github.com/emmansun/gmsm@v0.29.1/pkcs/internal/rc2/rc2.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package rc2 implements the RC2 cipher
     6  /*
     7  https://www.ietf.org/rfc/rfc2268.txt
     8  http://people.csail.mit.edu/rivest/pubs/KRRR98.pdf
     9  
    10  This code is licensed under the MIT license.
    11  */
    12  package rc2
    13  
    14  import (
    15  	"crypto/cipher"
    16  	"encoding/binary"
    17  	"fmt"
    18  
    19  	"github.com/emmansun/gmsm/internal/alias"
    20  )
    21  
    22  // The rc2 block size in bytes
    23  const BlockSize = 8
    24  
    25  type rc2Cipher struct {
    26  	k [64]uint16
    27  }
    28  
    29  // NewCipherWithEffectiveKeyBits returns a new rc2 cipher with the given key and effective key length in bits t1
    30  func NewCipherWithEffectiveKeyBits(key []byte, t1 int) (cipher.Block, error) {
    31  	kLen := len(key)
    32  	if kLen < 1 || kLen > 128 {
    33  		return nil, fmt.Errorf("rc2: invalid key size %d", kLen)
    34  	}
    35  	if t1 < 1 || t1 > 1024 {
    36  		return nil, fmt.Errorf("rc2: invalid effective key length %d", t1)
    37  	}
    38  	return &rc2Cipher{
    39  		k: expandKey(key, t1),
    40  	}, nil
    41  }
    42  
    43  // NewCipher returns a new rc2 cipher with the given key
    44  func NewCipher(key []byte) (cipher.Block, error) {
    45  	return NewCipherWithEffectiveKeyBits(key, len(key)*8)
    46  }
    47  
    48  func (*rc2Cipher) BlockSize() int { return BlockSize }
    49  
    50  var piTable = [256]byte{
    51  	0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d,
    52  	0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e, 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2,
    53  	0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32,
    54  	0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82,
    55  	0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c, 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc,
    56  	0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26,
    57  	0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03,
    58  	0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7, 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7,
    59  	0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a,
    60  	0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec,
    61  	0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc, 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39,
    62  	0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31,
    63  	0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9,
    64  	0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c, 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9,
    65  	0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e,
    66  	0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad,
    67  }
    68  
    69  func expandKey(key []byte, t1 int) [64]uint16 {
    70  	l := make([]byte, 128)
    71  	copy(l, key)
    72  
    73  	var t = len(key)
    74  	var t8 = (t1 + 7) / 8                                 // effective key length in bytes
    75  	var tm = byte(255 % uint(1<<(8+uint(t1)-8*uint(t8)))) // mask for the t1 rightmost bits of the last byte
    76  
    77  	for i := t; i < 128; i++ {
    78  		l[i] = piTable[l[i-1]+l[i-t]]
    79  	}
    80  
    81  	l[128-t8] = piTable[l[128-t8]&tm]
    82  
    83  	for i := 127 - t8; i >= 0; i-- {
    84  		l[i] = piTable[l[i+1]^l[i+t8]]
    85  	}
    86  
    87  	var k [64]uint16
    88  
    89  	for i := range k {
    90  		k[i] = uint16(l[2*i]) | uint16(l[2*i+1])<<8
    91  	}
    92  
    93  	return k
    94  }
    95  
    96  // rotl16 rotates x left by b bits
    97  func rotl16(x uint16, b uint) uint16 {
    98  	return (x >> (16 - b)) | (x << b)
    99  }
   100  
   101  func (c *rc2Cipher) Encrypt(dst, src []byte) {
   102  	if len(src) < BlockSize {
   103  		panic("rc2: input not full block")
   104  	}
   105  	if len(dst) < BlockSize {
   106  		panic("rc2: output not full block")
   107  	}
   108  	if alias.InexactOverlap(dst[:BlockSize], src[:BlockSize]) {
   109  		panic("rc2: invalid buffer overlap")
   110  	}
   111  
   112  	r0 := binary.LittleEndian.Uint16(src[0:2])
   113  	r1 := binary.LittleEndian.Uint16(src[2:4])
   114  	r2 := binary.LittleEndian.Uint16(src[4:6])
   115  	r3 := binary.LittleEndian.Uint16(src[6:BlockSize])
   116  
   117  	var j int
   118  
   119  	// perform 5 mixing rounds
   120  	for j <= 16 {
   121  		// mix up r0
   122  		r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1)
   123  		r0 = rotl16(r0, 1)
   124  		j++
   125  
   126  		// mix up r1
   127  		r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2)
   128  		r1 = rotl16(r1, 2)
   129  		j++
   130  
   131  		// mix up r2
   132  		r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3)
   133  		r2 = rotl16(r2, 3)
   134  		j++
   135  
   136  		// mix up r3
   137  		r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0)
   138  		r3 = rotl16(r3, 5)
   139  		j++
   140  	}
   141  
   142  	// perform 1 mashing round
   143  	r0 = r0 + c.k[r3&63]
   144  	r1 = r1 + c.k[r0&63]
   145  	r2 = r2 + c.k[r1&63]
   146  	r3 = r3 + c.k[r2&63]
   147  
   148  	// perform 6 mixing rounds
   149  	for j <= 40 {
   150  		// mix up r0
   151  		r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1)
   152  		r0 = rotl16(r0, 1)
   153  		j++
   154  
   155  		// mix up r1
   156  		r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2)
   157  		r1 = rotl16(r1, 2)
   158  		j++
   159  
   160  		// mix up r2
   161  		r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3)
   162  		r2 = rotl16(r2, 3)
   163  		j++
   164  
   165  		// mix up r3
   166  		r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0)
   167  		r3 = rotl16(r3, 5)
   168  		j++
   169  	}
   170  
   171  	// perform 1 mashing round
   172  	r0 = r0 + c.k[r3&63]
   173  	r1 = r1 + c.k[r0&63]
   174  	r2 = r2 + c.k[r1&63]
   175  	r3 = r3 + c.k[r2&63]
   176  
   177  	// perform 5 mixing rounds
   178  	for j <= 60 {
   179  		// mix up r0
   180  		r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1)
   181  		r0 = rotl16(r0, 1)
   182  		j++
   183  
   184  		// mix up r1
   185  		r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2)
   186  		r1 = rotl16(r1, 2)
   187  		j++
   188  
   189  		// mix up r2
   190  		r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3)
   191  		r2 = rotl16(r2, 3)
   192  		j++
   193  
   194  		// mix up r3
   195  		r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0)
   196  		r3 = rotl16(r3, 5)
   197  		j++
   198  	}
   199  
   200  	binary.LittleEndian.PutUint16(dst[0:2], r0)
   201  	binary.LittleEndian.PutUint16(dst[2:4], r1)
   202  	binary.LittleEndian.PutUint16(dst[4:6], r2)
   203  	binary.LittleEndian.PutUint16(dst[6:BlockSize], r3)
   204  }
   205  
   206  func (c *rc2Cipher) Decrypt(dst, src []byte) {
   207  	if len(src) < BlockSize {
   208  		panic("rc2: input not full block")
   209  	}
   210  	if len(dst) < BlockSize {
   211  		panic("rc2: output not full block")
   212  	}
   213  	if alias.InexactOverlap(dst[:BlockSize], src[:BlockSize]) {
   214  		panic("rc2: invalid buffer overlap")
   215  	}
   216  	r0 := binary.LittleEndian.Uint16(src[0:2])
   217  	r1 := binary.LittleEndian.Uint16(src[2:4])
   218  	r2 := binary.LittleEndian.Uint16(src[4:6])
   219  	r3 := binary.LittleEndian.Uint16(src[6:BlockSize])
   220  
   221  	j := 63
   222  
   223  	// perform 5 r-mixing rounds
   224  	for j >= 44 {
   225  		// unmix r3
   226  		r3 = rotl16(r3, 16-5)
   227  		r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0)
   228  		j--
   229  
   230  		// unmix r2
   231  		r2 = rotl16(r2, 16-3)
   232  		r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3)
   233  		j--
   234  
   235  		// unmix r1
   236  		r1 = rotl16(r1, 16-2)
   237  		r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2)
   238  		j--
   239  
   240  		// unmix r0
   241  		r0 = rotl16(r0, 16-1)
   242  		r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1)
   243  		j--
   244  	}
   245  
   246  	// perform 1 r-mashing round
   247  	r3 = r3 - c.k[r2&63]
   248  	r2 = r2 - c.k[r1&63]
   249  	r1 = r1 - c.k[r0&63]
   250  	r0 = r0 - c.k[r3&63]
   251  
   252  	// perform 6 r-mixing rounds
   253  	for j >= 20 {
   254  		// unmix r3
   255  		r3 = rotl16(r3, 16-5)
   256  		r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0)
   257  		j--
   258  
   259  		// unmix r2
   260  		r2 = rotl16(r2, 16-3)
   261  		r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3)
   262  		j--
   263  
   264  		// unmix r1
   265  		r1 = rotl16(r1, 16-2)
   266  		r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2)
   267  		j--
   268  
   269  		// unmix r0
   270  		r0 = rotl16(r0, 16-1)
   271  		r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1)
   272  		j--
   273  	}
   274  
   275  	// perform 1 r-mashing round
   276  	r3 = r3 - c.k[r2&63]
   277  	r2 = r2 - c.k[r1&63]
   278  	r1 = r1 - c.k[r0&63]
   279  	r0 = r0 - c.k[r3&63]
   280  
   281  	// perform 5 r-mixing rounds
   282  	for j >= 3 {
   283  		// unmix r3
   284  		r3 = rotl16(r3, 16-5)
   285  		r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0)
   286  		j--
   287  
   288  		// unmix r2
   289  		r2 = rotl16(r2, 16-3)
   290  		r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3)
   291  		j--
   292  
   293  		// unmix r1
   294  		r1 = rotl16(r1, 16-2)
   295  		r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2)
   296  		j--
   297  
   298  		// unmix r0
   299  		r0 = rotl16(r0, 16-1)
   300  		r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1)
   301  		j--
   302  	}
   303  
   304  	binary.LittleEndian.PutUint16(dst[0:2], r0)
   305  	binary.LittleEndian.PutUint16(dst[2:4], r1)
   306  	binary.LittleEndian.PutUint16(dst[4:6], r2)
   307  	binary.LittleEndian.PutUint16(dst[6:BlockSize], r3)
   308  }