github.com/emmansun/gmsm@v0.29.1/smx509/verify.go (about) 1 package smx509 2 3 import ( 4 "bytes" 5 "crypto" 6 "crypto/x509" 7 "crypto/x509/pkix" 8 "errors" 9 "fmt" 10 "net" 11 "net/url" 12 "reflect" 13 "runtime" 14 "strings" 15 "time" 16 "unicode/utf8" 17 ) 18 19 const ( 20 NotAuthorizedToSign = x509.NotAuthorizedToSign 21 Expired = x509.Expired 22 CANotAuthorizedForThisName = x509.CANotAuthorizedForThisName 23 TooManyIntermediates = x509.TooManyIntermediates 24 IncompatibleUsage = x509.IncompatibleUsage 25 NameMismatch = x509.NameMismatch 26 NameConstraintsWithoutSANs = x509.NameConstraintsWithoutSANs 27 UnconstrainedName = x509.UnconstrainedName 28 TooManyConstraints = x509.TooManyConstraints 29 CANotAuthorizedForExtKeyUsage = x509.CANotAuthorizedForExtKeyUsage 30 ) 31 32 type CertificateInvalidError = x509.CertificateInvalidError 33 34 // UnknownAuthorityError results when the certificate issuer is unknown 35 type UnknownAuthorityError struct { 36 Cert *Certificate 37 // hintErr contains an error that may be helpful in determining why an 38 // authority wasn't found. 39 hintErr error 40 // hintCert contains a possible authority certificate that was rejected 41 // because of the error in hintErr. 42 hintCert *Certificate 43 } 44 45 func (e UnknownAuthorityError) Error() string { 46 s := "x509: certificate signed by unknown authority" 47 if e.hintErr != nil { 48 certName := e.hintCert.Subject.CommonName 49 if len(certName) == 0 { 50 if len(e.hintCert.Subject.Organization) > 0 { 51 certName = e.hintCert.Subject.Organization[0] 52 } else { 53 certName = "serial:" + e.hintCert.SerialNumber.String() 54 } 55 } 56 s += fmt.Sprintf(" (possibly because of %q while trying to verify candidate authority certificate %q)", e.hintErr, certName) 57 } 58 return s 59 } 60 61 // errNotParsed is returned when a certificate without ASN.1 contents is 62 // verified. Platform-specific verification needs the ASN.1 contents. 63 var errNotParsed = errors.New("x509: missing ASN.1 contents; use ParseCertificate") 64 65 // VerifyOptions contains parameters for Certificate.Verify. 66 type VerifyOptions struct { 67 // DNSName, if set, is checked against the leaf certificate with 68 // Certificate.VerifyHostname or the platform verifier. 69 DNSName string 70 71 // Intermediates is an optional pool of certificates that are not trust 72 // anchors, but can be used to form a chain from the leaf certificate to a 73 // root certificate. 74 Intermediates *CertPool 75 // Roots is the set of trusted root certificates the leaf certificate needs 76 // to chain up to. If nil, the system roots or the platform verifier are used. 77 Roots *CertPool 78 79 // CurrentTime is used to check the validity of all certificates in the 80 // chain. If zero, the current time is used. 81 CurrentTime time.Time 82 83 // KeyUsages specifies which Extended Key Usage values are acceptable. A 84 // chain is accepted if it allows any of the listed values. An empty list 85 // means ExtKeyUsageServerAuth. To accept any key usage, include ExtKeyUsageAny. 86 KeyUsages []ExtKeyUsage 87 88 // MaxConstraintComparisions is the maximum number of comparisons to 89 // perform when checking a given certificate's name constraints. If 90 // zero, a sensible default is used. This limit prevents pathological 91 // certificates from consuming excessive amounts of CPU time when 92 // validating. It does not apply to the platform verifier. 93 MaxConstraintComparisions int 94 } 95 96 const ( 97 leafCertificate = iota 98 intermediateCertificate 99 rootCertificate 100 ) 101 102 // rfc2821Mailbox represents a “mailbox” (which is an email address to most 103 // people) by breaking it into the “local” (i.e. before the '@') and “domain” 104 // parts. 105 type rfc2821Mailbox struct { 106 local, domain string 107 } 108 109 // parseRFC2821Mailbox parses an email address into local and domain parts, 110 // based on the ABNF for a “Mailbox” from RFC 2821. According to RFC 5280, 111 // Section 4.2.1.6 that's correct for an rfc822Name from a certificate: “The 112 // format of an rfc822Name is a "Mailbox" as defined in RFC 2821, Section 4.1.2”. 113 func parseRFC2821Mailbox(in string) (mailbox rfc2821Mailbox, ok bool) { 114 if len(in) == 0 { 115 return mailbox, false 116 } 117 118 localPartBytes := make([]byte, 0, len(in)/2) 119 120 if in[0] == '"' { 121 // Quoted-string = DQUOTE *qcontent DQUOTE 122 // non-whitespace-control = %d1-8 / %d11 / %d12 / %d14-31 / %d127 123 // qcontent = qtext / quoted-pair 124 // qtext = non-whitespace-control / 125 // %d33 / %d35-91 / %d93-126 126 // quoted-pair = ("\" text) / obs-qp 127 // text = %d1-9 / %d11 / %d12 / %d14-127 / obs-text 128 // 129 // (Names beginning with “obs-” are the obsolete syntax from RFC 2822, 130 // Section 4. Since it has been 16 years, we no longer accept that.) 131 in = in[1:] 132 QuotedString: 133 for { 134 if len(in) == 0 { 135 return mailbox, false 136 } 137 c := in[0] 138 in = in[1:] 139 140 switch { 141 case c == '"': 142 break QuotedString 143 144 case c == '\\': 145 // quoted-pair 146 if len(in) == 0 { 147 return mailbox, false 148 } 149 if in[0] == 11 || 150 in[0] == 12 || 151 (1 <= in[0] && in[0] <= 9) || 152 (14 <= in[0] && in[0] <= 127) { 153 localPartBytes = append(localPartBytes, in[0]) 154 in = in[1:] 155 } else { 156 return mailbox, false 157 } 158 159 case c == 11 || 160 c == 12 || 161 // Space (char 32) is not allowed based on the 162 // BNF, but RFC 3696 gives an example that 163 // assumes that it is. Several “verified” 164 // errata continue to argue about this point. 165 // We choose to accept it. 166 c == 32 || 167 c == 33 || 168 c == 127 || 169 (1 <= c && c <= 8) || 170 (14 <= c && c <= 31) || 171 (35 <= c && c <= 91) || 172 (93 <= c && c <= 126): 173 // qtext 174 localPartBytes = append(localPartBytes, c) 175 176 default: 177 return mailbox, false 178 } 179 } 180 } else { 181 // Atom ("." Atom)* 182 NextChar: 183 for len(in) > 0 { 184 // atext from RFC 2822, Section 3.2.4 185 c := in[0] 186 187 switch { 188 case c == '\\': 189 // Examples given in RFC 3696 suggest that 190 // escaped characters can appear outside of a 191 // quoted string. Several “verified” errata 192 // continue to argue the point. We choose to 193 // accept it. 194 in = in[1:] 195 if len(in) == 0 { 196 return mailbox, false 197 } 198 fallthrough 199 200 case ('0' <= c && c <= '9') || 201 ('a' <= c && c <= 'z') || 202 ('A' <= c && c <= 'Z') || 203 c == '!' || c == '#' || c == '$' || c == '%' || 204 c == '&' || c == '\'' || c == '*' || c == '+' || 205 c == '-' || c == '/' || c == '=' || c == '?' || 206 c == '^' || c == '_' || c == '`' || c == '{' || 207 c == '|' || c == '}' || c == '~' || c == '.': 208 localPartBytes = append(localPartBytes, in[0]) 209 in = in[1:] 210 211 default: 212 break NextChar 213 } 214 } 215 216 if len(localPartBytes) == 0 { 217 return mailbox, false 218 } 219 220 // From RFC 3696, Section 3: 221 // “period (".") may also appear, but may not be used to start 222 // or end the local part, nor may two or more consecutive 223 // periods appear.” 224 twoDots := []byte{'.', '.'} 225 if localPartBytes[0] == '.' || 226 localPartBytes[len(localPartBytes)-1] == '.' || 227 bytes.Contains(localPartBytes, twoDots) { 228 return mailbox, false 229 } 230 } 231 232 if len(in) == 0 || in[0] != '@' { 233 return mailbox, false 234 } 235 in = in[1:] 236 237 // The RFC species a format for domains, but that's known to be 238 // violated in practice so we accept that anything after an '@' is the 239 // domain part. 240 if _, ok := domainToReverseLabels(in); !ok { 241 return mailbox, false 242 } 243 244 mailbox.local = string(localPartBytes) 245 mailbox.domain = in 246 return mailbox, true 247 } 248 249 // domainToReverseLabels converts a textual domain name like foo.example.com to 250 // the list of labels in reverse order, e.g. ["com", "example", "foo"]. 251 func domainToReverseLabels(domain string) (reverseLabels []string, ok bool) { 252 for len(domain) > 0 { 253 if i := strings.LastIndexByte(domain, '.'); i == -1 { 254 reverseLabels = append(reverseLabels, domain) 255 domain = "" 256 } else { 257 reverseLabels = append(reverseLabels, domain[i+1:]) 258 domain = domain[:i] 259 if i == 0 { // domain == "" 260 // domain is prefixed with an empty label, append an empty 261 // string to reverseLabels to indicate this. 262 reverseLabels = append(reverseLabels, "") 263 } 264 } 265 } 266 267 if len(reverseLabels) > 0 && len(reverseLabels[0]) == 0 { 268 // An empty label at the end indicates an absolute value. 269 return nil, false 270 } 271 272 for _, label := range reverseLabels { 273 if len(label) == 0 { 274 // Empty labels are otherwise invalid. 275 return nil, false 276 } 277 278 for _, c := range label { 279 if c < 33 || c > 126 { 280 // Invalid character. 281 return nil, false 282 } 283 } 284 } 285 286 return reverseLabels, true 287 } 288 289 func matchEmailConstraint(mailbox rfc2821Mailbox, constraint string) (bool, error) { 290 // If the constraint contains an @, then it specifies an exact mailbox 291 // name. 292 if strings.Contains(constraint, "@") { 293 constraintMailbox, ok := parseRFC2821Mailbox(constraint) 294 if !ok { 295 return false, fmt.Errorf("x509: internal error: cannot parse constraint %q", constraint) 296 } 297 return mailbox.local == constraintMailbox.local && strings.EqualFold(mailbox.domain, constraintMailbox.domain), nil 298 } 299 300 // Otherwise the constraint is like a DNS constraint of the domain part 301 // of the mailbox. 302 return matchDomainConstraint(mailbox.domain, constraint) 303 } 304 305 func matchURIConstraint(uri *url.URL, constraint string) (bool, error) { 306 // From RFC 5280, Section 4.2.1.10: 307 // “a uniformResourceIdentifier that does not include an authority 308 // component with a host name specified as a fully qualified domain 309 // name (e.g., if the URI either does not include an authority 310 // component or includes an authority component in which the host name 311 // is specified as an IP address), then the application MUST reject the 312 // certificate.” 313 314 host := uri.Host 315 if len(host) == 0 { 316 return false, fmt.Errorf("URI with empty host (%q) cannot be matched against constraints", uri.String()) 317 } 318 319 if strings.Contains(host, ":") && !strings.HasSuffix(host, "]") { 320 var err error 321 host, _, err = net.SplitHostPort(uri.Host) 322 if err != nil { 323 return false, err 324 } 325 } 326 327 if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") || 328 net.ParseIP(host) != nil { 329 return false, fmt.Errorf("URI with IP (%q) cannot be matched against constraints", uri.String()) 330 } 331 332 return matchDomainConstraint(host, constraint) 333 } 334 335 func matchIPConstraint(ip net.IP, constraint *net.IPNet) (bool, error) { 336 if len(ip) != len(constraint.IP) { 337 return false, nil 338 } 339 340 for i := range ip { 341 if mask := constraint.Mask[i]; ip[i]&mask != constraint.IP[i]&mask { 342 return false, nil 343 } 344 } 345 346 return true, nil 347 } 348 349 func matchDomainConstraint(domain, constraint string) (bool, error) { 350 // The meaning of zero length constraints is not specified, but this 351 // code follows NSS and accepts them as matching everything. 352 if len(constraint) == 0 { 353 return true, nil 354 } 355 356 domainLabels, ok := domainToReverseLabels(domain) 357 if !ok { 358 return false, fmt.Errorf("x509: internal error: cannot parse domain %q", domain) 359 } 360 361 // RFC 5280 says that a leading period in a domain name means that at 362 // least one label must be prepended, but only for URI and email 363 // constraints, not DNS constraints. The code also supports that 364 // behaviour for DNS constraints. 365 366 mustHaveSubdomains := false 367 if constraint[0] == '.' { 368 mustHaveSubdomains = true 369 constraint = constraint[1:] 370 } 371 372 constraintLabels, ok := domainToReverseLabels(constraint) 373 if !ok { 374 return false, fmt.Errorf("x509: internal error: cannot parse domain %q", constraint) 375 } 376 377 if len(domainLabels) < len(constraintLabels) || 378 (mustHaveSubdomains && len(domainLabels) == len(constraintLabels)) { 379 return false, nil 380 } 381 382 for i, constraintLabel := range constraintLabels { 383 if !strings.EqualFold(constraintLabel, domainLabels[i]) { 384 return false, nil 385 } 386 } 387 388 return true, nil 389 } 390 391 // checkNameConstraints checks that c permits a child certificate to claim the 392 // given name, of type nameType. The argument parsedName contains the parsed 393 // form of name, suitable for passing to the match function. The total number 394 // of comparisons is tracked in the given count and should not exceed the given 395 // limit. 396 func (c *Certificate) checkNameConstraints(count *int, 397 maxConstraintComparisons int, 398 nameType string, 399 name string, 400 parsedName any, 401 match func(parsedName, constraint any) (match bool, err error), 402 permitted, excluded any) error { 403 404 excludedValue := reflect.ValueOf(excluded) 405 406 *count += excludedValue.Len() 407 if *count > maxConstraintComparisons { 408 return CertificateInvalidError{Cert: c.asX509(), Reason: TooManyConstraints, Detail: ""} 409 } 410 411 for i := 0; i < excludedValue.Len(); i++ { 412 constraint := excludedValue.Index(i).Interface() 413 match, err := match(parsedName, constraint) 414 if err != nil { 415 return CertificateInvalidError{Cert: c.asX509(), Reason: CANotAuthorizedForThisName, Detail: err.Error()} 416 } 417 418 if match { 419 return CertificateInvalidError{Cert: c.asX509(), Reason: CANotAuthorizedForThisName, Detail: fmt.Sprintf("%s %q is excluded by constraint %q", nameType, name, constraint)} 420 } 421 } 422 423 permittedValue := reflect.ValueOf(permitted) 424 425 *count += permittedValue.Len() 426 if *count > maxConstraintComparisons { 427 return CertificateInvalidError{Cert: c.asX509(), Reason: TooManyConstraints, Detail: ""} 428 } 429 430 ok := true 431 for i := 0; i < permittedValue.Len(); i++ { 432 constraint := permittedValue.Index(i).Interface() 433 434 var err error 435 if ok, err = match(parsedName, constraint); err != nil { 436 return CertificateInvalidError{Cert: c.asX509(), Reason: CANotAuthorizedForThisName, Detail: err.Error()} 437 } 438 439 if ok { 440 break 441 } 442 } 443 444 if !ok { 445 return CertificateInvalidError{Cert: c.asX509(), Reason: CANotAuthorizedForThisName, Detail: fmt.Sprintf("%s %q is not permitted by any constraint", nameType, name)} 446 } 447 448 return nil 449 } 450 451 // isValid performs validity checks on c given that it is a candidate to append 452 // to the chain in currentChain. 453 func (c *Certificate) isValid(certType int, currentChain []*Certificate, opts *VerifyOptions) error { 454 if len(c.UnhandledCriticalExtensions) > 0 { 455 return x509.UnhandledCriticalExtension{} 456 } 457 458 if len(currentChain) > 0 { 459 child := currentChain[len(currentChain)-1] 460 if !bytes.Equal(child.RawIssuer, c.RawSubject) { 461 return CertificateInvalidError{Cert: c.asX509(), Reason: NameMismatch, Detail: ""} 462 } 463 } 464 465 now := opts.CurrentTime 466 if now.IsZero() { 467 now = time.Now() 468 } 469 if now.Before(c.NotBefore) { 470 return CertificateInvalidError{ 471 Cert: c.asX509(), 472 Reason: Expired, 473 Detail: fmt.Sprintf("current time %s is before %s", now.Format(time.RFC3339), c.NotBefore.Format(time.RFC3339)), 474 } 475 } else if now.After(c.NotAfter) { 476 return CertificateInvalidError{ 477 Cert: c.asX509(), 478 Reason: Expired, 479 Detail: fmt.Sprintf("current time %s is after %s", now.Format(time.RFC3339), c.NotAfter.Format(time.RFC3339)), 480 } 481 } 482 483 maxConstraintComparisons := opts.MaxConstraintComparisions 484 if maxConstraintComparisons == 0 { 485 maxConstraintComparisons = 250000 486 } 487 comparisonCount := 0 488 489 if certType == intermediateCertificate || certType == rootCertificate { 490 if len(currentChain) == 0 { 491 return errors.New("x509: internal error: empty chain when appending CA cert") 492 } 493 } 494 495 if (certType == intermediateCertificate || certType == rootCertificate) && 496 c.hasNameConstraints() { 497 toCheck := []*Certificate{} 498 for _, c := range currentChain { 499 if c.hasSANExtension() { 500 toCheck = append(toCheck, c) 501 } 502 } 503 for _, sanCert := range toCheck { 504 err := forEachSAN(sanCert.getSANExtension(), func(tag int, data []byte) error { 505 switch tag { 506 case nameTypeEmail: 507 name := string(data) 508 mailbox, ok := parseRFC2821Mailbox(name) 509 if !ok { 510 return fmt.Errorf("x509: cannot parse rfc822Name %q", mailbox) 511 } 512 513 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "email address", name, mailbox, 514 func(parsedName, constraint any) (bool, error) { 515 return matchEmailConstraint(parsedName.(rfc2821Mailbox), constraint.(string)) 516 }, c.PermittedEmailAddresses, c.ExcludedEmailAddresses); err != nil { 517 return err 518 } 519 520 case nameTypeDNS: 521 name := string(data) 522 if _, ok := domainToReverseLabels(name); !ok { 523 return fmt.Errorf("x509: cannot parse dnsName %q", name) 524 } 525 526 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "DNS name", name, name, 527 func(parsedName, constraint any) (bool, error) { 528 return matchDomainConstraint(parsedName.(string), constraint.(string)) 529 }, c.PermittedDNSDomains, c.ExcludedDNSDomains); err != nil { 530 return err 531 } 532 533 case nameTypeURI: 534 name := string(data) 535 uri, err := url.Parse(name) 536 if err != nil { 537 return fmt.Errorf("x509: internal error: URI SAN %q failed to parse", name) 538 } 539 540 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "URI", name, uri, 541 func(parsedName, constraint any) (bool, error) { 542 return matchURIConstraint(parsedName.(*url.URL), constraint.(string)) 543 }, c.PermittedURIDomains, c.ExcludedURIDomains); err != nil { 544 return err 545 } 546 547 case nameTypeIP: 548 ip := net.IP(data) 549 if l := len(ip); l != net.IPv4len && l != net.IPv6len { 550 return fmt.Errorf("x509: internal error: IP SAN %x failed to parse", data) 551 } 552 553 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "IP address", ip.String(), ip, 554 func(parsedName, constraint any) (bool, error) { 555 return matchIPConstraint(parsedName.(net.IP), constraint.(*net.IPNet)) 556 }, c.PermittedIPRanges, c.ExcludedIPRanges); err != nil { 557 return err 558 } 559 560 default: 561 // Unknown SAN types are ignored. 562 } 563 564 return nil 565 }) 566 567 if err != nil { 568 return err 569 } 570 } 571 } 572 573 // KeyUsage status flags are ignored. From Engineering Security, Peter 574 // Gutmann: A European government CA marked its signing certificates as 575 // being valid for encryption only, but no-one noticed. Another 576 // European CA marked its signature keys as not being valid for 577 // signatures. A different CA marked its own trusted root certificate 578 // as being invalid for certificate signing. Another national CA 579 // distributed a certificate to be used to encrypt data for the 580 // country’s tax authority that was marked as only being usable for 581 // digital signatures but not for encryption. Yet another CA reversed 582 // the order of the bit flags in the keyUsage due to confusion over 583 // encoding endianness, essentially setting a random keyUsage in 584 // certificates that it issued. Another CA created a self-invalidating 585 // certificate by adding a certificate policy statement stipulating 586 // that the certificate had to be used strictly as specified in the 587 // keyUsage, and a keyUsage containing a flag indicating that the RSA 588 // encryption key could only be used for Diffie-Hellman key agreement. 589 590 if certType == intermediateCertificate && (!c.BasicConstraintsValid || !c.IsCA) { 591 return CertificateInvalidError{Cert: c.asX509(), Reason: NotAuthorizedToSign, Detail: ""} 592 } 593 594 if c.BasicConstraintsValid && c.MaxPathLen >= 0 { 595 numIntermediates := len(currentChain) - 1 596 if numIntermediates > c.MaxPathLen { 597 return CertificateInvalidError{Cert: c.asX509(), Reason: TooManyIntermediates, Detail: ""} 598 } 599 } 600 601 return nil 602 } 603 604 // Verify attempts to verify c by building one or more chains from c to a 605 // certificate in opts.Roots, using certificates in opts.Intermediates if 606 // needed. If successful, it returns one or more chains where the first 607 // element of the chain is c and the last element is from opts.Roots. 608 // 609 // If opts.Roots is nil, the platform verifier might be used, and 610 // verification details might differ from what is described below. If system 611 // roots are unavailable the returned error will be of type SystemRootsError. 612 // 613 // Name constraints in the intermediates will be applied to all names claimed 614 // in the chain, not just opts.DNSName. Thus it is invalid for a leaf to claim 615 // example.com if an intermediate doesn't permit it, even if example.com is not 616 // the name being validated. Note that DirectoryName constraints are not 617 // supported. 618 // 619 // Name constraint validation follows the rules from RFC 5280, with the 620 // addition that DNS name constraints may use the leading period format 621 // defined for emails and URIs. When a constraint has a leading period 622 // it indicates that at least one additional label must be prepended to 623 // the constrained name to be considered valid. 624 // 625 // Extended Key Usage values are enforced nested down a chain, so an intermediate 626 // or root that enumerates EKUs prevents a leaf from asserting an EKU not in that 627 // list. (While this is not specified, it is common practice in order to limit 628 // the types of certificates a CA can issue.) 629 // 630 // Certificates other than c in the returned chains should not be modified. 631 // 632 // WARNING: this function doesn't do any revocation checking. 633 func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error) { 634 // Platform-specific verification needs the ASN.1 contents so 635 // this makes the behavior consistent across platforms. 636 if len(c.Raw) == 0 { 637 return nil, errNotParsed 638 } 639 for i := 0; i < opts.Intermediates.len(); i++ { 640 c, _, err := opts.Intermediates.cert(i) 641 if err != nil { 642 return nil, fmt.Errorf("x509: error fetching intermediate: %w", err) 643 } 644 if len(c.Raw) == 0 { 645 return nil, errNotParsed 646 } 647 } 648 649 // Use platform verifiers, where available, if Roots is from SystemCertPool. 650 if runtime.GOOS == "windows" { 651 // Don't use the system verifier if the system pool was replaced with a non-system pool, 652 // i.e. if SetFallbackRoots was called with x509usefallbackroots=1. 653 systemPool := systemRootsPool() 654 if opts.Roots == nil && (systemPool == nil || systemPool.systemPool) { 655 return c.systemVerify(&opts) 656 } 657 if opts.Roots != nil && opts.Roots.systemPool { 658 platformChains, err := c.systemVerify(&opts) 659 // If the platform verifier succeeded, or there are no additional 660 // roots, return the platform verifier result. Otherwise, continue 661 // with the Go verifier. 662 if err == nil || opts.Roots.len() == 0 { 663 return platformChains, err 664 } 665 } 666 } 667 668 if opts.Roots == nil { 669 opts.Roots = systemRootsPool() 670 if opts.Roots == nil { 671 return nil, x509.SystemRootsError{Err: systemRootsErr} 672 } 673 } 674 675 err = c.isValid(leafCertificate, nil, &opts) 676 if err != nil { 677 return 678 } 679 680 if len(opts.DNSName) > 0 { 681 err = c.VerifyHostname(opts.DNSName) 682 if err != nil { 683 return 684 } 685 } 686 687 var candidateChains [][]*Certificate 688 if opts.Roots.contains(c) { 689 candidateChains = [][]*Certificate{{c}} 690 } else { 691 candidateChains, err = c.buildChains([]*Certificate{c}, nil, &opts) 692 if err != nil { 693 return nil, err 694 } 695 } 696 697 if len(opts.KeyUsages) == 0 { 698 opts.KeyUsages = []ExtKeyUsage{ExtKeyUsageServerAuth} 699 } 700 701 for _, eku := range opts.KeyUsages { 702 if eku == ExtKeyUsageAny { 703 // If any key usage is acceptable, no need to check the chain for 704 // key usages. 705 return candidateChains, nil 706 } 707 } 708 709 chains = make([][]*Certificate, 0, len(candidateChains)) 710 for _, candidate := range candidateChains { 711 if checkChainForKeyUsage(candidate, opts.KeyUsages) { 712 chains = append(chains, candidate) 713 } 714 } 715 716 if len(chains) == 0 { 717 return nil, CertificateInvalidError{Cert: c.asX509(), Reason: IncompatibleUsage, Detail: ""} 718 } 719 720 return chains, nil 721 } 722 723 func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate { 724 n := make([]*Certificate, len(chain)+1) 725 copy(n, chain) 726 n[len(chain)] = cert 727 return n 728 } 729 730 // alreadyInChain checks whether a candidate certificate is present in a chain. 731 // Rather than doing a direct byte for byte equivalency check, we check if the 732 // subject, public key, and SAN, if present, are equal. This prevents loops that 733 // are created by mutual cross-signatures, or other cross-signature bridge 734 // oddities. 735 func alreadyInChain(candidate *Certificate, chain []*Certificate) bool { 736 type pubKeyEqual interface { 737 Equal(crypto.PublicKey) bool 738 } 739 740 var candidateSAN *pkix.Extension 741 for _, ext := range candidate.Extensions { 742 if ext.Id.Equal(oidExtensionSubjectAltName) { 743 candidateSAN = &ext 744 break 745 } 746 } 747 748 for _, cert := range chain { 749 if !bytes.Equal(candidate.RawSubject, cert.RawSubject) { 750 continue 751 } 752 if !candidate.PublicKey.(pubKeyEqual).Equal(cert.PublicKey) { 753 continue 754 } 755 var certSAN *pkix.Extension 756 for _, ext := range cert.Extensions { 757 if ext.Id.Equal(oidExtensionSubjectAltName) { 758 certSAN = &ext 759 break 760 } 761 } 762 if candidateSAN == nil && certSAN == nil { 763 return true 764 } else if candidateSAN == nil || certSAN == nil { 765 return false 766 } 767 if bytes.Equal(candidateSAN.Value, certSAN.Value) { 768 return true 769 } 770 } 771 return false 772 } 773 774 // maxChainSignatureChecks is the maximum number of CheckSignatureFrom calls 775 // that an invocation of buildChains will (transitively) make. Most chains are 776 // less than 15 certificates long, so this leaves space for multiple chains and 777 // for failed checks due to different intermediates having the same Subject. 778 const maxChainSignatureChecks = 100 779 780 func (c *Certificate) buildChains(currentChain []*Certificate, sigChecks *int, opts *VerifyOptions) (chains [][]*Certificate, err error) { 781 var ( 782 hintErr error 783 hintCert *Certificate 784 ) 785 786 considerCandidate := func(certType int, candidate potentialParent) { 787 if candidate.cert.PublicKey == nil ||alreadyInChain(candidate.cert, currentChain) { 788 return 789 } 790 791 if sigChecks == nil { 792 sigChecks = new(int) 793 } 794 *sigChecks++ 795 if *sigChecks > maxChainSignatureChecks { 796 err = errors.New("x509: signature check attempts limit reached while verifying certificate chain") 797 return 798 } 799 800 if err := c.CheckSignatureFrom(candidate.cert); err != nil { 801 if hintErr == nil { 802 hintErr = err 803 hintCert = candidate.cert 804 } 805 return 806 } 807 808 err = candidate.cert.isValid(certType, currentChain, opts) 809 if err != nil { 810 if hintErr == nil { 811 hintErr = err 812 hintCert = candidate.cert 813 } 814 return 815 } 816 817 if candidate.constraint != nil { 818 if err := candidate.constraint(currentChain); err != nil { 819 if hintErr == nil { 820 hintErr = err 821 hintCert = candidate.cert 822 } 823 return 824 } 825 } 826 827 switch certType { 828 case rootCertificate: 829 chains = append(chains, appendToFreshChain(currentChain, candidate.cert)) 830 case intermediateCertificate: 831 var childChains [][]*Certificate 832 childChains, err = candidate.cert.buildChains(appendToFreshChain(currentChain, candidate.cert), sigChecks, opts) 833 chains = append(chains, childChains...) 834 } 835 } 836 837 for _, root := range opts.Roots.findPotentialParents(c) { 838 considerCandidate(rootCertificate, root) 839 } 840 for _, intermediate := range opts.Intermediates.findPotentialParents(c) { 841 considerCandidate(intermediateCertificate, intermediate) 842 } 843 844 if len(chains) > 0 { 845 err = nil 846 } 847 if len(chains) == 0 && err == nil { 848 err = UnknownAuthorityError{c, hintErr, hintCert} 849 } 850 851 return 852 } 853 854 func validHostnamePattern(host string) bool { return validHostname(host, true) } 855 func validHostnameInput(host string) bool { return validHostname(host, false) } 856 857 // validHostname reports whether host is a valid hostname that can be matched or 858 // matched against according to RFC 6125 2.2, with some leniency to accommodate 859 // legacy values. 860 func validHostname(host string, isPattern bool) bool { 861 if !isPattern { 862 host = strings.TrimSuffix(host, ".") 863 } 864 865 if len(host) == 0 { 866 return false 867 } 868 if host == "*" { 869 // Bare wildcards are not allowed, they are not valid DNS names, 870 // nor are they allowed per RFC 6125. 871 return false 872 } 873 874 for i, part := range strings.Split(host, ".") { 875 if part == "" { 876 // Empty label. 877 return false 878 } 879 if isPattern && i == 0 && part == "*" { 880 // Only allow full left-most wildcards, as those are the only ones 881 // we match, and matching literal '*' characters is probably never 882 // the expected behavior. 883 continue 884 } 885 for j, c := range part { 886 if 'a' <= c && c <= 'z' { 887 continue 888 } 889 if '0' <= c && c <= '9' { 890 continue 891 } 892 if 'A' <= c && c <= 'Z' { 893 continue 894 } 895 if c == '-' && j != 0 { 896 continue 897 } 898 if c == '_' { 899 // Not a valid character in hostnames, but commonly 900 // found in deployments outside the WebPKI. 901 continue 902 } 903 return false 904 } 905 } 906 907 return true 908 } 909 910 func matchExactly(hostA, hostB string) bool { 911 if hostA == "" || hostA == "." || hostB == "" || hostB == "." { 912 return false 913 } 914 return toLowerCaseASCII(hostA) == toLowerCaseASCII(hostB) 915 } 916 917 func matchHostnames(pattern, host string) bool { 918 pattern = toLowerCaseASCII(pattern) 919 host = toLowerCaseASCII(strings.TrimSuffix(host, ".")) 920 921 if len(pattern) == 0 || len(host) == 0 { 922 return false 923 } 924 925 patternParts := strings.Split(pattern, ".") 926 hostParts := strings.Split(host, ".") 927 928 if len(patternParts) != len(hostParts) { 929 return false 930 } 931 932 for i, patternPart := range patternParts { 933 if i == 0 && patternPart == "*" { 934 continue 935 } 936 if patternPart != hostParts[i] { 937 return false 938 } 939 } 940 941 return true 942 } 943 944 // toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use 945 // an explicitly ASCII function to avoid any sharp corners resulting from 946 // performing Unicode operations on DNS labels. 947 func toLowerCaseASCII(in string) string { 948 // If the string is already lower-case then there's nothing to do. 949 isAlreadyLowerCase := true 950 for _, c := range in { 951 if c == utf8.RuneError { 952 // If we get a UTF-8 error then there might be 953 // upper-case ASCII bytes in the invalid sequence. 954 isAlreadyLowerCase = false 955 break 956 } 957 if 'A' <= c && c <= 'Z' { 958 isAlreadyLowerCase = false 959 break 960 } 961 } 962 963 if isAlreadyLowerCase { 964 return in 965 } 966 967 out := []byte(in) 968 for i, c := range out { 969 if 'A' <= c && c <= 'Z' { 970 out[i] += 'a' - 'A' 971 } 972 } 973 return string(out) 974 } 975 976 // VerifyHostname returns nil if c is a valid certificate for the named host. 977 // Otherwise it returns an error describing the mismatch. 978 // 979 // IP addresses can be optionally enclosed in square brackets and are checked 980 // against the IPAddresses field. Other names are checked case insensitively 981 // against the DNSNames field. If the names are valid hostnames, the certificate 982 // fields can have a wildcard as the complete left-most label (e.g. *.example.com). 983 // 984 // Note that the legacy Common Name field is ignored. 985 func (c *Certificate) VerifyHostname(h string) error { 986 // IP addresses may be written in [ ]. 987 candidateIP := h 988 if len(h) >= 3 && h[0] == '[' && h[len(h)-1] == ']' { 989 candidateIP = h[1 : len(h)-1] 990 } 991 if ip := net.ParseIP(candidateIP); ip != nil { 992 // We only match IP addresses against IP SANs. 993 // See RFC 6125, Appendix B.2. 994 for _, candidate := range c.IPAddresses { 995 if ip.Equal(candidate) { 996 return nil 997 } 998 } 999 return x509.HostnameError{Certificate: c.asX509(), Host: candidateIP} 1000 } 1001 1002 candidateName := toLowerCaseASCII(h) // Save allocations inside the loop. 1003 validCandidateName := validHostnameInput(candidateName) 1004 1005 for _, match := range c.DNSNames { 1006 // Ideally, we'd only match valid hostnames according to RFC 6125 like 1007 // browsers (more or less) do, but in practice Go is used in a wider 1008 // array of contexts and can't even assume DNS resolution. Instead, 1009 // always allow perfect matches, and only apply wildcard and trailing 1010 // dot processing to valid hostnames. 1011 if validCandidateName && validHostnamePattern(match) { 1012 if matchHostnames(match, candidateName) { 1013 return nil 1014 } 1015 } else { 1016 if matchExactly(match, candidateName) { 1017 return nil 1018 } 1019 } 1020 } 1021 1022 return x509.HostnameError{Certificate: c.asX509(), Host: h} 1023 } 1024 1025 func checkChainForKeyUsage(chain []*Certificate, keyUsages []ExtKeyUsage) bool { 1026 usages := make([]ExtKeyUsage, len(keyUsages)) 1027 copy(usages, keyUsages) 1028 1029 if len(chain) == 0 { 1030 return false 1031 } 1032 1033 usagesRemaining := len(usages) 1034 1035 // We walk down the list and cross out any usages that aren't supported 1036 // by each certificate. If we cross out all the usages, then the chain 1037 // is unacceptable. 1038 1039 NextCert: 1040 for i := len(chain) - 1; i >= 0; i-- { 1041 cert := chain[i] 1042 if len(cert.ExtKeyUsage) == 0 && len(cert.UnknownExtKeyUsage) == 0 { 1043 // The certificate doesn't have any extended key usage specified. 1044 continue 1045 } 1046 1047 for _, usage := range cert.ExtKeyUsage { 1048 if usage == ExtKeyUsageAny { 1049 // The certificate is explicitly good for any usage. 1050 continue NextCert 1051 } 1052 } 1053 1054 const invalidUsage ExtKeyUsage = -1 1055 1056 NextRequestedUsage: 1057 for i, requestedUsage := range usages { 1058 if requestedUsage == invalidUsage { 1059 continue 1060 } 1061 1062 for _, usage := range cert.ExtKeyUsage { 1063 if requestedUsage == usage { 1064 continue NextRequestedUsage 1065 } 1066 } 1067 1068 usages[i] = invalidUsage 1069 usagesRemaining-- 1070 if usagesRemaining == 0 { 1071 return false 1072 } 1073 } 1074 } 1075 1076 return true 1077 }