	case Uintptr:
  1499  		return uint64(*(*uintptr)(p))
  1500  	}
  1501  	panic(&ValueError{"reflect.Value.Uint", v.kind()})
  1502  }
  1503  
  1504  //go:nocheckptr
  1505  // This prevents inlining Value.UnsafeAddr when -d=checkptr is enabled,
  1506  // which ensures cmd/compile can recognize unsafe.Pointer(v.UnsafeAddr())
  1507  // and make an exception.
  1508  
  1509  // UnsafeAddr returns a pointer to v's data, as a uintptr.
  1510  // It is for advanced clients that also import the "unsafe" package.
  1511  // It panics if v is not addressable.
  1512  //
  1513  // It's preferred to use uintptr(Value.Addr().UnsafePointer()) to get the equivalent result.
  1514  func (v Value) UnsafeAddr() uintptr {
  1515  	if v.typ == nil {
  1516  		panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
  1517  	}
  1518  	if v.flag&flagAddr == 0 {
  1519  		panic("reflect.Value.UnsafeAddr of unaddressable value")
  1520  	}
  1521  	return uintptr(v.ptr)
  1522  }
  1523  
  1524  // UnsafePointer returns v's value as a unsafe.Pointer.
  1525  // It panics if v's Kind is not Chan, Func, Map, Pointer, Slice, or UnsafePointer.
  1526  //
  1527  // If v's Kind is Func, the returned pointer is an underlying
  1528  // code pointer, but not necessarily enough to identify a
  1529  // single function uniquely. The only guarantee is that the
  1530  // result is zero if and only if v is a nil func Value.
  1531  //
  1532  // If v's Kind is Slice, the returned pointer is to the first
  1533  // element of the slice. If the slice is nil the returned value
  1534  // is nil.  If the slice is empty but non-nil the return value is non-nil.
  1535  func (v Value) UnsafePointer() unsafe.Pointer {
  1536  	k := v.kind()
  1537  	switch k {
  1538  	case Pointer:
  1539  		if v.typ.ptrdata == 0 {
  1540  			// Since it is a not-in-heap pointer, all pointers to the heap are
  1541  			// forbidden! See comment in Value.Elem and issue #48399.
  1542  			if !verifyNotInHeapPtr(*(*uintptr)(v.ptr)) {
  1543  				panic("reflect: reflect.Value.UnsafePointer on an invalid notinheap pointer")
  1544  			}
  1545  			return *(*unsafe.Pointer)(v.ptr)
  1546  		}
  1547  		fallthrough
  1548  	case Chan, Map, UnsafePointer:
  1549  		return v.pointer()
  1550  	case Func:
  1551  		if v.flag&flagMethod != 0 {
  1552  			panic("method values not supported in reflectlite")
  1553  		}
  1554  		p := v.pointer()
  1555  		// Non-nil func value points at data block.
  1556  		// First word of data block is actual code.
  1557  		if p != nil {
  1558  			p = *(*unsafe.Pointer)(p)
  1559  		}
  1560  		return p
  1561  
  1562  	case Slice:
  1563  		return (*unsafeheader.Slice)(v.ptr).Data
  1564  	}
  1565  	panic(&ValueError{"reflect.Value.UnsafePointer", v.kind()})
  1566  }
  1567  
  1568  // StringHeader is the runtime representation of a string.
  1569  // It cannot be used safely or portably and its representation may
  1570  // change in a later release.
  1571  // Moreover, the Data field is not sufficient to guarantee the data
  1572  // it references will not be garbage collected, so programs must keep
  1573  // a separate, correctly typed pointer to the underlying data.
  1574  type StringHeader struct {
  1575  	Data uintptr
  1576  	Len  int
  1577  }
  1578  
  1579  // SliceHeader is the runtime representation of a slice.
  1580  // It cannot be used safely or portably and its representation may
  1581  // change in a later release.
  1582  // Moreover, the Data field is not sufficient to guarantee the data
  1583  // it references will not be garbage collected, so programs must keep
  1584  // a separate, correctly typed pointer to the underlying data.
  1585  type SliceHeader struct {
  1586  	Data uintptr
  1587  	Len  int
  1588  	Cap  int
  1589  }
  1590  
  1591  // arrayAt returns the i-th element of p,
  1592  // an array whose elements are eltSize bytes wide.
  1593  // The array pointed at by p must have at least i+1 elements:
  1594  // it is invalid (but impossible to check here) to pass i >= len,
  1595  // because then the result will point outside the array.
  1596  // whySafe must explain why i < len. (Passing "i < len" is fine;
  1597  // the benefit is to surface this assumption at the call site.)
  1598  func arrayAt(p unsafe.Pointer, i int, eltSize uintptr, whySafe string) unsafe.Pointer {
  1599  	return add(p, uintptr(i)*eltSize, "i < len")
  1600  }
  1601  
  1602  /*
  1603   * constructors
  1604   */
  1605  
  1606  //go:linkname ifaceE2I reflect.ifaceE2I
  1607  func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)
  1608  
  1609  // typedmemmove copies a value of type t to dst from src.
  1610  //
  1611  //go:noescape
  1612  //go:linkname typedmemmove runtime.typedmemmove
  1613  func typedmemmove(t *rtype, dst, src unsafe.Pointer)
  1614  
  1615  // typedmemclr zeros the value at ptr of type t.
  1616  //
  1617  //go:noescape
  1618  //go:linkname typedmemclr reflect.typedmemclr
  1619  func typedmemclr(t *rtype, ptr unsafe.Pointer)
  1620  
  1621  //go:linkname unsafe_New reflect.unsafe_New
  1622  func unsafe_New(*rtype) unsafe.Pointer
  1623  
  1624  // MakeMapWithSize creates a new map with the specified type
  1625  // and initial space for approximately n elements.
  1626  func MakeMapWithSize(typ Type, n int) Value {
  1627  	if typ.Kind() != Map {
  1628  		panic("reflect.MakeMapWithSize of non-map type")
  1629  	}
  1630  	t := typ.(*rtype)
  1631  	m := makemap(t, n)
  1632  	return Value{t, m, flag(Map)}
  1633  }
  1634  
  1635  // Indirect returns the value that v points to.
  1636  // If v is a nil pointer, Indirect returns a zero Value.
  1637  // If v is not a pointer, Indirect returns v.
  1638  func Indirect(v Value) Value {
  1639  	if v.Kind() != Pointer {
  1640  		return v
  1641  	}
  1642  	return v.Elem()
  1643  }
  1644  
  1645  // ValueOf returns a new Value initialized to the concrete value
  1646  // stored in the interface i. ValueOf(nil) returns the zero Value.
  1647  func ValueOf(i interface{}) Value {
  1648  	if i == nil {
  1649  		return Value{}
  1650  	}
  1651  
  1652  	// TODO: Maybe allow contents of a Value to live on the stack.
  1653  	// For now we make the contents always escape to the heap. It
  1654  	// makes life easier in a few places (see chanrecv/mapassign
  1655  	// comment below).
  1656  	escapes(i)
  1657  
  1658  	return unpackEface(i)
  1659  }
  1660  
  1661  // Zero returns a Value representing the zero value for the specified type.
  1662  // The result is different from the zero value of the Value struct,
  1663  // which represents no value at all.
  1664  // For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
  1665  // The returned value is neither addressable nor settable.
  1666  func Zero(typ Type) Value {
  1667  	if typ == nil {
  1668  		panic("reflect: Zero(nil)")
  1669  	}
  1670  	t := typ.(*rtype)
  1671  	fl := flag(t.Kind())
  1672  	if ifaceIndir(t) {
  1673  		var p unsafe.Pointer
  1674  		if t.size <= maxZero {
  1675  			p = unsafe.Pointer(&zeroVal[0])
  1676  		} else {
  1677  			p = unsafe_New(t)
  1678  		}
  1679  		return Value{t, p, fl | flagIndir}
  1680  	}
  1681  	return Value{t, nil, fl}
  1682  }
  1683  
  1684  // must match declarations in runtime/map.go.
  1685  const maxZero = 1024
  1686  
  1687  //go:linkname zeroVal runtime.zeroVal
  1688  var zeroVal [maxZero]byte
  1689  
  1690  // New returns a Value representing a pointer to a new zero value
  1691  // for the specified type. That is, the returned Value's Type is PointerTo(typ).
  1692  func New(typ Type) Value {
  1693  	if typ == nil {
  1694  		panic("reflect: New(nil)")
  1695  	}
  1696  	t := typ.(*rtype)
  1697  	pt := t.ptrTo()
  1698  	if ifaceIndir(pt) {
  1699  		// This is a pointer to a go:notinheap type.
  1700  		panic("reflect: New of type that may not be allocated in heap (possibly undefined cgo C type)")
  1701  	}
  1702  	ptr := unsafe_New(t)
  1703  	fl := flag(Pointer)
  1704  	return Value{pt, ptr, fl}
  1705  }
  1706  
  1707  // NewAt returns a Value representing a pointer to a value of the
  1708  // specified type, using p as that pointer.
  1709  func NewAt(typ Type, p unsafe.Pointer) Value {
  1710  	fl := flag(Pointer)
  1711  	t := typ.(*rtype)
  1712  	return Value{t.ptrTo(), p, fl}
  1713  }
  1714  
  1715  // assignTo returns a value v that can be assigned directly to typ.
  1716  // It panics if v is not assignable to typ.
  1717  // For a conversion to an interface type, target is a suggested scratch space to use.
  1718  // target must be initialized memory (or nil).
  1719  func (v Value) assignTo(context string, dst *rtype, target unsafe.Pointer) Value {
  1720  	if v.flag&flagMethod != 0 {
  1721  		panic("method values not supported in reflectlite")
  1722  	}
  1723  
  1724  	seen := map[_typePair]struct{}{}
  1725  	switch {
  1726  	case directlyAssignable(dst, v.typ, seen):
  1727  		// Overwrite type so that they match.
  1728  		// Same memory layout, so no harm done.
  1729  		fl := v.flag&(flagAddr|flagIndir) | v.flag.ro()
  1730  		fl |= flag(dst.Kind())
  1731  		return Value{dst, v.ptr, fl}
  1732  
  1733  	case implements(dst, v.typ, seen):
  1734  		if target == nil {
  1735  			target = unsafe_New(dst)
  1736  		}
  1737  		if v.Kind() == Interface && v.IsNil() {
  1738  			// A nil ReadWriter passed to nil Reader is OK,
  1739  			// but using ifaceE2I below will panic.
  1740  			// Avoid the panic by returning a nil dst (e.g., Reader) explicitly.
  1741  			return Value{dst, nil, flag(Interface)}
  1742  		}
  1743  		x := valueInterface(v, false)
  1744  		if dst.NumMethod() == 0 {
  1745  			*(*interface{})(target) = x
  1746  		} else {
  1747  			ifaceE2I(dst, x, target)
  1748  		}
  1749  		return Value{dst, target, flagIndir | flag(Interface)}
  1750  	}
  1751  
  1752  	// Failed.
  1753  	panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
  1754  }
  1755  
  1756  // Convert returns the value v converted to type t.
  1757  // If the usual Go conversion rules do not allow conversion
  1758  // of the value v to type t, or if converting v to type t panics, Convert panics.
  1759  func (v Value) Convert(t Type) Value {
  1760  	if v.flag&flagMethod != 0 {
  1761  		panic("method values not supported in reflectlite")
  1762  	}
  1763  	seen := map[_typePair]struct{}{}
  1764  	op := convertOp(t.common(), v.typ, false, seen)
  1765  	if op == nil {
  1766  		panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
  1767  	}
  1768  	return op(v, t)
  1769  }
  1770  
  1771  func (v Value) ConvertWithInterface(t Type) Value {
  1772  	if v.flag&flagMethod != 0 {
  1773  		panic("method values not supported in reflectlite")
  1774  	}
  1775  	seen := map[_typePair]struct{}{}
  1776  	op := convertOp(t.common(), v.typ, true, seen)
  1777  	if op == nil {
  1778  		panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
  1779  	}
  1780  	return op(v, t)
  1781  }
  1782  
  1783  // CanConvert reports whether the value v can be converted to type t.
  1784  // If v.CanConvert(t) returns true then v.Convert(t) will not panic.
  1785  func (v Value) CanConvert(t Type) bool {
  1786  	vt := v.Type()
  1787  	if !vt.ConvertibleTo(t) {
  1788  		return false
  1789  	}
  1790  	// Currently the only conversion that is OK in terms of type
  1791  	// but that can panic depending on the value is converting
  1792  	// from slice to pointer-to-array.
  1793  	if vt.Kind() == Slice && t.Kind() == Pointer && t.Elem().Kind() == Array {
  1794  		n := t.Elem().Len()
  1795  		if n > v.Len() {
  1796  			return false
  1797  		}
  1798  	}
  1799  	return true
  1800  }
  1801  
  1802  func convertOp(dst, src *rtype, allowInterface bool, seen map[_typePair]struct{}) func(Value, Type) Value {
  1803  	switch src.Kind() {
  1804  	case Int, Int8, Int16, Int32, Int64:
  1805  		switch dst.Kind() {
  1806  		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  1807  			return cvtInt
  1808  		case Float32, Float64:
  1809  			return cvtIntFloat
  1810  		case String:
  1811  			return cvtIntString
  1812  		}
  1813  
  1814  	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  1815  		switch dst.Kind() {
  1816  		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  1817  			return cvtUint
  1818  		case Float32, Float64:
  1819  			return cvtUintFloat
  1820  		case String:
  1821  			return cvtUintString
  1822  		}
  1823  
  1824  	case Float32, Float64:
  1825  		switch dst.Kind() {
  1826  		case Int, Int8, Int16, Int32, Int64:
  1827  			return cvtFloatInt
  1828  		case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  1829  			return cvtFloatUint
  1830  		case Float32, Float64:
  1831  			return cvtFloat
  1832  		}
  1833  
  1834  	case Complex64, Complex128:
  1835  		switch dst.Kind() {
  1836  		case Complex64, Complex128:
  1837  			return cvtComplex
  1838  		}
  1839  
  1840  	case String:
  1841  		if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
  1842  			switch dst.Elem().Kind() {
  1843  			case Uint8:
  1844  				return cvtStringBytes
  1845  			case Int32:
  1846  				return cvtStringRunes
  1847  			}
  1848  		}
  1849  
  1850  	case Slice:
  1851  		if dst.Kind() == String && src.Elem().PkgPath() == "" {
  1852  			switch src.Elem().Kind() {
  1853  			case Uint8:
  1854  				return cvtBytesString
  1855  			case Int32:
  1856  				return cvtRunesString
  1857  			}
  1858  		}
  1859  		// "x is a slice, T is a pointer-to-array type,
  1860  		// and the slice and array types have identical element types."
  1861  		if dst.Kind() == Pointer && dst.Elem().Kind() == Array && src.Elem() == dst.Elem().Elem() {
  1862  			return cvtSliceArrayPtr
  1863  		}
  1864  
  1865  	case Chan:
  1866  		if dst.Kind() == Chan && specialChannelAssignability(dst, src, seen) {
  1867  			return cvtDirect
  1868  		}
  1869  	}
  1870  
  1871  	// dst and src have same underlying type.
  1872  	if haveIdenticalUnderlyingType(dst, src, false, allowInterface, seen) {
  1873  		return cvtDirect
  1874  	}
  1875  
  1876  	// dst and src are non-defined pointer types with same underlying base type.
  1877  	if dst.Kind() == Pointer && dst.Name() == "" &&
  1878  		src.Kind() == Pointer && src.Name() == "" &&
  1879  		haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common(), false, allowInterface, seen) {
  1880  		return cvtDirect
  1881  	}
  1882  
  1883  	if implements(dst, src, seen) {
  1884  		if src.Kind() == Interface {
  1885  			return cvtI2I
  1886  		}
  1887  		return cvtT2I
  1888  	}
  1889  
  1890  	return nil
  1891  }
  1892  
  1893  func haveIdenticalType(T, V Type, cmpTags, allowInterface bool, seen map[_typePair]struct{}) bool {
  1894  	if cmpTags {
  1895  		return T == V
  1896  	}
  1897  
  1898  	if T.Name() != V.Name() || T.Kind() != V.Kind() || T.PkgPath() != V.PkgPath() {
  1899  		return false
  1900  	}
  1901  
  1902  	return haveIdenticalUnderlyingType(T.common(), V.common(), false, allowInterface, seen)
  1903  }
  1904  
  1905  func haveIdenticalUnderlyingType(T, V *rtype, cmpTags, allowInterface bool, seen map[_typePair]struct{}) bool {
  1906  	if T == V {
  1907  		return true
  1908  	}
  1909  	tp := _typePair{T, V}
  1910  	if _, ok := seen[tp]; ok {
  1911  		return true
  1912  	}
  1913  
  1914  	seen[tp] = struct{}{}
  1915  
  1916  	kind := T.Kind()
  1917  	if kind != V.Kind() {
  1918  		return false
  1919  	}
  1920  
  1921  	// Non-composite types of equal kind have same underlying type
  1922  	// (the predefined instance of the type).
  1923  	if Bool <= kind && kind <= Complex128 || kind == String || kind == UnsafePointer {
  1924  		return true
  1925  	}
  1926  
  1927  	// Composite types.
  1928  	switch kind {
  1929  	case Array:
  1930  		return T.Len() == V.Len() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags, allowInterface, seen)
  1931  
  1932  	case Chan:
  1933  		return V.ChanDir() == T.ChanDir() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags, allowInterface, seen)
  1934  
  1935  	case Func:
  1936  		t := (*funcType)(unsafe.Pointer(T))
  1937  		v := (*funcType)(unsafe.Pointer(V))
  1938  		if t.outCount != v.outCount || t.inCount != v.inCount {
  1939  			return false
  1940  		}
  1941  		for i := 0; i < t.NumIn(); i++ {
  1942  			if !haveIdenticalType(t.In(i), v.In(i), cmpTags, allowInterface, seen) {
  1943  				return false
  1944  			}
  1945  		}
  1946  		for i := 0; i < t.NumOut(); i++ {
  1947  			if !haveIdenticalType(t.Out(i), v.Out(i), cmpTags, allowInterface, seen) {
  1948  				return false
  1949  			}
  1950  		}
  1951  		return true
  1952  
  1953  	case Interface:
  1954  		t := (*interfaceType)(unsafe.Pointer(T))
  1955  		v := (*interfaceType)(unsafe.Pointer(V))
  1956  		if len(t.methods) == 0 && len(v.methods) == 0 {
  1957  			return true
  1958  		}
  1959  		if allowInterface && implements(V, T, seen) {
  1960  			return true
  1961  		}
  1962  		return false
  1963  	case Map:
  1964  		return haveIdenticalType(T.Key(), V.Key(), cmpTags, allowInterface, seen) && haveIdenticalType(T.Elem(), V.Elem(), cmpTags, allowInterface, seen)
  1965  
  1966  	case Pointer, Slice:
  1967  		return haveIdenticalType(T.Elem(), V.Elem(), cmpTags, allowInterface, seen)
  1968  
  1969  	case Struct:
  1970  		t := (*structType)(unsafe.Pointer(T))
  1971  		v := (*structType)(unsafe.Pointer(V))
  1972  		if len(t.fields) != len(v.fields) {
  1973  			return false
  1974  		}
  1975  		if t.pkgPath.name() != v.pkgPath.name() {
  1976  			return false
  1977  		}
  1978  		for i := range t.fields {
  1979  			tf := &t.fields[i]
  1980  			vf := &v.fields[i]
  1981  			if tf.name.name() != vf.name.name() {
  1982  				return false
  1983  			}
  1984  			if !haveIdenticalType(tf.typ, vf.typ, cmpTags, allowInterface, seen) {
  1985  				return false
  1986  			}
  1987  			if cmpTags && tf.name.tag() != vf.name.tag() {
  1988  				return false
  1989  			}
  1990  			if tf.offsetEmbed != vf.offsetEmbed {
  1991  				return false
  1992  			}
  1993  			if tf.embedded() != vf.embedded() {
  1994  				return false
  1995  			}
  1996  		}
  1997  		return true
  1998  	}
  1999  
  2000  	return false
  2001  }
  2002  
  2003  // makeInt returns a Value of type t equal to bits (possibly truncated),
  2004  // where t is a signed or unsigned int type.
  2005  func makeInt(f flag, bits uint64, t Type) Value {
  2006  	typ := t.common()
  2007  	ptr := unsafe_New(typ)
  2008  	switch typ.size {
  2009  	case 1:
  2010  		*(*uint8)(ptr) = uint8(bits)
  2011  	case 2:
  2012  		*(*uint16)(ptr) = uint16(bits)
  2013  	case 4:
  2014  		*(*uint32)(ptr) = uint32(bits)
  2015  	case 8:
  2016  		*(*uint64)(ptr) = bits
  2017  	}
  2018  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2019  }
  2020  
  2021  // makeFloat returns a Value of type t equal to v (possibly truncated to float32),
  2022  // where t is a float32 or float64 type.
  2023  func makeFloat(f flag, v float64, t Type) Value {
  2024  	typ := t.common()
  2025  	ptr := unsafe_New(typ)
  2026  	switch typ.size {
  2027  	case 4:
  2028  		*(*float32)(ptr) = float32(v)
  2029  	case 8:
  2030  		*(*float64)(ptr) = v
  2031  	}
  2032  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2033  }
  2034  
  2035  // makeFloat returns a Value of type t equal to v, where t is a float32 type.
  2036  func makeFloat32(f flag, v float32, t Type) Value {
  2037  	typ := t.common()
  2038  	ptr := unsafe_New(typ)
  2039  	*(*float32)(ptr) = v
  2040  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2041  }
  2042  
  2043  // makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
  2044  // where t is a complex64 or complex128 type.
  2045  func makeComplex(f flag, v complex128, t Type) Value {
  2046  	typ := t.common()
  2047  	ptr := unsafe_New(typ)
  2048  	switch typ.size {
  2049  	case 8:
  2050  		*(*complex64)(ptr) = complex64(v)
  2051  	case 16:
  2052  		*(*complex128)(ptr) = v
  2053  	}
  2054  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2055  }
  2056  
  2057  func makeString(f flag, v string, t Type) Value {
  2058  	ret := New(t).Elem()
  2059  	ret.SetString(v)
  2060  	ret.flag = ret.flag&^flagAddr | f
  2061  	return ret
  2062  }
  2063  
  2064  func makeBytes(f flag, v []byte, t Type) Value {
  2065  	ret := New(t).Elem()
  2066  	ret.SetBytes(v)
  2067  	ret.flag = ret.flag&^flagAddr | f
  2068  	return ret
  2069  }
  2070  
  2071  func makeRunes(f flag, v []rune, t Type) Value {
  2072  	ret := New(t).Elem()
  2073  	ret.setRunes(v)
  2074  	ret.flag = ret.flag&^flagAddr | f
  2075  	return ret
  2076  }
  2077  
  2078  // These conversion functions are returned by convertOp
  2079  // for classes of conversions. For example, the first function, cvtInt,
  2080  // takes interface{} value v of signed int type and returns the value converted
  2081  // to type t, where t is interface{} signed or unsigned int type.
  2082  
  2083  // convertOp: intXX -> [u]intXX
  2084  func cvtInt(v Value, t Type) Value {
  2085  	return makeInt(v.flag.ro(), uint64(v.Int()), t)
  2086  }
  2087  
  2088  // convertOp: uintXX -> [u]intXX
  2089  func cvtUint(v Value, t Type) Value {
  2090  	return makeInt(v.flag.ro(), v.Uint(), t)
  2091  }
  2092  
  2093  // convertOp: floatXX -> intXX
  2094  func cvtFloatInt(v Value, t Type) Value {
  2095  	return makeInt(v.flag.ro(), uint64(int64(v.Float())), t)
  2096  }
  2097  
  2098  // convertOp: floatXX -> uintXX
  2099  func cvtFloatUint(v Value, t Type) Value {
  2100  	return makeInt(v.flag.ro(), uint64(v.Float()), t)
  2101  }
  2102  
  2103  // convertOp: intXX -> floatXX
  2104  func cvtIntFloat(v Value, t Type) Value {
  2105  	return makeFloat(v.flag.ro(), float64(v.Int()), t)
  2106  }
  2107  
  2108  // convertOp: uintXX -> floatXX
  2109  func cvtUintFloat(v Value, t Type) Value {
  2110  	return makeFloat(v.flag.ro(), float64(v.Uint()), t)
  2111  }
  2112  
  2113  // convertOp: floatXX -> floatXX
  2114  func cvtFloat(v Value, t Type) Value {
  2115  	if v.Type().Kind() == Float32 && t.Kind() == Float32 {
  2116  		// Don't do interface{} conversion if both types have underlying type float32.
  2117  		// This avoids converting to float64 and back, which will
  2118  		// convert a signaling NaN to a quiet NaN. See issue 36400.
  2119  		return makeFloat32(v.flag.ro(), *(*float32)(v.ptr), t)
  2120  	}
  2121  	return makeFloat(v.flag.ro(), v.Float(), t)
  2122  }
  2123  
  2124  // convertOp: complexXX -> complexXX
  2125  func cvtComplex(v Value, t Type) Value {
  2126  	return makeComplex(v.flag.ro(), v.Complex(), t)
  2127  }
  2128  
  2129  // convertOp: intXX -> string
  2130  func cvtIntString(v Value, t Type) Value {
  2131  	s := "\uFFFD"
  2132  	if x := v.Int(); int64(rune(x)) == x {
  2133  		s = string(rune(x))
  2134  	}
  2135  	return makeString(v.flag.ro(), s, t)
  2136  }
  2137  
  2138  // convertOp: uintXX -> string
  2139  func cvtUintString(v Value, t Type) Value {
  2140  	s := "\uFFFD"
  2141  	if x := v.Uint(); uint64(rune(x)) == x {
  2142  		s = string(rune(x))
  2143  	}
  2144  	return makeString(v.flag.ro(), s, t)
  2145  }
  2146  
  2147  // convertOp: []byte -> string
  2148  func cvtBytesString(v Value, t Type) Value {
  2149  	return makeString(v.flag.ro(), string(v.Bytes()), t)
  2150  }
  2151  
  2152  // convertOp: string -> []byte
  2153  func cvtStringBytes(v Value, t Type) Value {
  2154  	return makeBytes(v.flag.ro(), []byte(v.String()), t)
  2155  }
  2156  
  2157  // convertOp: []rune -> string
  2158  func cvtRunesString(v Value, t Type) Value {
  2159  	return makeString(v.flag.ro(), string(v.runes()), t)
  2160  }
  2161  
  2162  // convertOp: string -> []rune
  2163  func cvtStringRunes(v Value, t Type) Value {
  2164  	return makeRunes(v.flag.ro(), []rune(v.String()), t)
  2165  }
  2166  
  2167  // convertOp: []T -> *[N]T
  2168  func cvtSliceArrayPtr(v Value, t Type) Value {
  2169  	n := t.Elem().Len()
  2170  	if n > v.Len() {
  2171  		panic("reflect: cannot convert slice with length " + itoa.Itoa(v.Len()) + " to pointer to array with length " + itoa.Itoa(n))
  2172  	}
  2173  	h := (*unsafeheader.Slice)(v.ptr)
  2174  	return Value{t.common(), h.Data, v.flag&^(flagIndir|flagAddr|flagKindMask) | flag(Pointer)}
  2175  }
  2176  
  2177  // convertOp: direct copy
  2178  func cvtDirect(v Value, typ Type) Value {
  2179  	f := v.flag
  2180  	t := typ.common()
  2181  	ptr := v.ptr
  2182  	if f&flagAddr != 0 {
  2183  		// indirect, mutable word - make a copy
  2184  		c := unsafe_New(t)
  2185  		typedmemmove(t, c, ptr)
  2186  		ptr = c
  2187  		f &^= flagAddr
  2188  	}
  2189  	return Value{t, ptr, v.flag.ro() | f} // v.flag.ro()|f == f?
  2190  }
  2191  
  2192  // convertOp: concrete -> interface
  2193  func cvtT2I(v Value, typ Type) Value {
  2194  	target := unsafe_New(typ.common())
  2195  	x := valueInterface(v, false)
  2196  	if typ.NumMethod() == 0 {
  2197  		*(*interface{})(target) = x
  2198  	} else {
  2199  		ifaceE2I(typ.(*rtype), x, target)
  2200  	}
  2201  	return Value{typ.common(), target, v.flag.ro() | flagIndir | flag(Interface)}
  2202  }
  2203  
  2204  // convertOp: interface -> interface
  2205  func cvtI2I(v Value, typ Type) Value {
  2206  	if v.IsNil() {
  2207  		ret := Zero(typ)
  2208  		ret.flag |= v.flag.ro()
  2209  		return ret
  2210  	}
  2211  	return cvtT2I(v.Elem(), typ)
  2212  }
  2213  
  2214  //go:linkname chanlen reflect.chanlen
  2215  func chanlen(ch unsafe.Pointer) int
  2216  
  2217  //go:noescape
  2218  //go:linkname maplen reflect.maplen
  2219  func maplen(m unsafe.Pointer) int
  2220  
  2221  //go:linkname makemap reflect.makemap
  2222  func makemap(t *rtype, cap int) (m unsafe.Pointer)
  2223  
  2224  //go:noescape
  2225  //go:linkname mapaccess reflect.mapaccess
  2226  func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer)
  2227  
  2228  //go:noescape
  2229  //go:linkname mapaccess_faststr reflect.mapaccess_faststr
  2230  func mapaccess_faststr(t *rtype, m unsafe.Pointer, key string) (val unsafe.Pointer)
  2231  
  2232  //go:noescape
  2233  //go:linkname mapassign reflect.mapassign
  2234  func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer)
  2235  
  2236  //go:noescape
  2237  //go:linkname mapassign_faststr reflect.mapassign_faststr
  2238  func mapassign_faststr(t *rtype, m unsafe.Pointer, key string, val unsafe.Pointer)
  2239  
  2240  //go:noescape
  2241  //go:linkname mapdelete reflect.mapdelete
  2242  func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer)
  2243  
  2244  //go:noescape
  2245  //go:linkname mapdelete_faststr reflect.mapdelete_faststr
  2246  func mapdelete_faststr(t *rtype, m unsafe.Pointer, key string)
  2247  
  2248  //go:noescape
  2249  //go:linkname mapiterinit reflect.mapiterinit
  2250  func mapiterinit(t *rtype, m unsafe.Pointer, it *hiter)
  2251  
  2252  //go:noescape
  2253  //go:linkname mapiterkey reflect.mapiterkey
  2254  func mapiterkey(it *hiter) (key unsafe.Pointer)
  2255  
  2256  //go:noescape
  2257  //go:linkname mapiterelem reflect.mapiterelem
  2258  func mapiterelem(it *hiter) (elem unsafe.Pointer)
  2259  
  2260  //go:noescape
  2261  //go:linkname mapiternext reflect.mapiternext
  2262  func mapiternext(it *hiter)
  2263  
  2264  //go:linkname verifyNotInHeapPtr reflect.verifyNotInHeapPtr
  2265  func verifyNotInHeapPtr(p uintptr) bool
  2266  
  2267  // Dummy annotation marking that the value x escapes,
  2268  // for use in cases where the reflect code is so clever that
  2269  // the compiler cannot follow.
  2270  func escapes(x interface{}) {
  2271  	if dummy.b {
  2272  		dummy.x = x
  2273  	}
  2274  }
  2275  
  2276  var dummy struct {
  2277  	b bool
  2278  	x interface{}
  2279  }