github.com/emmansun/gmsm@v0.29.1/pkcs/internal/rc2/rc2.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package rc2 implements the RC2 cipher 6 /* 7 https://www.ietf.org/rfc/rfc2268.txt 8 http://people.csail.mit.edu/rivest/pubs/KRRR98.pdf 9 10 This code is licensed under the MIT license. 11 */ 12 package rc2 13 14 import ( 15 "crypto/cipher" 16 "encoding/binary" 17 "fmt" 18 19 "github.com/emmansun/gmsm/internal/alias" 20 ) 21 22 // The rc2 block size in bytes 23 const BlockSize = 8 24 25 type rc2Cipher struct { 26 k [64]uint16 27 } 28 29 // NewCipherWithEffectiveKeyBits returns a new rc2 cipher with the given key and effective key length in bits t1 30 func NewCipherWithEffectiveKeyBits(key []byte, t1 int) (cipher.Block, error) { 31 kLen := len(key) 32 if kLen < 1 || kLen > 128 { 33 return nil, fmt.Errorf("rc2: invalid key size %d", kLen) 34 } 35 if t1 < 1 || t1 > 1024 { 36 return nil, fmt.Errorf("rc2: invalid effective key length %d", t1) 37 } 38 return &rc2Cipher{ 39 k: expandKey(key, t1), 40 }, nil 41 } 42 43 // NewCipher returns a new rc2 cipher with the given key 44 func NewCipher(key []byte) (cipher.Block, error) { 45 return NewCipherWithEffectiveKeyBits(key, len(key)*8) 46 } 47 48 func (*rc2Cipher) BlockSize() int { return BlockSize } 49 50 var piTable = [256]byte{ 51 0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d, 52 0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e, 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2, 53 0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32, 54 0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82, 55 0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c, 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc, 56 0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26, 57 0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03, 58 0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7, 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7, 59 0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a, 60 0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec, 61 0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc, 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39, 62 0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31, 63 0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9, 64 0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c, 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9, 65 0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e, 66 0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad, 67 } 68 69 func expandKey(key []byte, t1 int) [64]uint16 { 70 l := make([]byte, 128) 71 copy(l, key) 72 73 var t = len(key) 74 var t8 = (t1 + 7) / 8 // effective key length in bytes 75 var tm = byte(255 % uint(1<<(8+uint(t1)-8*uint(t8)))) // mask for the t1 rightmost bits of the last byte 76 77 for i := t; i < 128; i++ { 78 l[i] = piTable[l[i-1]+l[i-t]] 79 } 80 81 l[128-t8] = piTable[l[128-t8]&tm] 82 83 for i := 127 - t8; i >= 0; i-- { 84 l[i] = piTable[l[i+1]^l[i+t8]] 85 } 86 87 var k [64]uint16 88 89 for i := range k { 90 k[i] = uint16(l[2*i]) | uint16(l[2*i+1])<<8 91 } 92 93 return k 94 } 95 96 // rotl16 rotates x left by b bits 97 func rotl16(x uint16, b uint) uint16 { 98 return (x >> (16 - b)) | (x << b) 99 } 100 101 func (c *rc2Cipher) Encrypt(dst, src []byte) { 102 if len(src) < BlockSize { 103 panic("rc2: input not full block") 104 } 105 if len(dst) < BlockSize { 106 panic("rc2: output not full block") 107 } 108 if alias.InexactOverlap(dst[:BlockSize], src[:BlockSize]) { 109 panic("rc2: invalid buffer overlap") 110 } 111 112 r0 := binary.LittleEndian.Uint16(src[0:2]) 113 r1 := binary.LittleEndian.Uint16(src[2:4]) 114 r2 := binary.LittleEndian.Uint16(src[4:6]) 115 r3 := binary.LittleEndian.Uint16(src[6:BlockSize]) 116 117 var j int 118 119 // perform 5 mixing rounds 120 for j <= 16 { 121 // mix up r0 122 r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1) 123 r0 = rotl16(r0, 1) 124 j++ 125 126 // mix up r1 127 r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2) 128 r1 = rotl16(r1, 2) 129 j++ 130 131 // mix up r2 132 r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3) 133 r2 = rotl16(r2, 3) 134 j++ 135 136 // mix up r3 137 r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0) 138 r3 = rotl16(r3, 5) 139 j++ 140 } 141 142 // perform 1 mashing round 143 r0 = r0 + c.k[r3&63] 144 r1 = r1 + c.k[r0&63] 145 r2 = r2 + c.k[r1&63] 146 r3 = r3 + c.k[r2&63] 147 148 // perform 6 mixing rounds 149 for j <= 40 { 150 // mix up r0 151 r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1) 152 r0 = rotl16(r0, 1) 153 j++ 154 155 // mix up r1 156 r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2) 157 r1 = rotl16(r1, 2) 158 j++ 159 160 // mix up r2 161 r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3) 162 r2 = rotl16(r2, 3) 163 j++ 164 165 // mix up r3 166 r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0) 167 r3 = rotl16(r3, 5) 168 j++ 169 } 170 171 // perform 1 mashing round 172 r0 = r0 + c.k[r3&63] 173 r1 = r1 + c.k[r0&63] 174 r2 = r2 + c.k[r1&63] 175 r3 = r3 + c.k[r2&63] 176 177 // perform 5 mixing rounds 178 for j <= 60 { 179 // mix up r0 180 r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1) 181 r0 = rotl16(r0, 1) 182 j++ 183 184 // mix up r1 185 r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2) 186 r1 = rotl16(r1, 2) 187 j++ 188 189 // mix up r2 190 r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3) 191 r2 = rotl16(r2, 3) 192 j++ 193 194 // mix up r3 195 r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0) 196 r3 = rotl16(r3, 5) 197 j++ 198 } 199 200 binary.LittleEndian.PutUint16(dst[0:2], r0) 201 binary.LittleEndian.PutUint16(dst[2:4], r1) 202 binary.LittleEndian.PutUint16(dst[4:6], r2) 203 binary.LittleEndian.PutUint16(dst[6:BlockSize], r3) 204 } 205 206 func (c *rc2Cipher) Decrypt(dst, src []byte) { 207 if len(src) < BlockSize { 208 panic("rc2: input not full block") 209 } 210 if len(dst) < BlockSize { 211 panic("rc2: output not full block") 212 } 213 if alias.InexactOverlap(dst[:BlockSize], src[:BlockSize]) { 214 panic("rc2: invalid buffer overlap") 215 } 216 r0 := binary.LittleEndian.Uint16(src[0:2]) 217 r1 := binary.LittleEndian.Uint16(src[2:4]) 218 r2 := binary.LittleEndian.Uint16(src[4:6]) 219 r3 := binary.LittleEndian.Uint16(src[6:BlockSize]) 220 221 j := 63 222 223 // perform 5 r-mixing rounds 224 for j >= 44 { 225 // unmix r3 226 r3 = rotl16(r3, 16-5) 227 r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0) 228 j-- 229 230 // unmix r2 231 r2 = rotl16(r2, 16-3) 232 r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3) 233 j-- 234 235 // unmix r1 236 r1 = rotl16(r1, 16-2) 237 r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2) 238 j-- 239 240 // unmix r0 241 r0 = rotl16(r0, 16-1) 242 r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1) 243 j-- 244 } 245 246 // perform 1 r-mashing round 247 r3 = r3 - c.k[r2&63] 248 r2 = r2 - c.k[r1&63] 249 r1 = r1 - c.k[r0&63] 250 r0 = r0 - c.k[r3&63] 251 252 // perform 6 r-mixing rounds 253 for j >= 20 { 254 // unmix r3 255 r3 = rotl16(r3, 16-5) 256 r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0) 257 j-- 258 259 // unmix r2 260 r2 = rotl16(r2, 16-3) 261 r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3) 262 j-- 263 264 // unmix r1 265 r1 = rotl16(r1, 16-2) 266 r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2) 267 j-- 268 269 // unmix r0 270 r0 = rotl16(r0, 16-1) 271 r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1) 272 j-- 273 } 274 275 // perform 1 r-mashing round 276 r3 = r3 - c.k[r2&63] 277 r2 = r2 - c.k[r1&63] 278 r1 = r1 - c.k[r0&63] 279 r0 = r0 - c.k[r3&63] 280 281 // perform 5 r-mixing rounds 282 for j >= 3 { 283 // unmix r3 284 r3 = rotl16(r3, 16-5) 285 r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0) 286 j-- 287 288 // unmix r2 289 r2 = rotl16(r2, 16-3) 290 r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3) 291 j-- 292 293 // unmix r1 294 r1 = rotl16(r1, 16-2) 295 r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2) 296 j-- 297 298 // unmix r0 299 r0 = rotl16(r0, 16-1) 300 r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1) 301 j-- 302 } 303 304 binary.LittleEndian.PutUint16(dst[0:2], r0) 305 binary.LittleEndian.PutUint16(dst[2:4], r1) 306 binary.LittleEndian.PutUint16(dst[4:6], r2) 307 binary.LittleEndian.PutUint16(dst[6:BlockSize], r3) 308 }