github.com/epfl-dcsl/gotee@v0.0.0-20200909122901-014b35f5e5e9/src/cmd/compile/internal/gc/ssa.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"bytes"
     9  	"encoding/binary"
    10  	"fmt"
    11  	"html"
    12  	"os"
    13  	"sort"
    14  
    15  	"cmd/compile/internal/ssa"
    16  	"cmd/compile/internal/types"
    17  	"cmd/internal/obj"
    18  	"cmd/internal/objabi"
    19  	"cmd/internal/src"
    20  	"cmd/internal/sys"
    21  )
    22  
    23  var ssaConfig *ssa.Config
    24  var ssaCaches []ssa.Cache
    25  
    26  func initssaconfig() {
    27  	types_ := ssa.Types{
    28  		Bool:       types.Types[TBOOL],
    29  		Int8:       types.Types[TINT8],
    30  		Int16:      types.Types[TINT16],
    31  		Int32:      types.Types[TINT32],
    32  		Int64:      types.Types[TINT64],
    33  		UInt8:      types.Types[TUINT8],
    34  		UInt16:     types.Types[TUINT16],
    35  		UInt32:     types.Types[TUINT32],
    36  		UInt64:     types.Types[TUINT64],
    37  		Float32:    types.Types[TFLOAT32],
    38  		Float64:    types.Types[TFLOAT64],
    39  		Int:        types.Types[TINT],
    40  		UInt:       types.Types[TUINT],
    41  		Uintptr:    types.Types[TUINTPTR],
    42  		String:     types.Types[TSTRING],
    43  		BytePtr:    types.NewPtr(types.Types[TUINT8]),
    44  		Int32Ptr:   types.NewPtr(types.Types[TINT32]),
    45  		UInt32Ptr:  types.NewPtr(types.Types[TUINT32]),
    46  		IntPtr:     types.NewPtr(types.Types[TINT]),
    47  		UintptrPtr: types.NewPtr(types.Types[TUINTPTR]),
    48  		Float32Ptr: types.NewPtr(types.Types[TFLOAT32]),
    49  		Float64Ptr: types.NewPtr(types.Types[TFLOAT64]),
    50  		BytePtrPtr: types.NewPtr(types.NewPtr(types.Types[TUINT8])),
    51  	}
    52  
    53  	if thearch.SoftFloat {
    54  		softfloatInit()
    55  	}
    56  
    57  	// Generate a few pointer types that are uncommon in the frontend but common in the backend.
    58  	// Caching is disabled in the backend, so generating these here avoids allocations.
    59  	_ = types.NewPtr(types.Types[TINTER])                             // *interface{}
    60  	_ = types.NewPtr(types.NewPtr(types.Types[TSTRING]))              // **string
    61  	_ = types.NewPtr(types.NewPtr(types.Idealstring))                 // **string
    62  	_ = types.NewPtr(types.NewSlice(types.Types[TINTER]))             // *[]interface{}
    63  	_ = types.NewPtr(types.NewPtr(types.Bytetype))                    // **byte
    64  	_ = types.NewPtr(types.NewSlice(types.Bytetype))                  // *[]byte
    65  	_ = types.NewPtr(types.NewSlice(types.Types[TSTRING]))            // *[]string
    66  	_ = types.NewPtr(types.NewSlice(types.Idealstring))               // *[]string
    67  	_ = types.NewPtr(types.NewPtr(types.NewPtr(types.Types[TUINT8]))) // ***uint8
    68  	_ = types.NewPtr(types.Types[TINT16])                             // *int16
    69  	_ = types.NewPtr(types.Types[TINT64])                             // *int64
    70  	_ = types.NewPtr(types.Errortype)                                 // *error
    71  	types.NewPtrCacheEnabled = false
    72  	ssaConfig = ssa.NewConfig(thearch.LinkArch.Name, types_, Ctxt, Debug['N'] == 0)
    73  	if thearch.LinkArch.Name == "386" {
    74  		ssaConfig.Set387(thearch.Use387)
    75  	}
    76  	ssaConfig.SoftFloat = thearch.SoftFloat
    77  	ssaCaches = make([]ssa.Cache, nBackendWorkers)
    78  
    79  	// Set up some runtime functions we'll need to call.
    80  	Newproc = sysfunc("newproc")
    81  	Deferproc = sysfunc("deferproc")
    82  	Gosecload = Gosecpkg.Lookup("Gosecload").Linksym()
    83  	Deferreturn = sysfunc("deferreturn")
    84  	Duffcopy = sysfunc("duffcopy")
    85  	Duffzero = sysfunc("duffzero")
    86  	panicindex = sysfunc("panicindex")
    87  	panicslice = sysfunc("panicslice")
    88  	panicdivide = sysfunc("panicdivide")
    89  	growslice = sysfunc("growslice")
    90  	panicdottypeE = sysfunc("panicdottypeE")
    91  	panicdottypeI = sysfunc("panicdottypeI")
    92  	panicnildottype = sysfunc("panicnildottype")
    93  	assertE2I = sysfunc("assertE2I")
    94  	assertE2I2 = sysfunc("assertE2I2")
    95  	assertI2I = sysfunc("assertI2I")
    96  	assertI2I2 = sysfunc("assertI2I2")
    97  	goschedguarded = sysfunc("goschedguarded")
    98  	writeBarrier = sysfunc("writeBarrier")
    99  	writebarrierptr = sysfunc("writebarrierptr")
   100  	gcWriteBarrier = sysfunc("gcWriteBarrier")
   101  	typedmemmove = sysfunc("typedmemmove")
   102  	typedmemclr = sysfunc("typedmemclr")
   103  	Udiv = sysfunc("udiv")
   104  
   105  	// GO386=387 runtime functions
   106  	ControlWord64trunc = sysfunc("controlWord64trunc")
   107  	ControlWord32 = sysfunc("controlWord32")
   108  }
   109  
   110  // buildssa builds an SSA function for fn.
   111  // worker indicates which of the backend workers is doing the processing.
   112  func buildssa(fn *Node, worker int) *ssa.Func {
   113  	name := fn.funcname()
   114  	printssa := name == os.Getenv("GOSSAFUNC")
   115  	if printssa {
   116  		fmt.Println("generating SSA for", name)
   117  		dumplist("buildssa-enter", fn.Func.Enter)
   118  		dumplist("buildssa-body", fn.Nbody)
   119  		dumplist("buildssa-exit", fn.Func.Exit)
   120  	}
   121  
   122  	var s state
   123  	s.pushLine(fn.Pos)
   124  	defer s.popLine()
   125  
   126  	s.hasdefer = fn.Func.HasDefer()
   127  	if fn.Func.Pragma&CgoUnsafeArgs != 0 {
   128  		s.cgoUnsafeArgs = true
   129  	}
   130  
   131  	fe := ssafn{
   132  		curfn: fn,
   133  		log:   printssa,
   134  	}
   135  	s.curfn = fn
   136  
   137  	s.f = ssa.NewFunc(&fe)
   138  	s.config = ssaConfig
   139  	s.f.Config = ssaConfig
   140  	s.f.Cache = &ssaCaches[worker]
   141  	s.f.Cache.Reset()
   142  	s.f.DebugTest = s.f.DebugHashMatch("GOSSAHASH", name)
   143  	s.f.Name = name
   144  	if fn.Func.Pragma&Nosplit != 0 {
   145  		s.f.NoSplit = true
   146  	}
   147  	s.exitCode = fn.Func.Exit
   148  	s.panics = map[funcLine]*ssa.Block{}
   149  	s.softFloat = s.config.SoftFloat
   150  
   151  	if name == os.Getenv("GOSSAFUNC") {
   152  		s.f.HTMLWriter = ssa.NewHTMLWriter("ssa.html", s.f.Frontend(), name)
   153  		// TODO: generate and print a mapping from nodes to values and blocks
   154  	}
   155  
   156  	// Allocate starting block
   157  	s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
   158  
   159  	// Allocate starting values
   160  	s.labels = map[string]*ssaLabel{}
   161  	s.labeledNodes = map[*Node]*ssaLabel{}
   162  	s.fwdVars = map[*Node]*ssa.Value{}
   163  	s.startmem = s.entryNewValue0(ssa.OpInitMem, types.TypeMem)
   164  	s.sp = s.entryNewValue0(ssa.OpSP, types.Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
   165  	s.sb = s.entryNewValue0(ssa.OpSB, types.Types[TUINTPTR])
   166  
   167  	s.startBlock(s.f.Entry)
   168  	s.vars[&memVar] = s.startmem
   169  
   170  	// Generate addresses of local declarations
   171  	s.decladdrs = map[*Node]*ssa.Value{}
   172  	for _, n := range fn.Func.Dcl {
   173  		switch n.Class() {
   174  		case PPARAM, PPARAMOUT:
   175  			s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), n, s.sp)
   176  			if n.Class() == PPARAMOUT && s.canSSA(n) {
   177  				// Save ssa-able PPARAMOUT variables so we can
   178  				// store them back to the stack at the end of
   179  				// the function.
   180  				s.returns = append(s.returns, n)
   181  			}
   182  		case PAUTO:
   183  			// processed at each use, to prevent Addr coming
   184  			// before the decl.
   185  		case PAUTOHEAP:
   186  			// moved to heap - already handled by frontend
   187  		case PFUNC:
   188  			// local function - already handled by frontend
   189  		default:
   190  			s.Fatalf("local variable with class %v unimplemented", n.Class())
   191  		}
   192  	}
   193  
   194  	// Populate SSAable arguments.
   195  	for _, n := range fn.Func.Dcl {
   196  		if n.Class() == PPARAM && s.canSSA(n) {
   197  			s.vars[n] = s.newValue0A(ssa.OpArg, n.Type, n)
   198  		}
   199  	}
   200  
   201  	// Convert the AST-based IR to the SSA-based IR
   202  	s.stmtList(fn.Func.Enter)
   203  	s.stmtList(fn.Nbody)
   204  
   205  	// fallthrough to exit
   206  	if s.curBlock != nil {
   207  		s.pushLine(fn.Func.Endlineno)
   208  		s.exit()
   209  		s.popLine()
   210  	}
   211  
   212  	for _, b := range s.f.Blocks {
   213  		if b.Pos != src.NoXPos {
   214  			s.updateUnsetPredPos(b)
   215  		}
   216  	}
   217  
   218  	s.insertPhis()
   219  
   220  	// Don't carry reference this around longer than necessary
   221  	s.exitCode = Nodes{}
   222  
   223  	// Main call to ssa package to compile function
   224  	ssa.Compile(s.f)
   225  	return s.f
   226  }
   227  
   228  // updateUnsetPredPos propagates the earliest-value position information for b
   229  // towards all of b's predecessors that need a position, and recurs on that
   230  // predecessor if its position is updated. B should have a non-empty position.
   231  func (s *state) updateUnsetPredPos(b *ssa.Block) {
   232  	if b.Pos == src.NoXPos {
   233  		s.Fatalf("Block %s should have a position", b)
   234  	}
   235  	bestPos := src.NoXPos
   236  	for _, e := range b.Preds {
   237  		p := e.Block()
   238  		if !p.LackingPos() {
   239  			continue
   240  		}
   241  		if bestPos == src.NoXPos {
   242  			bestPos = b.Pos
   243  			for _, v := range b.Values {
   244  				if v.LackingPos() {
   245  					continue
   246  				}
   247  				if v.Pos != src.NoXPos {
   248  					// Assume values are still in roughly textual order;
   249  					// TODO: could also seek minimum position?
   250  					bestPos = v.Pos
   251  					break
   252  				}
   253  			}
   254  		}
   255  		p.Pos = bestPos
   256  		s.updateUnsetPredPos(p) // We do not expect long chains of these, thus recursion is okay.
   257  	}
   258  	return
   259  }
   260  
   261  type state struct {
   262  	// configuration (arch) information
   263  	config *ssa.Config
   264  
   265  	// function we're building
   266  	f *ssa.Func
   267  
   268  	// Node for function
   269  	curfn *Node
   270  
   271  	// labels and labeled control flow nodes (OFOR, OFORUNTIL, OSWITCH, OSELECT) in f
   272  	labels       map[string]*ssaLabel
   273  	labeledNodes map[*Node]*ssaLabel
   274  
   275  	// Code that must precede any return
   276  	// (e.g., copying value of heap-escaped paramout back to true paramout)
   277  	exitCode Nodes
   278  
   279  	// unlabeled break and continue statement tracking
   280  	breakTo    *ssa.Block // current target for plain break statement
   281  	continueTo *ssa.Block // current target for plain continue statement
   282  
   283  	// current location where we're interpreting the AST
   284  	curBlock *ssa.Block
   285  
   286  	// variable assignments in the current block (map from variable symbol to ssa value)
   287  	// *Node is the unique identifier (an ONAME Node) for the variable.
   288  	// TODO: keep a single varnum map, then make all of these maps slices instead?
   289  	vars map[*Node]*ssa.Value
   290  
   291  	// fwdVars are variables that are used before they are defined in the current block.
   292  	// This map exists just to coalesce multiple references into a single FwdRef op.
   293  	// *Node is the unique identifier (an ONAME Node) for the variable.
   294  	fwdVars map[*Node]*ssa.Value
   295  
   296  	// all defined variables at the end of each block. Indexed by block ID.
   297  	defvars []map[*Node]*ssa.Value
   298  
   299  	// addresses of PPARAM and PPARAMOUT variables.
   300  	decladdrs map[*Node]*ssa.Value
   301  
   302  	// starting values. Memory, stack pointer, and globals pointer
   303  	startmem *ssa.Value
   304  	sp       *ssa.Value
   305  	sb       *ssa.Value
   306  
   307  	// line number stack. The current line number is top of stack
   308  	line []src.XPos
   309  	// the last line number processed; it may have been popped
   310  	lastPos src.XPos
   311  
   312  	// list of panic calls by function name and line number.
   313  	// Used to deduplicate panic calls.
   314  	panics map[funcLine]*ssa.Block
   315  
   316  	// list of PPARAMOUT (return) variables.
   317  	returns []*Node
   318  
   319  	cgoUnsafeArgs bool
   320  	hasdefer      bool // whether the function contains a defer statement
   321  	softFloat     bool
   322  }
   323  
   324  type funcLine struct {
   325  	f    *obj.LSym
   326  	base *src.PosBase
   327  	line uint
   328  }
   329  
   330  type ssaLabel struct {
   331  	target         *ssa.Block // block identified by this label
   332  	breakTarget    *ssa.Block // block to break to in control flow node identified by this label
   333  	continueTarget *ssa.Block // block to continue to in control flow node identified by this label
   334  }
   335  
   336  // label returns the label associated with sym, creating it if necessary.
   337  func (s *state) label(sym *types.Sym) *ssaLabel {
   338  	lab := s.labels[sym.Name]
   339  	if lab == nil {
   340  		lab = new(ssaLabel)
   341  		s.labels[sym.Name] = lab
   342  	}
   343  	return lab
   344  }
   345  
   346  func (s *state) Logf(msg string, args ...interface{}) { s.f.Logf(msg, args...) }
   347  func (s *state) Log() bool                            { return s.f.Log() }
   348  func (s *state) Fatalf(msg string, args ...interface{}) {
   349  	s.f.Frontend().Fatalf(s.peekPos(), msg, args...)
   350  }
   351  func (s *state) Warnl(pos src.XPos, msg string, args ...interface{}) { s.f.Warnl(pos, msg, args...) }
   352  func (s *state) Debug_checknil() bool                                { return s.f.Frontend().Debug_checknil() }
   353  
   354  var (
   355  	// dummy node for the memory variable
   356  	memVar = Node{Op: ONAME, Sym: &types.Sym{Name: "mem"}}
   357  
   358  	// dummy nodes for temporary variables
   359  	ptrVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "ptr"}}
   360  	lenVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "len"}}
   361  	newlenVar = Node{Op: ONAME, Sym: &types.Sym{Name: "newlen"}}
   362  	capVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "cap"}}
   363  	typVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "typ"}}
   364  	okVar     = Node{Op: ONAME, Sym: &types.Sym{Name: "ok"}}
   365  )
   366  
   367  // startBlock sets the current block we're generating code in to b.
   368  func (s *state) startBlock(b *ssa.Block) {
   369  	if s.curBlock != nil {
   370  		s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
   371  	}
   372  	s.curBlock = b
   373  	s.vars = map[*Node]*ssa.Value{}
   374  	for n := range s.fwdVars {
   375  		delete(s.fwdVars, n)
   376  	}
   377  }
   378  
   379  // endBlock marks the end of generating code for the current block.
   380  // Returns the (former) current block. Returns nil if there is no current
   381  // block, i.e. if no code flows to the current execution point.
   382  func (s *state) endBlock() *ssa.Block {
   383  	b := s.curBlock
   384  	if b == nil {
   385  		return nil
   386  	}
   387  	for len(s.defvars) <= int(b.ID) {
   388  		s.defvars = append(s.defvars, nil)
   389  	}
   390  	s.defvars[b.ID] = s.vars
   391  	s.curBlock = nil
   392  	s.vars = nil
   393  	if b.LackingPos() {
   394  		// Empty plain blocks get the line of their successor (handled after all blocks created),
   395  		// except for increment blocks in For statements (handled in ssa conversion of OFOR),
   396  		// and for blocks ending in GOTO/BREAK/CONTINUE.
   397  		b.Pos = src.NoXPos
   398  	} else {
   399  		b.Pos = s.lastPos
   400  	}
   401  	return b
   402  }
   403  
   404  // pushLine pushes a line number on the line number stack.
   405  func (s *state) pushLine(line src.XPos) {
   406  	if !line.IsKnown() {
   407  		// the frontend may emit node with line number missing,
   408  		// use the parent line number in this case.
   409  		line = s.peekPos()
   410  		if Debug['K'] != 0 {
   411  			Warn("buildssa: unknown position (line 0)")
   412  		}
   413  	} else {
   414  		s.lastPos = line
   415  	}
   416  
   417  	s.line = append(s.line, line)
   418  }
   419  
   420  // popLine pops the top of the line number stack.
   421  func (s *state) popLine() {
   422  	s.line = s.line[:len(s.line)-1]
   423  }
   424  
   425  // peekPos peeks the top of the line number stack.
   426  func (s *state) peekPos() src.XPos {
   427  	return s.line[len(s.line)-1]
   428  }
   429  
   430  // newValue0 adds a new value with no arguments to the current block.
   431  func (s *state) newValue0(op ssa.Op, t *types.Type) *ssa.Value {
   432  	return s.curBlock.NewValue0(s.peekPos(), op, t)
   433  }
   434  
   435  // newValue0A adds a new value with no arguments and an aux value to the current block.
   436  func (s *state) newValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value {
   437  	return s.curBlock.NewValue0A(s.peekPos(), op, t, aux)
   438  }
   439  
   440  // newValue0I adds a new value with no arguments and an auxint value to the current block.
   441  func (s *state) newValue0I(op ssa.Op, t *types.Type, auxint int64) *ssa.Value {
   442  	return s.curBlock.NewValue0I(s.peekPos(), op, t, auxint)
   443  }
   444  
   445  // newValue1 adds a new value with one argument to the current block.
   446  func (s *state) newValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
   447  	return s.curBlock.NewValue1(s.peekPos(), op, t, arg)
   448  }
   449  
   450  // newValue1A adds a new value with one argument and an aux value to the current block.
   451  func (s *state) newValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   452  	return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg)
   453  }
   454  
   455  // newValue1I adds a new value with one argument and an auxint value to the current block.
   456  func (s *state) newValue1I(op ssa.Op, t *types.Type, aux int64, arg *ssa.Value) *ssa.Value {
   457  	return s.curBlock.NewValue1I(s.peekPos(), op, t, aux, arg)
   458  }
   459  
   460  // newValue2 adds a new value with two arguments to the current block.
   461  func (s *state) newValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   462  	return s.curBlock.NewValue2(s.peekPos(), op, t, arg0, arg1)
   463  }
   464  
   465  // newValue2I adds a new value with two arguments and an auxint value to the current block.
   466  func (s *state) newValue2I(op ssa.Op, t *types.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
   467  	return s.curBlock.NewValue2I(s.peekPos(), op, t, aux, arg0, arg1)
   468  }
   469  
   470  // newValue3 adds a new value with three arguments to the current block.
   471  func (s *state) newValue3(op ssa.Op, t *types.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   472  	return s.curBlock.NewValue3(s.peekPos(), op, t, arg0, arg1, arg2)
   473  }
   474  
   475  // newValue3I adds a new value with three arguments and an auxint value to the current block.
   476  func (s *state) newValue3I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   477  	return s.curBlock.NewValue3I(s.peekPos(), op, t, aux, arg0, arg1, arg2)
   478  }
   479  
   480  // newValue3A adds a new value with three arguments and an aux value to the current block.
   481  func (s *state) newValue3A(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   482  	return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2)
   483  }
   484  
   485  // newValue4 adds a new value with four arguments to the current block.
   486  func (s *state) newValue4(op ssa.Op, t *types.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value {
   487  	return s.curBlock.NewValue4(s.peekPos(), op, t, arg0, arg1, arg2, arg3)
   488  }
   489  
   490  // entryNewValue0 adds a new value with no arguments to the entry block.
   491  func (s *state) entryNewValue0(op ssa.Op, t *types.Type) *ssa.Value {
   492  	return s.f.Entry.NewValue0(src.NoXPos, op, t)
   493  }
   494  
   495  // entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
   496  func (s *state) entryNewValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value {
   497  	return s.f.Entry.NewValue0A(src.NoXPos, op, t, aux)
   498  }
   499  
   500  // entryNewValue1 adds a new value with one argument to the entry block.
   501  func (s *state) entryNewValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
   502  	return s.f.Entry.NewValue1(src.NoXPos, op, t, arg)
   503  }
   504  
   505  // entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
   506  func (s *state) entryNewValue1I(op ssa.Op, t *types.Type, auxint int64, arg *ssa.Value) *ssa.Value {
   507  	return s.f.Entry.NewValue1I(src.NoXPos, op, t, auxint, arg)
   508  }
   509  
   510  // entryNewValue1A adds a new value with one argument and an aux value to the entry block.
   511  func (s *state) entryNewValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   512  	return s.f.Entry.NewValue1A(src.NoXPos, op, t, aux, arg)
   513  }
   514  
   515  // entryNewValue2 adds a new value with two arguments to the entry block.
   516  func (s *state) entryNewValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   517  	return s.f.Entry.NewValue2(src.NoXPos, op, t, arg0, arg1)
   518  }
   519  
   520  // const* routines add a new const value to the entry block.
   521  func (s *state) constSlice(t *types.Type) *ssa.Value {
   522  	return s.f.ConstSlice(s.peekPos(), t)
   523  }
   524  func (s *state) constInterface(t *types.Type) *ssa.Value {
   525  	return s.f.ConstInterface(s.peekPos(), t)
   526  }
   527  func (s *state) constNil(t *types.Type) *ssa.Value { return s.f.ConstNil(s.peekPos(), t) }
   528  func (s *state) constEmptyString(t *types.Type) *ssa.Value {
   529  	return s.f.ConstEmptyString(s.peekPos(), t)
   530  }
   531  func (s *state) constBool(c bool) *ssa.Value {
   532  	return s.f.ConstBool(s.peekPos(), types.Types[TBOOL], c)
   533  }
   534  func (s *state) constInt8(t *types.Type, c int8) *ssa.Value {
   535  	return s.f.ConstInt8(s.peekPos(), t, c)
   536  }
   537  func (s *state) constInt16(t *types.Type, c int16) *ssa.Value {
   538  	return s.f.ConstInt16(s.peekPos(), t, c)
   539  }
   540  func (s *state) constInt32(t *types.Type, c int32) *ssa.Value {
   541  	return s.f.ConstInt32(s.peekPos(), t, c)
   542  }
   543  func (s *state) constInt64(t *types.Type, c int64) *ssa.Value {
   544  	return s.f.ConstInt64(s.peekPos(), t, c)
   545  }
   546  func (s *state) constFloat32(t *types.Type, c float64) *ssa.Value {
   547  	return s.f.ConstFloat32(s.peekPos(), t, c)
   548  }
   549  func (s *state) constFloat64(t *types.Type, c float64) *ssa.Value {
   550  	return s.f.ConstFloat64(s.peekPos(), t, c)
   551  }
   552  func (s *state) constInt(t *types.Type, c int64) *ssa.Value {
   553  	if s.config.PtrSize == 8 {
   554  		return s.constInt64(t, c)
   555  	}
   556  	if int64(int32(c)) != c {
   557  		s.Fatalf("integer constant too big %d", c)
   558  	}
   559  	return s.constInt32(t, int32(c))
   560  }
   561  func (s *state) constOffPtrSP(t *types.Type, c int64) *ssa.Value {
   562  	return s.f.ConstOffPtrSP(s.peekPos(), t, c, s.sp)
   563  }
   564  
   565  // newValueOrSfCall* are wrappers around newValue*, which may create a call to a
   566  // soft-float runtime function instead (when emitting soft-float code).
   567  func (s *state) newValueOrSfCall1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
   568  	if s.softFloat {
   569  		if c, ok := s.sfcall(op, arg); ok {
   570  			return c
   571  		}
   572  	}
   573  	return s.newValue1(op, t, arg)
   574  }
   575  func (s *state) newValueOrSfCall2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   576  	if s.softFloat {
   577  		if c, ok := s.sfcall(op, arg0, arg1); ok {
   578  			return c
   579  		}
   580  	}
   581  	return s.newValue2(op, t, arg0, arg1)
   582  }
   583  
   584  // stmtList converts the statement list n to SSA and adds it to s.
   585  func (s *state) stmtList(l Nodes) {
   586  	for _, n := range l.Slice() {
   587  		s.stmt(n)
   588  	}
   589  }
   590  
   591  // stmt converts the statement n to SSA and adds it to s.
   592  func (s *state) stmt(n *Node) {
   593  	if !(n.Op == OVARKILL || n.Op == OVARLIVE) {
   594  		// OVARKILL and OVARLIVE are invisible to the programmer, so we don't use their line numbers to avoid confusion in debugging.
   595  		s.pushLine(n.Pos)
   596  		defer s.popLine()
   597  	}
   598  
   599  	// If s.curBlock is nil, and n isn't a label (which might have an associated goto somewhere),
   600  	// then this code is dead. Stop here.
   601  	if s.curBlock == nil && n.Op != OLABEL {
   602  		return
   603  	}
   604  
   605  	s.stmtList(n.Ninit)
   606  	switch n.Op {
   607  
   608  	case OBLOCK:
   609  		s.stmtList(n.List)
   610  
   611  	// No-ops
   612  	case OEMPTY, ODCLCONST, ODCLTYPE, OFALL:
   613  
   614  	// Expression statements
   615  	case OCALLFUNC:
   616  		if isIntrinsicCall(n) {
   617  			s.intrinsicCall(n)
   618  			return
   619  		}
   620  		fallthrough
   621  
   622  	case OCALLMETH, OCALLINTER:
   623  		s.call(n, callNormal)
   624  		if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class() == PFUNC {
   625  			if fn := n.Left.Sym.Name; compiling_runtime && fn == "throw" ||
   626  				n.Left.Sym.Pkg == Runtimepkg && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "block") {
   627  				m := s.mem()
   628  				b := s.endBlock()
   629  				b.Kind = ssa.BlockExit
   630  				b.SetControl(m)
   631  				// TODO: never rewrite OPANIC to OCALLFUNC in the
   632  				// first place. Need to wait until all backends
   633  				// go through SSA.
   634  			}
   635  		}
   636  	case ODEFER:
   637  		s.call(n.Left, callDefer)
   638  	case OPROC:
   639  		s.call(n.Left, callGo)
   640  
   641  	case OGOSECURE:
   642  		//TODO aghosn For the moment make it a go routine.
   643  		s.call(n.Left, callGosecure)
   644  
   645  	case OAS2DOTTYPE:
   646  		res, resok := s.dottype(n.Rlist.First(), true)
   647  		deref := false
   648  		if !canSSAType(n.Rlist.First().Type) {
   649  			if res.Op != ssa.OpLoad {
   650  				s.Fatalf("dottype of non-load")
   651  			}
   652  			mem := s.mem()
   653  			if mem.Op == ssa.OpVarKill {
   654  				mem = mem.Args[0]
   655  			}
   656  			if res.Args[1] != mem {
   657  				s.Fatalf("memory no longer live from 2-result dottype load")
   658  			}
   659  			deref = true
   660  			res = res.Args[0]
   661  		}
   662  		s.assign(n.List.First(), res, deref, 0)
   663  		s.assign(n.List.Second(), resok, false, 0)
   664  		return
   665  
   666  	case OAS2FUNC:
   667  		// We come here only when it is an intrinsic call returning two values.
   668  		if !isIntrinsicCall(n.Rlist.First()) {
   669  			s.Fatalf("non-intrinsic AS2FUNC not expanded %v", n.Rlist.First())
   670  		}
   671  		v := s.intrinsicCall(n.Rlist.First())
   672  		v1 := s.newValue1(ssa.OpSelect0, n.List.First().Type, v)
   673  		v2 := s.newValue1(ssa.OpSelect1, n.List.Second().Type, v)
   674  		s.assign(n.List.First(), v1, false, 0)
   675  		s.assign(n.List.Second(), v2, false, 0)
   676  		return
   677  
   678  	case ODCL:
   679  		if n.Left.Class() == PAUTOHEAP {
   680  			Fatalf("DCL %v", n)
   681  		}
   682  
   683  	case OLABEL:
   684  		sym := n.Left.Sym
   685  		lab := s.label(sym)
   686  
   687  		// Associate label with its control flow node, if any
   688  		if ctl := n.labeledControl(); ctl != nil {
   689  			s.labeledNodes[ctl] = lab
   690  		}
   691  
   692  		// The label might already have a target block via a goto.
   693  		if lab.target == nil {
   694  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   695  		}
   696  
   697  		// Go to that label.
   698  		// (We pretend "label:" is preceded by "goto label", unless the predecessor is unreachable.)
   699  		if s.curBlock != nil {
   700  			b := s.endBlock()
   701  			b.AddEdgeTo(lab.target)
   702  		}
   703  		s.startBlock(lab.target)
   704  
   705  	case OGOTO:
   706  		sym := n.Left.Sym
   707  
   708  		lab := s.label(sym)
   709  		if lab.target == nil {
   710  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   711  		}
   712  
   713  		b := s.endBlock()
   714  		b.Pos = s.lastPos // Do this even if b is an empty block.
   715  		b.AddEdgeTo(lab.target)
   716  
   717  	case OAS:
   718  		if n.Left == n.Right && n.Left.Op == ONAME {
   719  			// An x=x assignment. No point in doing anything
   720  			// here. In addition, skipping this assignment
   721  			// prevents generating:
   722  			//   VARDEF x
   723  			//   COPY x -> x
   724  			// which is bad because x is incorrectly considered
   725  			// dead before the vardef. See issue #14904.
   726  			return
   727  		}
   728  
   729  		// Evaluate RHS.
   730  		rhs := n.Right
   731  		if rhs != nil {
   732  			switch rhs.Op {
   733  			case OSTRUCTLIT, OARRAYLIT, OSLICELIT:
   734  				// All literals with nonzero fields have already been
   735  				// rewritten during walk. Any that remain are just T{}
   736  				// or equivalents. Use the zero value.
   737  				if !iszero(rhs) {
   738  					Fatalf("literal with nonzero value in SSA: %v", rhs)
   739  				}
   740  				rhs = nil
   741  			case OAPPEND:
   742  				// Check whether we're writing the result of an append back to the same slice.
   743  				// If so, we handle it specially to avoid write barriers on the fast
   744  				// (non-growth) path.
   745  				if !samesafeexpr(n.Left, rhs.List.First()) || Debug['N'] != 0 {
   746  					break
   747  				}
   748  				// If the slice can be SSA'd, it'll be on the stack,
   749  				// so there will be no write barriers,
   750  				// so there's no need to attempt to prevent them.
   751  				if s.canSSA(n.Left) {
   752  					if Debug_append > 0 { // replicating old diagnostic message
   753  						Warnl(n.Pos, "append: len-only update (in local slice)")
   754  					}
   755  					break
   756  				}
   757  				if Debug_append > 0 {
   758  					Warnl(n.Pos, "append: len-only update")
   759  				}
   760  				s.append(rhs, true)
   761  				return
   762  			}
   763  		}
   764  
   765  		if isblank(n.Left) {
   766  			// _ = rhs
   767  			// Just evaluate rhs for side-effects.
   768  			if rhs != nil {
   769  				s.expr(rhs)
   770  			}
   771  			return
   772  		}
   773  
   774  		var t *types.Type
   775  		if n.Right != nil {
   776  			t = n.Right.Type
   777  		} else {
   778  			t = n.Left.Type
   779  		}
   780  
   781  		var r *ssa.Value
   782  		deref := !canSSAType(t)
   783  		if deref {
   784  			if rhs == nil {
   785  				r = nil // Signal assign to use OpZero.
   786  			} else {
   787  				r = s.addr(rhs, false)
   788  			}
   789  		} else {
   790  			if rhs == nil {
   791  				r = s.zeroVal(t)
   792  			} else {
   793  				r = s.expr(rhs)
   794  			}
   795  		}
   796  
   797  		var skip skipMask
   798  		if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) {
   799  			// We're assigning a slicing operation back to its source.
   800  			// Don't write back fields we aren't changing. See issue #14855.
   801  			i, j, k := rhs.SliceBounds()
   802  			if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) {
   803  				// [0:...] is the same as [:...]
   804  				i = nil
   805  			}
   806  			// TODO: detect defaults for len/cap also.
   807  			// Currently doesn't really work because (*p)[:len(*p)] appears here as:
   808  			//    tmp = len(*p)
   809  			//    (*p)[:tmp]
   810  			//if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) {
   811  			//      j = nil
   812  			//}
   813  			//if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) {
   814  			//      k = nil
   815  			//}
   816  			if i == nil {
   817  				skip |= skipPtr
   818  				if j == nil {
   819  					skip |= skipLen
   820  				}
   821  				if k == nil {
   822  					skip |= skipCap
   823  				}
   824  			}
   825  		}
   826  
   827  		s.assign(n.Left, r, deref, skip)
   828  
   829  	case OIF:
   830  		bThen := s.f.NewBlock(ssa.BlockPlain)
   831  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   832  		var bElse *ssa.Block
   833  		var likely int8
   834  		if n.Likely() {
   835  			likely = 1
   836  		}
   837  		if n.Rlist.Len() != 0 {
   838  			bElse = s.f.NewBlock(ssa.BlockPlain)
   839  			s.condBranch(n.Left, bThen, bElse, likely)
   840  		} else {
   841  			s.condBranch(n.Left, bThen, bEnd, likely)
   842  		}
   843  
   844  		s.startBlock(bThen)
   845  		s.stmtList(n.Nbody)
   846  		if b := s.endBlock(); b != nil {
   847  			b.AddEdgeTo(bEnd)
   848  		}
   849  
   850  		if n.Rlist.Len() != 0 {
   851  			s.startBlock(bElse)
   852  			s.stmtList(n.Rlist)
   853  			if b := s.endBlock(); b != nil {
   854  				b.AddEdgeTo(bEnd)
   855  			}
   856  		}
   857  		s.startBlock(bEnd)
   858  
   859  	case ORETURN:
   860  		s.stmtList(n.List)
   861  		b := s.exit()
   862  		b.Pos = s.lastPos
   863  
   864  	case ORETJMP:
   865  		s.stmtList(n.List)
   866  		b := s.exit()
   867  		b.Kind = ssa.BlockRetJmp // override BlockRet
   868  		b.Aux = n.Sym.Linksym()
   869  
   870  	case OCONTINUE, OBREAK:
   871  		var to *ssa.Block
   872  		if n.Left == nil {
   873  			// plain break/continue
   874  			switch n.Op {
   875  			case OCONTINUE:
   876  				to = s.continueTo
   877  			case OBREAK:
   878  				to = s.breakTo
   879  			}
   880  		} else {
   881  			// labeled break/continue; look up the target
   882  			sym := n.Left.Sym
   883  			lab := s.label(sym)
   884  			switch n.Op {
   885  			case OCONTINUE:
   886  				to = lab.continueTarget
   887  			case OBREAK:
   888  				to = lab.breakTarget
   889  			}
   890  		}
   891  
   892  		b := s.endBlock()
   893  		b.Pos = s.lastPos // Do this even if b is an empty block.
   894  		b.AddEdgeTo(to)
   895  
   896  	case OFOR, OFORUNTIL:
   897  		// OFOR: for Ninit; Left; Right { Nbody }
   898  		// For      = cond; body; incr
   899  		// Foruntil = body; incr; cond
   900  		bCond := s.f.NewBlock(ssa.BlockPlain)
   901  		bBody := s.f.NewBlock(ssa.BlockPlain)
   902  		bIncr := s.f.NewBlock(ssa.BlockPlain)
   903  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   904  
   905  		// first, jump to condition test (OFOR) or body (OFORUNTIL)
   906  		b := s.endBlock()
   907  		if n.Op == OFOR {
   908  			b.AddEdgeTo(bCond)
   909  			// generate code to test condition
   910  			s.startBlock(bCond)
   911  			if n.Left != nil {
   912  				s.condBranch(n.Left, bBody, bEnd, 1)
   913  			} else {
   914  				b := s.endBlock()
   915  				b.Kind = ssa.BlockPlain
   916  				b.AddEdgeTo(bBody)
   917  			}
   918  
   919  		} else {
   920  			b.AddEdgeTo(bBody)
   921  		}
   922  
   923  		// set up for continue/break in body
   924  		prevContinue := s.continueTo
   925  		prevBreak := s.breakTo
   926  		s.continueTo = bIncr
   927  		s.breakTo = bEnd
   928  		lab := s.labeledNodes[n]
   929  		if lab != nil {
   930  			// labeled for loop
   931  			lab.continueTarget = bIncr
   932  			lab.breakTarget = bEnd
   933  		}
   934  
   935  		// generate body
   936  		s.startBlock(bBody)
   937  		s.stmtList(n.Nbody)
   938  
   939  		// tear down continue/break
   940  		s.continueTo = prevContinue
   941  		s.breakTo = prevBreak
   942  		if lab != nil {
   943  			lab.continueTarget = nil
   944  			lab.breakTarget = nil
   945  		}
   946  
   947  		// done with body, goto incr
   948  		if b := s.endBlock(); b != nil {
   949  			b.AddEdgeTo(bIncr)
   950  		}
   951  
   952  		// generate incr
   953  		s.startBlock(bIncr)
   954  		if n.Right != nil {
   955  			s.stmt(n.Right)
   956  		}
   957  		if b := s.endBlock(); b != nil {
   958  			b.AddEdgeTo(bCond)
   959  			// It can happen that bIncr ends in a block containing only VARKILL,
   960  			// and that muddles the debugging experience.
   961  			if n.Op != OFORUNTIL && b.Pos == src.NoXPos {
   962  				b.Pos = bCond.Pos
   963  			}
   964  		}
   965  
   966  		if n.Op == OFORUNTIL {
   967  			// generate code to test condition
   968  			s.startBlock(bCond)
   969  			if n.Left != nil {
   970  				s.condBranch(n.Left, bBody, bEnd, 1)
   971  			} else {
   972  				b := s.endBlock()
   973  				b.Kind = ssa.BlockPlain
   974  				b.AddEdgeTo(bBody)
   975  			}
   976  		}
   977  
   978  		s.startBlock(bEnd)
   979  
   980  	case OSWITCH, OSELECT:
   981  		// These have been mostly rewritten by the front end into their Nbody fields.
   982  		// Our main task is to correctly hook up any break statements.
   983  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   984  
   985  		prevBreak := s.breakTo
   986  		s.breakTo = bEnd
   987  		lab := s.labeledNodes[n]
   988  		if lab != nil {
   989  			// labeled
   990  			lab.breakTarget = bEnd
   991  		}
   992  
   993  		// generate body code
   994  		s.stmtList(n.Nbody)
   995  
   996  		s.breakTo = prevBreak
   997  		if lab != nil {
   998  			lab.breakTarget = nil
   999  		}
  1000  
  1001  		// walk adds explicit OBREAK nodes to the end of all reachable code paths.
  1002  		// If we still have a current block here, then mark it unreachable.
  1003  		if s.curBlock != nil {
  1004  			m := s.mem()
  1005  			b := s.endBlock()
  1006  			b.Kind = ssa.BlockExit
  1007  			b.SetControl(m)
  1008  		}
  1009  		s.startBlock(bEnd)
  1010  
  1011  	case OVARKILL:
  1012  		// Insert a varkill op to record that a variable is no longer live.
  1013  		// We only care about liveness info at call sites, so putting the
  1014  		// varkill in the store chain is enough to keep it correctly ordered
  1015  		// with respect to call ops.
  1016  		if !s.canSSA(n.Left) {
  1017  			s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, types.TypeMem, n.Left, s.mem())
  1018  		}
  1019  
  1020  	case OVARLIVE:
  1021  		// Insert a varlive op to record that a variable is still live.
  1022  		if !n.Left.Addrtaken() {
  1023  			s.Fatalf("VARLIVE variable %v must have Addrtaken set", n.Left)
  1024  		}
  1025  		switch n.Left.Class() {
  1026  		case PAUTO, PPARAM, PPARAMOUT:
  1027  		default:
  1028  			s.Fatalf("VARLIVE variable %v must be Auto or Arg", n.Left)
  1029  		}
  1030  		s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, types.TypeMem, n.Left, s.mem())
  1031  
  1032  	case OCHECKNIL:
  1033  		p := s.expr(n.Left)
  1034  		s.nilCheck(p)
  1035  
  1036  	default:
  1037  		s.Fatalf("unhandled stmt %v", n.Op)
  1038  	}
  1039  }
  1040  
  1041  // exit processes any code that needs to be generated just before returning.
  1042  // It returns a BlockRet block that ends the control flow. Its control value
  1043  // will be set to the final memory state.
  1044  func (s *state) exit() *ssa.Block {
  1045  	if s.hasdefer {
  1046  		s.rtcall(Deferreturn, true, nil)
  1047  	}
  1048  
  1049  	// Run exit code. Typically, this code copies heap-allocated PPARAMOUT
  1050  	// variables back to the stack.
  1051  	s.stmtList(s.exitCode)
  1052  
  1053  	// Store SSAable PPARAMOUT variables back to stack locations.
  1054  	for _, n := range s.returns {
  1055  		addr := s.decladdrs[n]
  1056  		val := s.variable(n, n.Type)
  1057  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem())
  1058  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, n.Type, addr, val, s.mem())
  1059  		// TODO: if val is ever spilled, we'd like to use the
  1060  		// PPARAMOUT slot for spilling it. That won't happen
  1061  		// currently.
  1062  	}
  1063  
  1064  	// Do actual return.
  1065  	m := s.mem()
  1066  	b := s.endBlock()
  1067  	b.Kind = ssa.BlockRet
  1068  	b.SetControl(m)
  1069  	return b
  1070  }
  1071  
  1072  type opAndType struct {
  1073  	op    Op
  1074  	etype types.EType
  1075  }
  1076  
  1077  var opToSSA = map[opAndType]ssa.Op{
  1078  	{OADD, TINT8}:    ssa.OpAdd8,
  1079  	{OADD, TUINT8}:   ssa.OpAdd8,
  1080  	{OADD, TINT16}:   ssa.OpAdd16,
  1081  	{OADD, TUINT16}:  ssa.OpAdd16,
  1082  	{OADD, TINT32}:   ssa.OpAdd32,
  1083  	{OADD, TUINT32}:  ssa.OpAdd32,
  1084  	{OADD, TPTR32}:   ssa.OpAdd32,
  1085  	{OADD, TINT64}:   ssa.OpAdd64,
  1086  	{OADD, TUINT64}:  ssa.OpAdd64,
  1087  	{OADD, TPTR64}:   ssa.OpAdd64,
  1088  	{OADD, TFLOAT32}: ssa.OpAdd32F,
  1089  	{OADD, TFLOAT64}: ssa.OpAdd64F,
  1090  
  1091  	{OSUB, TINT8}:    ssa.OpSub8,
  1092  	{OSUB, TUINT8}:   ssa.OpSub8,
  1093  	{OSUB, TINT16}:   ssa.OpSub16,
  1094  	{OSUB, TUINT16}:  ssa.OpSub16,
  1095  	{OSUB, TINT32}:   ssa.OpSub32,
  1096  	{OSUB, TUINT32}:  ssa.OpSub32,
  1097  	{OSUB, TINT64}:   ssa.OpSub64,
  1098  	{OSUB, TUINT64}:  ssa.OpSub64,
  1099  	{OSUB, TFLOAT32}: ssa.OpSub32F,
  1100  	{OSUB, TFLOAT64}: ssa.OpSub64F,
  1101  
  1102  	{ONOT, TBOOL}: ssa.OpNot,
  1103  
  1104  	{OMINUS, TINT8}:    ssa.OpNeg8,
  1105  	{OMINUS, TUINT8}:   ssa.OpNeg8,
  1106  	{OMINUS, TINT16}:   ssa.OpNeg16,
  1107  	{OMINUS, TUINT16}:  ssa.OpNeg16,
  1108  	{OMINUS, TINT32}:   ssa.OpNeg32,
  1109  	{OMINUS, TUINT32}:  ssa.OpNeg32,
  1110  	{OMINUS, TINT64}:   ssa.OpNeg64,
  1111  	{OMINUS, TUINT64}:  ssa.OpNeg64,
  1112  	{OMINUS, TFLOAT32}: ssa.OpNeg32F,
  1113  	{OMINUS, TFLOAT64}: ssa.OpNeg64F,
  1114  
  1115  	{OCOM, TINT8}:   ssa.OpCom8,
  1116  	{OCOM, TUINT8}:  ssa.OpCom8,
  1117  	{OCOM, TINT16}:  ssa.OpCom16,
  1118  	{OCOM, TUINT16}: ssa.OpCom16,
  1119  	{OCOM, TINT32}:  ssa.OpCom32,
  1120  	{OCOM, TUINT32}: ssa.OpCom32,
  1121  	{OCOM, TINT64}:  ssa.OpCom64,
  1122  	{OCOM, TUINT64}: ssa.OpCom64,
  1123  
  1124  	{OIMAG, TCOMPLEX64}:  ssa.OpComplexImag,
  1125  	{OIMAG, TCOMPLEX128}: ssa.OpComplexImag,
  1126  	{OREAL, TCOMPLEX64}:  ssa.OpComplexReal,
  1127  	{OREAL, TCOMPLEX128}: ssa.OpComplexReal,
  1128  
  1129  	{OMUL, TINT8}:    ssa.OpMul8,
  1130  	{OMUL, TUINT8}:   ssa.OpMul8,
  1131  	{OMUL, TINT16}:   ssa.OpMul16,
  1132  	{OMUL, TUINT16}:  ssa.OpMul16,
  1133  	{OMUL, TINT32}:   ssa.OpMul32,
  1134  	{OMUL, TUINT32}:  ssa.OpMul32,
  1135  	{OMUL, TINT64}:   ssa.OpMul64,
  1136  	{OMUL, TUINT64}:  ssa.OpMul64,
  1137  	{OMUL, TFLOAT32}: ssa.OpMul32F,
  1138  	{OMUL, TFLOAT64}: ssa.OpMul64F,
  1139  
  1140  	{ODIV, TFLOAT32}: ssa.OpDiv32F,
  1141  	{ODIV, TFLOAT64}: ssa.OpDiv64F,
  1142  
  1143  	{ODIV, TINT8}:   ssa.OpDiv8,
  1144  	{ODIV, TUINT8}:  ssa.OpDiv8u,
  1145  	{ODIV, TINT16}:  ssa.OpDiv16,
  1146  	{ODIV, TUINT16}: ssa.OpDiv16u,
  1147  	{ODIV, TINT32}:  ssa.OpDiv32,
  1148  	{ODIV, TUINT32}: ssa.OpDiv32u,
  1149  	{ODIV, TINT64}:  ssa.OpDiv64,
  1150  	{ODIV, TUINT64}: ssa.OpDiv64u,
  1151  
  1152  	{OMOD, TINT8}:   ssa.OpMod8,
  1153  	{OMOD, TUINT8}:  ssa.OpMod8u,
  1154  	{OMOD, TINT16}:  ssa.OpMod16,
  1155  	{OMOD, TUINT16}: ssa.OpMod16u,
  1156  	{OMOD, TINT32}:  ssa.OpMod32,
  1157  	{OMOD, TUINT32}: ssa.OpMod32u,
  1158  	{OMOD, TINT64}:  ssa.OpMod64,
  1159  	{OMOD, TUINT64}: ssa.OpMod64u,
  1160  
  1161  	{OAND, TINT8}:   ssa.OpAnd8,
  1162  	{OAND, TUINT8}:  ssa.OpAnd8,
  1163  	{OAND, TINT16}:  ssa.OpAnd16,
  1164  	{OAND, TUINT16}: ssa.OpAnd16,
  1165  	{OAND, TINT32}:  ssa.OpAnd32,
  1166  	{OAND, TUINT32}: ssa.OpAnd32,
  1167  	{OAND, TINT64}:  ssa.OpAnd64,
  1168  	{OAND, TUINT64}: ssa.OpAnd64,
  1169  
  1170  	{OOR, TINT8}:   ssa.OpOr8,
  1171  	{OOR, TUINT8}:  ssa.OpOr8,
  1172  	{OOR, TINT16}:  ssa.OpOr16,
  1173  	{OOR, TUINT16}: ssa.OpOr16,
  1174  	{OOR, TINT32}:  ssa.OpOr32,
  1175  	{OOR, TUINT32}: ssa.OpOr32,
  1176  	{OOR, TINT64}:  ssa.OpOr64,
  1177  	{OOR, TUINT64}: ssa.OpOr64,
  1178  
  1179  	{OXOR, TINT8}:   ssa.OpXor8,
  1180  	{OXOR, TUINT8}:  ssa.OpXor8,
  1181  	{OXOR, TINT16}:  ssa.OpXor16,
  1182  	{OXOR, TUINT16}: ssa.OpXor16,
  1183  	{OXOR, TINT32}:  ssa.OpXor32,
  1184  	{OXOR, TUINT32}: ssa.OpXor32,
  1185  	{OXOR, TINT64}:  ssa.OpXor64,
  1186  	{OXOR, TUINT64}: ssa.OpXor64,
  1187  
  1188  	{OEQ, TBOOL}:      ssa.OpEqB,
  1189  	{OEQ, TINT8}:      ssa.OpEq8,
  1190  	{OEQ, TUINT8}:     ssa.OpEq8,
  1191  	{OEQ, TINT16}:     ssa.OpEq16,
  1192  	{OEQ, TUINT16}:    ssa.OpEq16,
  1193  	{OEQ, TINT32}:     ssa.OpEq32,
  1194  	{OEQ, TUINT32}:    ssa.OpEq32,
  1195  	{OEQ, TINT64}:     ssa.OpEq64,
  1196  	{OEQ, TUINT64}:    ssa.OpEq64,
  1197  	{OEQ, TINTER}:     ssa.OpEqInter,
  1198  	{OEQ, TSLICE}:     ssa.OpEqSlice,
  1199  	{OEQ, TFUNC}:      ssa.OpEqPtr,
  1200  	{OEQ, TMAP}:       ssa.OpEqPtr,
  1201  	{OEQ, TCHAN}:      ssa.OpEqPtr,
  1202  	{OEQ, TPTR32}:     ssa.OpEqPtr,
  1203  	{OEQ, TPTR64}:     ssa.OpEqPtr,
  1204  	{OEQ, TUINTPTR}:   ssa.OpEqPtr,
  1205  	{OEQ, TUNSAFEPTR}: ssa.OpEqPtr,
  1206  	{OEQ, TFLOAT64}:   ssa.OpEq64F,
  1207  	{OEQ, TFLOAT32}:   ssa.OpEq32F,
  1208  
  1209  	{ONE, TBOOL}:      ssa.OpNeqB,
  1210  	{ONE, TINT8}:      ssa.OpNeq8,
  1211  	{ONE, TUINT8}:     ssa.OpNeq8,
  1212  	{ONE, TINT16}:     ssa.OpNeq16,
  1213  	{ONE, TUINT16}:    ssa.OpNeq16,
  1214  	{ONE, TINT32}:     ssa.OpNeq32,
  1215  	{ONE, TUINT32}:    ssa.OpNeq32,
  1216  	{ONE, TINT64}:     ssa.OpNeq64,
  1217  	{ONE, TUINT64}:    ssa.OpNeq64,
  1218  	{ONE, TINTER}:     ssa.OpNeqInter,
  1219  	{ONE, TSLICE}:     ssa.OpNeqSlice,
  1220  	{ONE, TFUNC}:      ssa.OpNeqPtr,
  1221  	{ONE, TMAP}:       ssa.OpNeqPtr,
  1222  	{ONE, TCHAN}:      ssa.OpNeqPtr,
  1223  	{ONE, TPTR32}:     ssa.OpNeqPtr,
  1224  	{ONE, TPTR64}:     ssa.OpNeqPtr,
  1225  	{ONE, TUINTPTR}:   ssa.OpNeqPtr,
  1226  	{ONE, TUNSAFEPTR}: ssa.OpNeqPtr,
  1227  	{ONE, TFLOAT64}:   ssa.OpNeq64F,
  1228  	{ONE, TFLOAT32}:   ssa.OpNeq32F,
  1229  
  1230  	{OLT, TINT8}:    ssa.OpLess8,
  1231  	{OLT, TUINT8}:   ssa.OpLess8U,
  1232  	{OLT, TINT16}:   ssa.OpLess16,
  1233  	{OLT, TUINT16}:  ssa.OpLess16U,
  1234  	{OLT, TINT32}:   ssa.OpLess32,
  1235  	{OLT, TUINT32}:  ssa.OpLess32U,
  1236  	{OLT, TINT64}:   ssa.OpLess64,
  1237  	{OLT, TUINT64}:  ssa.OpLess64U,
  1238  	{OLT, TFLOAT64}: ssa.OpLess64F,
  1239  	{OLT, TFLOAT32}: ssa.OpLess32F,
  1240  
  1241  	{OGT, TINT8}:    ssa.OpGreater8,
  1242  	{OGT, TUINT8}:   ssa.OpGreater8U,
  1243  	{OGT, TINT16}:   ssa.OpGreater16,
  1244  	{OGT, TUINT16}:  ssa.OpGreater16U,
  1245  	{OGT, TINT32}:   ssa.OpGreater32,
  1246  	{OGT, TUINT32}:  ssa.OpGreater32U,
  1247  	{OGT, TINT64}:   ssa.OpGreater64,
  1248  	{OGT, TUINT64}:  ssa.OpGreater64U,
  1249  	{OGT, TFLOAT64}: ssa.OpGreater64F,
  1250  	{OGT, TFLOAT32}: ssa.OpGreater32F,
  1251  
  1252  	{OLE, TINT8}:    ssa.OpLeq8,
  1253  	{OLE, TUINT8}:   ssa.OpLeq8U,
  1254  	{OLE, TINT16}:   ssa.OpLeq16,
  1255  	{OLE, TUINT16}:  ssa.OpLeq16U,
  1256  	{OLE, TINT32}:   ssa.OpLeq32,
  1257  	{OLE, TUINT32}:  ssa.OpLeq32U,
  1258  	{OLE, TINT64}:   ssa.OpLeq64,
  1259  	{OLE, TUINT64}:  ssa.OpLeq64U,
  1260  	{OLE, TFLOAT64}: ssa.OpLeq64F,
  1261  	{OLE, TFLOAT32}: ssa.OpLeq32F,
  1262  
  1263  	{OGE, TINT8}:    ssa.OpGeq8,
  1264  	{OGE, TUINT8}:   ssa.OpGeq8U,
  1265  	{OGE, TINT16}:   ssa.OpGeq16,
  1266  	{OGE, TUINT16}:  ssa.OpGeq16U,
  1267  	{OGE, TINT32}:   ssa.OpGeq32,
  1268  	{OGE, TUINT32}:  ssa.OpGeq32U,
  1269  	{OGE, TINT64}:   ssa.OpGeq64,
  1270  	{OGE, TUINT64}:  ssa.OpGeq64U,
  1271  	{OGE, TFLOAT64}: ssa.OpGeq64F,
  1272  	{OGE, TFLOAT32}: ssa.OpGeq32F,
  1273  }
  1274  
  1275  func (s *state) concreteEtype(t *types.Type) types.EType {
  1276  	e := t.Etype
  1277  	switch e {
  1278  	default:
  1279  		return e
  1280  	case TINT:
  1281  		if s.config.PtrSize == 8 {
  1282  			return TINT64
  1283  		}
  1284  		return TINT32
  1285  	case TUINT:
  1286  		if s.config.PtrSize == 8 {
  1287  			return TUINT64
  1288  		}
  1289  		return TUINT32
  1290  	case TUINTPTR:
  1291  		if s.config.PtrSize == 8 {
  1292  			return TUINT64
  1293  		}
  1294  		return TUINT32
  1295  	}
  1296  }
  1297  
  1298  func (s *state) ssaOp(op Op, t *types.Type) ssa.Op {
  1299  	etype := s.concreteEtype(t)
  1300  	x, ok := opToSSA[opAndType{op, etype}]
  1301  	if !ok {
  1302  		s.Fatalf("unhandled binary op %v %s", op, etype)
  1303  	}
  1304  	return x
  1305  }
  1306  
  1307  func floatForComplex(t *types.Type) *types.Type {
  1308  	if t.Size() == 8 {
  1309  		return types.Types[TFLOAT32]
  1310  	} else {
  1311  		return types.Types[TFLOAT64]
  1312  	}
  1313  }
  1314  
  1315  type opAndTwoTypes struct {
  1316  	op     Op
  1317  	etype1 types.EType
  1318  	etype2 types.EType
  1319  }
  1320  
  1321  type twoTypes struct {
  1322  	etype1 types.EType
  1323  	etype2 types.EType
  1324  }
  1325  
  1326  type twoOpsAndType struct {
  1327  	op1              ssa.Op
  1328  	op2              ssa.Op
  1329  	intermediateType types.EType
  1330  }
  1331  
  1332  var fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1333  
  1334  	{TINT8, TFLOAT32}:  {ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32},
  1335  	{TINT16, TFLOAT32}: {ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32},
  1336  	{TINT32, TFLOAT32}: {ssa.OpCopy, ssa.OpCvt32to32F, TINT32},
  1337  	{TINT64, TFLOAT32}: {ssa.OpCopy, ssa.OpCvt64to32F, TINT64},
  1338  
  1339  	{TINT8, TFLOAT64}:  {ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32},
  1340  	{TINT16, TFLOAT64}: {ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32},
  1341  	{TINT32, TFLOAT64}: {ssa.OpCopy, ssa.OpCvt32to64F, TINT32},
  1342  	{TINT64, TFLOAT64}: {ssa.OpCopy, ssa.OpCvt64to64F, TINT64},
  1343  
  1344  	{TFLOAT32, TINT8}:  {ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1345  	{TFLOAT32, TINT16}: {ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1346  	{TFLOAT32, TINT32}: {ssa.OpCvt32Fto32, ssa.OpCopy, TINT32},
  1347  	{TFLOAT32, TINT64}: {ssa.OpCvt32Fto64, ssa.OpCopy, TINT64},
  1348  
  1349  	{TFLOAT64, TINT8}:  {ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1350  	{TFLOAT64, TINT16}: {ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1351  	{TFLOAT64, TINT32}: {ssa.OpCvt64Fto32, ssa.OpCopy, TINT32},
  1352  	{TFLOAT64, TINT64}: {ssa.OpCvt64Fto64, ssa.OpCopy, TINT64},
  1353  	// unsigned
  1354  	{TUINT8, TFLOAT32}:  {ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32},
  1355  	{TUINT16, TFLOAT32}: {ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32},
  1356  	{TUINT32, TFLOAT32}: {ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned
  1357  	{TUINT64, TFLOAT32}: {ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto32F, branchy code expansion instead
  1358  
  1359  	{TUINT8, TFLOAT64}:  {ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32},
  1360  	{TUINT16, TFLOAT64}: {ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32},
  1361  	{TUINT32, TFLOAT64}: {ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned
  1362  	{TUINT64, TFLOAT64}: {ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto64F, branchy code expansion instead
  1363  
  1364  	{TFLOAT32, TUINT8}:  {ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1365  	{TFLOAT32, TUINT16}: {ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1366  	{TFLOAT32, TUINT32}: {ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1367  	{TFLOAT32, TUINT64}: {ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt32Fto64U, branchy code expansion instead
  1368  
  1369  	{TFLOAT64, TUINT8}:  {ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1370  	{TFLOAT64, TUINT16}: {ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1371  	{TFLOAT64, TUINT32}: {ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1372  	{TFLOAT64, TUINT64}: {ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt64Fto64U, branchy code expansion instead
  1373  
  1374  	// float
  1375  	{TFLOAT64, TFLOAT32}: {ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32},
  1376  	{TFLOAT64, TFLOAT64}: {ssa.OpRound64F, ssa.OpCopy, TFLOAT64},
  1377  	{TFLOAT32, TFLOAT32}: {ssa.OpRound32F, ssa.OpCopy, TFLOAT32},
  1378  	{TFLOAT32, TFLOAT64}: {ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64},
  1379  }
  1380  
  1381  // this map is used only for 32-bit arch, and only includes the difference
  1382  // on 32-bit arch, don't use int64<->float conversion for uint32
  1383  var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{
  1384  	{TUINT32, TFLOAT32}: {ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32},
  1385  	{TUINT32, TFLOAT64}: {ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32},
  1386  	{TFLOAT32, TUINT32}: {ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32},
  1387  	{TFLOAT64, TUINT32}: {ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32},
  1388  }
  1389  
  1390  // uint64<->float conversions, only on machines that have intructions for that
  1391  var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1392  	{TUINT64, TFLOAT32}: {ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64},
  1393  	{TUINT64, TFLOAT64}: {ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64},
  1394  	{TFLOAT32, TUINT64}: {ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64},
  1395  	{TFLOAT64, TUINT64}: {ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64},
  1396  }
  1397  
  1398  var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
  1399  	{OLSH, TINT8, TUINT8}:   ssa.OpLsh8x8,
  1400  	{OLSH, TUINT8, TUINT8}:  ssa.OpLsh8x8,
  1401  	{OLSH, TINT8, TUINT16}:  ssa.OpLsh8x16,
  1402  	{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16,
  1403  	{OLSH, TINT8, TUINT32}:  ssa.OpLsh8x32,
  1404  	{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32,
  1405  	{OLSH, TINT8, TUINT64}:  ssa.OpLsh8x64,
  1406  	{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64,
  1407  
  1408  	{OLSH, TINT16, TUINT8}:   ssa.OpLsh16x8,
  1409  	{OLSH, TUINT16, TUINT8}:  ssa.OpLsh16x8,
  1410  	{OLSH, TINT16, TUINT16}:  ssa.OpLsh16x16,
  1411  	{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16,
  1412  	{OLSH, TINT16, TUINT32}:  ssa.OpLsh16x32,
  1413  	{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32,
  1414  	{OLSH, TINT16, TUINT64}:  ssa.OpLsh16x64,
  1415  	{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64,
  1416  
  1417  	{OLSH, TINT32, TUINT8}:   ssa.OpLsh32x8,
  1418  	{OLSH, TUINT32, TUINT8}:  ssa.OpLsh32x8,
  1419  	{OLSH, TINT32, TUINT16}:  ssa.OpLsh32x16,
  1420  	{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16,
  1421  	{OLSH, TINT32, TUINT32}:  ssa.OpLsh32x32,
  1422  	{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32,
  1423  	{OLSH, TINT32, TUINT64}:  ssa.OpLsh32x64,
  1424  	{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64,
  1425  
  1426  	{OLSH, TINT64, TUINT8}:   ssa.OpLsh64x8,
  1427  	{OLSH, TUINT64, TUINT8}:  ssa.OpLsh64x8,
  1428  	{OLSH, TINT64, TUINT16}:  ssa.OpLsh64x16,
  1429  	{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16,
  1430  	{OLSH, TINT64, TUINT32}:  ssa.OpLsh64x32,
  1431  	{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32,
  1432  	{OLSH, TINT64, TUINT64}:  ssa.OpLsh64x64,
  1433  	{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64,
  1434  
  1435  	{ORSH, TINT8, TUINT8}:   ssa.OpRsh8x8,
  1436  	{ORSH, TUINT8, TUINT8}:  ssa.OpRsh8Ux8,
  1437  	{ORSH, TINT8, TUINT16}:  ssa.OpRsh8x16,
  1438  	{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16,
  1439  	{ORSH, TINT8, TUINT32}:  ssa.OpRsh8x32,
  1440  	{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32,
  1441  	{ORSH, TINT8, TUINT64}:  ssa.OpRsh8x64,
  1442  	{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64,
  1443  
  1444  	{ORSH, TINT16, TUINT8}:   ssa.OpRsh16x8,
  1445  	{ORSH, TUINT16, TUINT8}:  ssa.OpRsh16Ux8,
  1446  	{ORSH, TINT16, TUINT16}:  ssa.OpRsh16x16,
  1447  	{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16,
  1448  	{ORSH, TINT16, TUINT32}:  ssa.OpRsh16x32,
  1449  	{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32,
  1450  	{ORSH, TINT16, TUINT64}:  ssa.OpRsh16x64,
  1451  	{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64,
  1452  
  1453  	{ORSH, TINT32, TUINT8}:   ssa.OpRsh32x8,
  1454  	{ORSH, TUINT32, TUINT8}:  ssa.OpRsh32Ux8,
  1455  	{ORSH, TINT32, TUINT16}:  ssa.OpRsh32x16,
  1456  	{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16,
  1457  	{ORSH, TINT32, TUINT32}:  ssa.OpRsh32x32,
  1458  	{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32,
  1459  	{ORSH, TINT32, TUINT64}:  ssa.OpRsh32x64,
  1460  	{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64,
  1461  
  1462  	{ORSH, TINT64, TUINT8}:   ssa.OpRsh64x8,
  1463  	{ORSH, TUINT64, TUINT8}:  ssa.OpRsh64Ux8,
  1464  	{ORSH, TINT64, TUINT16}:  ssa.OpRsh64x16,
  1465  	{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16,
  1466  	{ORSH, TINT64, TUINT32}:  ssa.OpRsh64x32,
  1467  	{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32,
  1468  	{ORSH, TINT64, TUINT64}:  ssa.OpRsh64x64,
  1469  	{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64,
  1470  }
  1471  
  1472  func (s *state) ssaShiftOp(op Op, t *types.Type, u *types.Type) ssa.Op {
  1473  	etype1 := s.concreteEtype(t)
  1474  	etype2 := s.concreteEtype(u)
  1475  	x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
  1476  	if !ok {
  1477  		s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2)
  1478  	}
  1479  	return x
  1480  }
  1481  
  1482  // expr converts the expression n to ssa, adds it to s and returns the ssa result.
  1483  func (s *state) expr(n *Node) *ssa.Value {
  1484  	if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) {
  1485  		// ONAMEs and named OLITERALs have the line number
  1486  		// of the decl, not the use. See issue 14742.
  1487  		s.pushLine(n.Pos)
  1488  		defer s.popLine()
  1489  	}
  1490  
  1491  	s.stmtList(n.Ninit)
  1492  	switch n.Op {
  1493  	case OARRAYBYTESTRTMP:
  1494  		slice := s.expr(n.Left)
  1495  		ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice)
  1496  		len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  1497  		return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
  1498  	case OSTRARRAYBYTETMP:
  1499  		str := s.expr(n.Left)
  1500  		ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, str)
  1501  		len := s.newValue1(ssa.OpStringLen, types.Types[TINT], str)
  1502  		return s.newValue3(ssa.OpSliceMake, n.Type, ptr, len, len)
  1503  	case OCFUNC:
  1504  		aux := n.Left.Sym.Linksym()
  1505  		return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb)
  1506  	case ONAME:
  1507  		if n.Class() == PFUNC {
  1508  			// "value" of a function is the address of the function's closure
  1509  			sym := funcsym(n.Sym).Linksym()
  1510  			return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), sym, s.sb)
  1511  		}
  1512  		if s.canSSA(n) {
  1513  			return s.variable(n, n.Type)
  1514  		}
  1515  		addr := s.addr(n, false)
  1516  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1517  	case OCLOSUREVAR:
  1518  		addr := s.addr(n, false)
  1519  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1520  	case OLITERAL:
  1521  		switch u := n.Val().U.(type) {
  1522  		case *Mpint:
  1523  			i := u.Int64()
  1524  			switch n.Type.Size() {
  1525  			case 1:
  1526  				return s.constInt8(n.Type, int8(i))
  1527  			case 2:
  1528  				return s.constInt16(n.Type, int16(i))
  1529  			case 4:
  1530  				return s.constInt32(n.Type, int32(i))
  1531  			case 8:
  1532  				return s.constInt64(n.Type, i)
  1533  			default:
  1534  				s.Fatalf("bad integer size %d", n.Type.Size())
  1535  				return nil
  1536  			}
  1537  		case string:
  1538  			if u == "" {
  1539  				return s.constEmptyString(n.Type)
  1540  			}
  1541  			return s.entryNewValue0A(ssa.OpConstString, n.Type, u)
  1542  		case bool:
  1543  			return s.constBool(u)
  1544  		case *NilVal:
  1545  			t := n.Type
  1546  			switch {
  1547  			case t.IsSlice():
  1548  				return s.constSlice(t)
  1549  			case t.IsInterface():
  1550  				return s.constInterface(t)
  1551  			default:
  1552  				return s.constNil(t)
  1553  			}
  1554  		case *Mpflt:
  1555  			switch n.Type.Size() {
  1556  			case 4:
  1557  				return s.constFloat32(n.Type, u.Float32())
  1558  			case 8:
  1559  				return s.constFloat64(n.Type, u.Float64())
  1560  			default:
  1561  				s.Fatalf("bad float size %d", n.Type.Size())
  1562  				return nil
  1563  			}
  1564  		case *Mpcplx:
  1565  			r := &u.Real
  1566  			i := &u.Imag
  1567  			switch n.Type.Size() {
  1568  			case 8:
  1569  				pt := types.Types[TFLOAT32]
  1570  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1571  					s.constFloat32(pt, r.Float32()),
  1572  					s.constFloat32(pt, i.Float32()))
  1573  			case 16:
  1574  				pt := types.Types[TFLOAT64]
  1575  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1576  					s.constFloat64(pt, r.Float64()),
  1577  					s.constFloat64(pt, i.Float64()))
  1578  			default:
  1579  				s.Fatalf("bad float size %d", n.Type.Size())
  1580  				return nil
  1581  			}
  1582  
  1583  		default:
  1584  			s.Fatalf("unhandled OLITERAL %v", n.Val().Ctype())
  1585  			return nil
  1586  		}
  1587  	case OCONVNOP:
  1588  		to := n.Type
  1589  		from := n.Left.Type
  1590  
  1591  		// Assume everything will work out, so set up our return value.
  1592  		// Anything interesting that happens from here is a fatal.
  1593  		x := s.expr(n.Left)
  1594  
  1595  		// Special case for not confusing GC and liveness.
  1596  		// We don't want pointers accidentally classified
  1597  		// as not-pointers or vice-versa because of copy
  1598  		// elision.
  1599  		if to.IsPtrShaped() != from.IsPtrShaped() {
  1600  			return s.newValue2(ssa.OpConvert, to, x, s.mem())
  1601  		}
  1602  
  1603  		v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type
  1604  
  1605  		// CONVNOP closure
  1606  		if to.Etype == TFUNC && from.IsPtrShaped() {
  1607  			return v
  1608  		}
  1609  
  1610  		// named <--> unnamed type or typed <--> untyped const
  1611  		if from.Etype == to.Etype {
  1612  			return v
  1613  		}
  1614  
  1615  		// unsafe.Pointer <--> *T
  1616  		if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() {
  1617  			return v
  1618  		}
  1619  
  1620  		// map <--> *hmap
  1621  		if to.Etype == TMAP && from.IsPtr() &&
  1622  			to.MapType().Hmap == from.Elem() {
  1623  			return v
  1624  		}
  1625  
  1626  		dowidth(from)
  1627  		dowidth(to)
  1628  		if from.Width != to.Width {
  1629  			s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width)
  1630  			return nil
  1631  		}
  1632  		if etypesign(from.Etype) != etypesign(to.Etype) {
  1633  			s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype)
  1634  			return nil
  1635  		}
  1636  
  1637  		if instrumenting {
  1638  			// These appear to be fine, but they fail the
  1639  			// integer constraint below, so okay them here.
  1640  			// Sample non-integer conversion: map[string]string -> *uint8
  1641  			return v
  1642  		}
  1643  
  1644  		if etypesign(from.Etype) == 0 {
  1645  			s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
  1646  			return nil
  1647  		}
  1648  
  1649  		// integer, same width, same sign
  1650  		return v
  1651  
  1652  	case OCONV:
  1653  		x := s.expr(n.Left)
  1654  		ft := n.Left.Type // from type
  1655  		tt := n.Type      // to type
  1656  		if ft.IsBoolean() && tt.IsKind(TUINT8) {
  1657  			// Bool -> uint8 is generated internally when indexing into runtime.staticbyte.
  1658  			return s.newValue1(ssa.OpCopy, n.Type, x)
  1659  		}
  1660  		if ft.IsInteger() && tt.IsInteger() {
  1661  			var op ssa.Op
  1662  			if tt.Size() == ft.Size() {
  1663  				op = ssa.OpCopy
  1664  			} else if tt.Size() < ft.Size() {
  1665  				// truncation
  1666  				switch 10*ft.Size() + tt.Size() {
  1667  				case 21:
  1668  					op = ssa.OpTrunc16to8
  1669  				case 41:
  1670  					op = ssa.OpTrunc32to8
  1671  				case 42:
  1672  					op = ssa.OpTrunc32to16
  1673  				case 81:
  1674  					op = ssa.OpTrunc64to8
  1675  				case 82:
  1676  					op = ssa.OpTrunc64to16
  1677  				case 84:
  1678  					op = ssa.OpTrunc64to32
  1679  				default:
  1680  					s.Fatalf("weird integer truncation %v -> %v", ft, tt)
  1681  				}
  1682  			} else if ft.IsSigned() {
  1683  				// sign extension
  1684  				switch 10*ft.Size() + tt.Size() {
  1685  				case 12:
  1686  					op = ssa.OpSignExt8to16
  1687  				case 14:
  1688  					op = ssa.OpSignExt8to32
  1689  				case 18:
  1690  					op = ssa.OpSignExt8to64
  1691  				case 24:
  1692  					op = ssa.OpSignExt16to32
  1693  				case 28:
  1694  					op = ssa.OpSignExt16to64
  1695  				case 48:
  1696  					op = ssa.OpSignExt32to64
  1697  				default:
  1698  					s.Fatalf("bad integer sign extension %v -> %v", ft, tt)
  1699  				}
  1700  			} else {
  1701  				// zero extension
  1702  				switch 10*ft.Size() + tt.Size() {
  1703  				case 12:
  1704  					op = ssa.OpZeroExt8to16
  1705  				case 14:
  1706  					op = ssa.OpZeroExt8to32
  1707  				case 18:
  1708  					op = ssa.OpZeroExt8to64
  1709  				case 24:
  1710  					op = ssa.OpZeroExt16to32
  1711  				case 28:
  1712  					op = ssa.OpZeroExt16to64
  1713  				case 48:
  1714  					op = ssa.OpZeroExt32to64
  1715  				default:
  1716  					s.Fatalf("weird integer sign extension %v -> %v", ft, tt)
  1717  				}
  1718  			}
  1719  			return s.newValue1(op, n.Type, x)
  1720  		}
  1721  
  1722  		if ft.IsFloat() || tt.IsFloat() {
  1723  			conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
  1724  			if s.config.RegSize == 4 && thearch.LinkArch.Family != sys.MIPS && !s.softFloat {
  1725  				if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1726  					conv = conv1
  1727  				}
  1728  			}
  1729  			if thearch.LinkArch.Family == sys.ARM64 || s.softFloat {
  1730  				if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1731  					conv = conv1
  1732  				}
  1733  			}
  1734  
  1735  			if thearch.LinkArch.Family == sys.MIPS && !s.softFloat {
  1736  				if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() {
  1737  					// tt is float32 or float64, and ft is also unsigned
  1738  					if tt.Size() == 4 {
  1739  						return s.uint32Tofloat32(n, x, ft, tt)
  1740  					}
  1741  					if tt.Size() == 8 {
  1742  						return s.uint32Tofloat64(n, x, ft, tt)
  1743  					}
  1744  				} else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() {
  1745  					// ft is float32 or float64, and tt is unsigned integer
  1746  					if ft.Size() == 4 {
  1747  						return s.float32ToUint32(n, x, ft, tt)
  1748  					}
  1749  					if ft.Size() == 8 {
  1750  						return s.float64ToUint32(n, x, ft, tt)
  1751  					}
  1752  				}
  1753  			}
  1754  
  1755  			if !ok {
  1756  				s.Fatalf("weird float conversion %v -> %v", ft, tt)
  1757  			}
  1758  			op1, op2, it := conv.op1, conv.op2, conv.intermediateType
  1759  
  1760  			if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
  1761  				// normal case, not tripping over unsigned 64
  1762  				if op1 == ssa.OpCopy {
  1763  					if op2 == ssa.OpCopy {
  1764  						return x
  1765  					}
  1766  					return s.newValueOrSfCall1(op2, n.Type, x)
  1767  				}
  1768  				if op2 == ssa.OpCopy {
  1769  					return s.newValueOrSfCall1(op1, n.Type, x)
  1770  				}
  1771  				return s.newValueOrSfCall1(op2, n.Type, s.newValueOrSfCall1(op1, types.Types[it], x))
  1772  			}
  1773  			// Tricky 64-bit unsigned cases.
  1774  			if ft.IsInteger() {
  1775  				// tt is float32 or float64, and ft is also unsigned
  1776  				if tt.Size() == 4 {
  1777  					return s.uint64Tofloat32(n, x, ft, tt)
  1778  				}
  1779  				if tt.Size() == 8 {
  1780  					return s.uint64Tofloat64(n, x, ft, tt)
  1781  				}
  1782  				s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt)
  1783  			}
  1784  			// ft is float32 or float64, and tt is unsigned integer
  1785  			if ft.Size() == 4 {
  1786  				return s.float32ToUint64(n, x, ft, tt)
  1787  			}
  1788  			if ft.Size() == 8 {
  1789  				return s.float64ToUint64(n, x, ft, tt)
  1790  			}
  1791  			s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt)
  1792  			return nil
  1793  		}
  1794  
  1795  		if ft.IsComplex() && tt.IsComplex() {
  1796  			var op ssa.Op
  1797  			if ft.Size() == tt.Size() {
  1798  				switch ft.Size() {
  1799  				case 8:
  1800  					op = ssa.OpRound32F
  1801  				case 16:
  1802  					op = ssa.OpRound64F
  1803  				default:
  1804  					s.Fatalf("weird complex conversion %v -> %v", ft, tt)
  1805  				}
  1806  			} else if ft.Size() == 8 && tt.Size() == 16 {
  1807  				op = ssa.OpCvt32Fto64F
  1808  			} else if ft.Size() == 16 && tt.Size() == 8 {
  1809  				op = ssa.OpCvt64Fto32F
  1810  			} else {
  1811  				s.Fatalf("weird complex conversion %v -> %v", ft, tt)
  1812  			}
  1813  			ftp := floatForComplex(ft)
  1814  			ttp := floatForComplex(tt)
  1815  			return s.newValue2(ssa.OpComplexMake, tt,
  1816  				s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)),
  1817  				s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x)))
  1818  		}
  1819  
  1820  		s.Fatalf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype)
  1821  		return nil
  1822  
  1823  	case ODOTTYPE:
  1824  		res, _ := s.dottype(n, false)
  1825  		return res
  1826  
  1827  	// binary ops
  1828  	case OLT, OEQ, ONE, OLE, OGE, OGT:
  1829  		a := s.expr(n.Left)
  1830  		b := s.expr(n.Right)
  1831  		if n.Left.Type.IsComplex() {
  1832  			pt := floatForComplex(n.Left.Type)
  1833  			op := s.ssaOp(OEQ, pt)
  1834  			r := s.newValueOrSfCall2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
  1835  			i := s.newValueOrSfCall2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
  1836  			c := s.newValue2(ssa.OpAndB, types.Types[TBOOL], r, i)
  1837  			switch n.Op {
  1838  			case OEQ:
  1839  				return c
  1840  			case ONE:
  1841  				return s.newValue1(ssa.OpNot, types.Types[TBOOL], c)
  1842  			default:
  1843  				s.Fatalf("ordered complex compare %v", n.Op)
  1844  			}
  1845  		}
  1846  		if n.Left.Type.IsFloat() {
  1847  			return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Left.Type), types.Types[TBOOL], a, b)
  1848  		}
  1849  		return s.newValue2(s.ssaOp(n.Op, n.Left.Type), types.Types[TBOOL], a, b)
  1850  	case OMUL:
  1851  		a := s.expr(n.Left)
  1852  		b := s.expr(n.Right)
  1853  		if n.Type.IsComplex() {
  1854  			mulop := ssa.OpMul64F
  1855  			addop := ssa.OpAdd64F
  1856  			subop := ssa.OpSub64F
  1857  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1858  			wt := types.Types[TFLOAT64]   // Compute in Float64 to minimize cancelation error
  1859  
  1860  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1861  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1862  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1863  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1864  
  1865  			if pt != wt { // Widen for calculation
  1866  				areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal)
  1867  				breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal)
  1868  				aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag)
  1869  				bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag)
  1870  			}
  1871  
  1872  			xreal := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag))
  1873  			ximag := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, bimag), s.newValueOrSfCall2(mulop, wt, aimag, breal))
  1874  
  1875  			if pt != wt { // Narrow to store back
  1876  				xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal)
  1877  				ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag)
  1878  			}
  1879  
  1880  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1881  		}
  1882  
  1883  		if n.Type.IsFloat() {
  1884  			return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1885  		}
  1886  
  1887  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1888  
  1889  	case ODIV:
  1890  		a := s.expr(n.Left)
  1891  		b := s.expr(n.Right)
  1892  		if n.Type.IsComplex() {
  1893  			// TODO this is not executed because the front-end substitutes a runtime call.
  1894  			// That probably ought to change; with modest optimization the widen/narrow
  1895  			// conversions could all be elided in larger expression trees.
  1896  			mulop := ssa.OpMul64F
  1897  			addop := ssa.OpAdd64F
  1898  			subop := ssa.OpSub64F
  1899  			divop := ssa.OpDiv64F
  1900  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1901  			wt := types.Types[TFLOAT64]   // Compute in Float64 to minimize cancelation error
  1902  
  1903  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1904  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1905  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1906  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1907  
  1908  			if pt != wt { // Widen for calculation
  1909  				areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal)
  1910  				breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal)
  1911  				aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag)
  1912  				bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag)
  1913  			}
  1914  
  1915  			denom := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, breal, breal), s.newValueOrSfCall2(mulop, wt, bimag, bimag))
  1916  			xreal := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag))
  1917  			ximag := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, aimag, breal), s.newValueOrSfCall2(mulop, wt, areal, bimag))
  1918  
  1919  			// TODO not sure if this is best done in wide precision or narrow
  1920  			// Double-rounding might be an issue.
  1921  			// Note that the pre-SSA implementation does the entire calculation
  1922  			// in wide format, so wide is compatible.
  1923  			xreal = s.newValueOrSfCall2(divop, wt, xreal, denom)
  1924  			ximag = s.newValueOrSfCall2(divop, wt, ximag, denom)
  1925  
  1926  			if pt != wt { // Narrow to store back
  1927  				xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal)
  1928  				ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag)
  1929  			}
  1930  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1931  		}
  1932  		if n.Type.IsFloat() {
  1933  			return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1934  		}
  1935  		return s.intDivide(n, a, b)
  1936  	case OMOD:
  1937  		a := s.expr(n.Left)
  1938  		b := s.expr(n.Right)
  1939  		return s.intDivide(n, a, b)
  1940  	case OADD, OSUB:
  1941  		a := s.expr(n.Left)
  1942  		b := s.expr(n.Right)
  1943  		if n.Type.IsComplex() {
  1944  			pt := floatForComplex(n.Type)
  1945  			op := s.ssaOp(n.Op, pt)
  1946  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1947  				s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
  1948  				s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
  1949  		}
  1950  		if n.Type.IsFloat() {
  1951  			return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1952  		}
  1953  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1954  	case OAND, OOR, OXOR:
  1955  		a := s.expr(n.Left)
  1956  		b := s.expr(n.Right)
  1957  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1958  	case OLSH, ORSH:
  1959  		a := s.expr(n.Left)
  1960  		b := s.expr(n.Right)
  1961  		return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b)
  1962  	case OANDAND, OOROR:
  1963  		// To implement OANDAND (and OOROR), we introduce a
  1964  		// new temporary variable to hold the result. The
  1965  		// variable is associated with the OANDAND node in the
  1966  		// s.vars table (normally variables are only
  1967  		// associated with ONAME nodes). We convert
  1968  		//     A && B
  1969  		// to
  1970  		//     var = A
  1971  		//     if var {
  1972  		//         var = B
  1973  		//     }
  1974  		// Using var in the subsequent block introduces the
  1975  		// necessary phi variable.
  1976  		el := s.expr(n.Left)
  1977  		s.vars[n] = el
  1978  
  1979  		b := s.endBlock()
  1980  		b.Kind = ssa.BlockIf
  1981  		b.SetControl(el)
  1982  		// In theory, we should set b.Likely here based on context.
  1983  		// However, gc only gives us likeliness hints
  1984  		// in a single place, for plain OIF statements,
  1985  		// and passing around context is finnicky, so don't bother for now.
  1986  
  1987  		bRight := s.f.NewBlock(ssa.BlockPlain)
  1988  		bResult := s.f.NewBlock(ssa.BlockPlain)
  1989  		if n.Op == OANDAND {
  1990  			b.AddEdgeTo(bRight)
  1991  			b.AddEdgeTo(bResult)
  1992  		} else if n.Op == OOROR {
  1993  			b.AddEdgeTo(bResult)
  1994  			b.AddEdgeTo(bRight)
  1995  		}
  1996  
  1997  		s.startBlock(bRight)
  1998  		er := s.expr(n.Right)
  1999  		s.vars[n] = er
  2000  
  2001  		b = s.endBlock()
  2002  		b.AddEdgeTo(bResult)
  2003  
  2004  		s.startBlock(bResult)
  2005  		return s.variable(n, types.Types[TBOOL])
  2006  	case OCOMPLEX:
  2007  		r := s.expr(n.Left)
  2008  		i := s.expr(n.Right)
  2009  		return s.newValue2(ssa.OpComplexMake, n.Type, r, i)
  2010  
  2011  	// unary ops
  2012  	case OMINUS:
  2013  		a := s.expr(n.Left)
  2014  		if n.Type.IsComplex() {
  2015  			tp := floatForComplex(n.Type)
  2016  			negop := s.ssaOp(n.Op, tp)
  2017  			return s.newValue2(ssa.OpComplexMake, n.Type,
  2018  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
  2019  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
  2020  		}
  2021  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  2022  	case ONOT, OCOM:
  2023  		a := s.expr(n.Left)
  2024  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  2025  	case OIMAG, OREAL:
  2026  		a := s.expr(n.Left)
  2027  		return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a)
  2028  	case OPLUS:
  2029  		return s.expr(n.Left)
  2030  
  2031  	case OADDR:
  2032  		return s.addr(n.Left, n.Bounded())
  2033  
  2034  	case OINDREGSP:
  2035  		addr := s.constOffPtrSP(types.NewPtr(n.Type), n.Xoffset)
  2036  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  2037  
  2038  	case OIND:
  2039  		p := s.exprPtr(n.Left, false, n.Pos)
  2040  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  2041  
  2042  	case ODOT:
  2043  		t := n.Left.Type
  2044  		if canSSAType(t) {
  2045  			v := s.expr(n.Left)
  2046  			return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v)
  2047  		}
  2048  		if n.Left.Op == OSTRUCTLIT {
  2049  			// All literals with nonzero fields have already been
  2050  			// rewritten during walk. Any that remain are just T{}
  2051  			// or equivalents. Use the zero value.
  2052  			if !iszero(n.Left) {
  2053  				Fatalf("literal with nonzero value in SSA: %v", n.Left)
  2054  			}
  2055  			return s.zeroVal(n.Type)
  2056  		}
  2057  		p := s.addr(n, false)
  2058  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  2059  
  2060  	case ODOTPTR:
  2061  		p := s.exprPtr(n.Left, false, n.Pos)
  2062  		p = s.newValue1I(ssa.OpOffPtr, types.NewPtr(n.Type), n.Xoffset, p)
  2063  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  2064  
  2065  	case OINDEX:
  2066  		switch {
  2067  		case n.Left.Type.IsString():
  2068  			if n.Bounded() && Isconst(n.Left, CTSTR) && Isconst(n.Right, CTINT) {
  2069  				// Replace "abc"[1] with 'b'.
  2070  				// Delayed until now because "abc"[1] is not an ideal constant.
  2071  				// See test/fixedbugs/issue11370.go.
  2072  				return s.newValue0I(ssa.OpConst8, types.Types[TUINT8], int64(int8(n.Left.Val().U.(string)[n.Right.Int64()])))
  2073  			}
  2074  			a := s.expr(n.Left)
  2075  			i := s.expr(n.Right)
  2076  			i = s.extendIndex(i, panicindex)
  2077  			if !n.Bounded() {
  2078  				len := s.newValue1(ssa.OpStringLen, types.Types[TINT], a)
  2079  				s.boundsCheck(i, len)
  2080  			}
  2081  			ptrtyp := s.f.Config.Types.BytePtr
  2082  			ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
  2083  			if Isconst(n.Right, CTINT) {
  2084  				ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr)
  2085  			} else {
  2086  				ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
  2087  			}
  2088  			return s.newValue2(ssa.OpLoad, types.Types[TUINT8], ptr, s.mem())
  2089  		case n.Left.Type.IsSlice():
  2090  			p := s.addr(n, false)
  2091  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  2092  		case n.Left.Type.IsArray():
  2093  			if bound := n.Left.Type.NumElem(); bound <= 1 {
  2094  				// SSA can handle arrays of length at most 1.
  2095  				a := s.expr(n.Left)
  2096  				i := s.expr(n.Right)
  2097  				if bound == 0 {
  2098  					// Bounds check will never succeed.  Might as well
  2099  					// use constants for the bounds check.
  2100  					z := s.constInt(types.Types[TINT], 0)
  2101  					s.boundsCheck(z, z)
  2102  					// The return value won't be live, return junk.
  2103  					return s.newValue0(ssa.OpUnknown, n.Type)
  2104  				}
  2105  				i = s.extendIndex(i, panicindex)
  2106  				if !n.Bounded() {
  2107  					s.boundsCheck(i, s.constInt(types.Types[TINT], bound))
  2108  				}
  2109  				return s.newValue1I(ssa.OpArraySelect, n.Type, 0, a)
  2110  			}
  2111  			p := s.addr(n, false)
  2112  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  2113  		default:
  2114  			s.Fatalf("bad type for index %v", n.Left.Type)
  2115  			return nil
  2116  		}
  2117  
  2118  	case OLEN, OCAP:
  2119  		switch {
  2120  		case n.Left.Type.IsSlice():
  2121  			op := ssa.OpSliceLen
  2122  			if n.Op == OCAP {
  2123  				op = ssa.OpSliceCap
  2124  			}
  2125  			return s.newValue1(op, types.Types[TINT], s.expr(n.Left))
  2126  		case n.Left.Type.IsString(): // string; not reachable for OCAP
  2127  			return s.newValue1(ssa.OpStringLen, types.Types[TINT], s.expr(n.Left))
  2128  		case n.Left.Type.IsMap(), n.Left.Type.IsChan():
  2129  			return s.referenceTypeBuiltin(n, s.expr(n.Left))
  2130  		default: // array
  2131  			return s.constInt(types.Types[TINT], n.Left.Type.NumElem())
  2132  		}
  2133  
  2134  	case OSPTR:
  2135  		a := s.expr(n.Left)
  2136  		if n.Left.Type.IsSlice() {
  2137  			return s.newValue1(ssa.OpSlicePtr, n.Type, a)
  2138  		} else {
  2139  			return s.newValue1(ssa.OpStringPtr, n.Type, a)
  2140  		}
  2141  
  2142  	case OITAB:
  2143  		a := s.expr(n.Left)
  2144  		return s.newValue1(ssa.OpITab, n.Type, a)
  2145  
  2146  	case OIDATA:
  2147  		a := s.expr(n.Left)
  2148  		return s.newValue1(ssa.OpIData, n.Type, a)
  2149  
  2150  	case OEFACE:
  2151  		tab := s.expr(n.Left)
  2152  		data := s.expr(n.Right)
  2153  		return s.newValue2(ssa.OpIMake, n.Type, tab, data)
  2154  
  2155  	case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR:
  2156  		v := s.expr(n.Left)
  2157  		var i, j, k *ssa.Value
  2158  		low, high, max := n.SliceBounds()
  2159  		if low != nil {
  2160  			i = s.extendIndex(s.expr(low), panicslice)
  2161  		}
  2162  		if high != nil {
  2163  			j = s.extendIndex(s.expr(high), panicslice)
  2164  		}
  2165  		if max != nil {
  2166  			k = s.extendIndex(s.expr(max), panicslice)
  2167  		}
  2168  		p, l, c := s.slice(n.Left.Type, v, i, j, k)
  2169  		return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)
  2170  
  2171  	case OSLICESTR:
  2172  		v := s.expr(n.Left)
  2173  		var i, j *ssa.Value
  2174  		low, high, _ := n.SliceBounds()
  2175  		if low != nil {
  2176  			i = s.extendIndex(s.expr(low), panicslice)
  2177  		}
  2178  		if high != nil {
  2179  			j = s.extendIndex(s.expr(high), panicslice)
  2180  		}
  2181  		p, l, _ := s.slice(n.Left.Type, v, i, j, nil)
  2182  		return s.newValue2(ssa.OpStringMake, n.Type, p, l)
  2183  
  2184  	case OCALLFUNC:
  2185  		if isIntrinsicCall(n) {
  2186  			return s.intrinsicCall(n)
  2187  		}
  2188  		fallthrough
  2189  
  2190  	case OCALLINTER, OCALLMETH:
  2191  		a := s.call(n, callNormal)
  2192  		return s.newValue2(ssa.OpLoad, n.Type, a, s.mem())
  2193  
  2194  	case OGETG:
  2195  		return s.newValue1(ssa.OpGetG, n.Type, s.mem())
  2196  
  2197  	case OAPPEND:
  2198  		return s.append(n, false)
  2199  
  2200  	case OSTRUCTLIT, OARRAYLIT:
  2201  		// All literals with nonzero fields have already been
  2202  		// rewritten during walk. Any that remain are just T{}
  2203  		// or equivalents. Use the zero value.
  2204  		if !iszero(n) {
  2205  			Fatalf("literal with nonzero value in SSA: %v", n)
  2206  		}
  2207  		return s.zeroVal(n.Type)
  2208  
  2209  	default:
  2210  		s.Fatalf("unhandled expr %v", n.Op)
  2211  		return nil
  2212  	}
  2213  }
  2214  
  2215  // append converts an OAPPEND node to SSA.
  2216  // If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
  2217  // adds it to s, and returns the Value.
  2218  // If inplace is true, it writes the result of the OAPPEND expression n
  2219  // back to the slice being appended to, and returns nil.
  2220  // inplace MUST be set to false if the slice can be SSA'd.
  2221  func (s *state) append(n *Node, inplace bool) *ssa.Value {
  2222  	// If inplace is false, process as expression "append(s, e1, e2, e3)":
  2223  	//
  2224  	// ptr, len, cap := s
  2225  	// newlen := len + 3
  2226  	// if newlen > cap {
  2227  	//     ptr, len, cap = growslice(s, newlen)
  2228  	//     newlen = len + 3 // recalculate to avoid a spill
  2229  	// }
  2230  	// // with write barriers, if needed:
  2231  	// *(ptr+len) = e1
  2232  	// *(ptr+len+1) = e2
  2233  	// *(ptr+len+2) = e3
  2234  	// return makeslice(ptr, newlen, cap)
  2235  	//
  2236  	//
  2237  	// If inplace is true, process as statement "s = append(s, e1, e2, e3)":
  2238  	//
  2239  	// a := &s
  2240  	// ptr, len, cap := s
  2241  	// newlen := len + 3
  2242  	// if newlen > cap {
  2243  	//    newptr, len, newcap = growslice(ptr, len, cap, newlen)
  2244  	//    vardef(a)       // if necessary, advise liveness we are writing a new a
  2245  	//    *a.cap = newcap // write before ptr to avoid a spill
  2246  	//    *a.ptr = newptr // with write barrier
  2247  	// }
  2248  	// newlen = len + 3 // recalculate to avoid a spill
  2249  	// *a.len = newlen
  2250  	// // with write barriers, if needed:
  2251  	// *(ptr+len) = e1
  2252  	// *(ptr+len+1) = e2
  2253  	// *(ptr+len+2) = e3
  2254  
  2255  	et := n.Type.Elem()
  2256  	pt := types.NewPtr(et)
  2257  
  2258  	// Evaluate slice
  2259  	sn := n.List.First() // the slice node is the first in the list
  2260  
  2261  	var slice, addr *ssa.Value
  2262  	if inplace {
  2263  		addr = s.addr(sn, false)
  2264  		slice = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  2265  	} else {
  2266  		slice = s.expr(sn)
  2267  	}
  2268  
  2269  	// Allocate new blocks
  2270  	grow := s.f.NewBlock(ssa.BlockPlain)
  2271  	assign := s.f.NewBlock(ssa.BlockPlain)
  2272  
  2273  	// Decide if we need to grow
  2274  	nargs := int64(n.List.Len() - 1)
  2275  	p := s.newValue1(ssa.OpSlicePtr, pt, slice)
  2276  	l := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  2277  	c := s.newValue1(ssa.OpSliceCap, types.Types[TINT], slice)
  2278  	nl := s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs))
  2279  
  2280  	cmp := s.newValue2(s.ssaOp(OGT, types.Types[TINT]), types.Types[TBOOL], nl, c)
  2281  	s.vars[&ptrVar] = p
  2282  
  2283  	if !inplace {
  2284  		s.vars[&newlenVar] = nl
  2285  		s.vars[&capVar] = c
  2286  	} else {
  2287  		s.vars[&lenVar] = l
  2288  	}
  2289  
  2290  	b := s.endBlock()
  2291  	b.Kind = ssa.BlockIf
  2292  	b.Likely = ssa.BranchUnlikely
  2293  	b.SetControl(cmp)
  2294  	b.AddEdgeTo(grow)
  2295  	b.AddEdgeTo(assign)
  2296  
  2297  	// Call growslice
  2298  	s.startBlock(grow)
  2299  	taddr := s.expr(n.Left)
  2300  	r := s.rtcall(growslice, true, []*types.Type{pt, types.Types[TINT], types.Types[TINT]}, taddr, p, l, c, nl)
  2301  
  2302  	if inplace {
  2303  		if sn.Op == ONAME && sn.Class() != PEXTERN {
  2304  			// Tell liveness we're about to build a new slice
  2305  			s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, sn, s.mem())
  2306  		}
  2307  		capaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_cap), addr)
  2308  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], capaddr, r[2], s.mem())
  2309  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, pt, addr, r[0], s.mem())
  2310  		// load the value we just stored to avoid having to spill it
  2311  		s.vars[&ptrVar] = s.newValue2(ssa.OpLoad, pt, addr, s.mem())
  2312  		s.vars[&lenVar] = r[1] // avoid a spill in the fast path
  2313  	} else {
  2314  		s.vars[&ptrVar] = r[0]
  2315  		s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], r[1], s.constInt(types.Types[TINT], nargs))
  2316  		s.vars[&capVar] = r[2]
  2317  	}
  2318  
  2319  	b = s.endBlock()
  2320  	b.AddEdgeTo(assign)
  2321  
  2322  	// assign new elements to slots
  2323  	s.startBlock(assign)
  2324  
  2325  	if inplace {
  2326  		l = s.variable(&lenVar, types.Types[TINT]) // generates phi for len
  2327  		nl = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs))
  2328  		lenaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_nel), addr)
  2329  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], lenaddr, nl, s.mem())
  2330  	}
  2331  
  2332  	// Evaluate args
  2333  	type argRec struct {
  2334  		// if store is true, we're appending the value v.  If false, we're appending the
  2335  		// value at *v.
  2336  		v     *ssa.Value
  2337  		store bool
  2338  	}
  2339  	args := make([]argRec, 0, nargs)
  2340  	for _, n := range n.List.Slice()[1:] {
  2341  		if canSSAType(n.Type) {
  2342  			args = append(args, argRec{v: s.expr(n), store: true})
  2343  		} else {
  2344  			v := s.addr(n, false)
  2345  			args = append(args, argRec{v: v})
  2346  		}
  2347  	}
  2348  
  2349  	p = s.variable(&ptrVar, pt) // generates phi for ptr
  2350  	if !inplace {
  2351  		nl = s.variable(&newlenVar, types.Types[TINT]) // generates phi for nl
  2352  		c = s.variable(&capVar, types.Types[TINT])     // generates phi for cap
  2353  	}
  2354  	p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l)
  2355  	for i, arg := range args {
  2356  		addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(types.Types[TINT], int64(i)))
  2357  		if arg.store {
  2358  			s.storeType(et, addr, arg.v, 0)
  2359  		} else {
  2360  			store := s.newValue3I(ssa.OpMove, types.TypeMem, et.Size(), addr, arg.v, s.mem())
  2361  			store.Aux = et
  2362  			s.vars[&memVar] = store
  2363  		}
  2364  	}
  2365  
  2366  	delete(s.vars, &ptrVar)
  2367  	if inplace {
  2368  		delete(s.vars, &lenVar)
  2369  		return nil
  2370  	}
  2371  	delete(s.vars, &newlenVar)
  2372  	delete(s.vars, &capVar)
  2373  	// make result
  2374  	return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c)
  2375  }
  2376  
  2377  // condBranch evaluates the boolean expression cond and branches to yes
  2378  // if cond is true and no if cond is false.
  2379  // This function is intended to handle && and || better than just calling
  2380  // s.expr(cond) and branching on the result.
  2381  func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) {
  2382  	switch cond.Op {
  2383  	case OANDAND:
  2384  		mid := s.f.NewBlock(ssa.BlockPlain)
  2385  		s.stmtList(cond.Ninit)
  2386  		s.condBranch(cond.Left, mid, no, max8(likely, 0))
  2387  		s.startBlock(mid)
  2388  		s.condBranch(cond.Right, yes, no, likely)
  2389  		return
  2390  		// Note: if likely==1, then both recursive calls pass 1.
  2391  		// If likely==-1, then we don't have enough information to decide
  2392  		// whether the first branch is likely or not. So we pass 0 for
  2393  		// the likeliness of the first branch.
  2394  		// TODO: have the frontend give us branch prediction hints for
  2395  		// OANDAND and OOROR nodes (if it ever has such info).
  2396  	case OOROR:
  2397  		mid := s.f.NewBlock(ssa.BlockPlain)
  2398  		s.stmtList(cond.Ninit)
  2399  		s.condBranch(cond.Left, yes, mid, min8(likely, 0))
  2400  		s.startBlock(mid)
  2401  		s.condBranch(cond.Right, yes, no, likely)
  2402  		return
  2403  		// Note: if likely==-1, then both recursive calls pass -1.
  2404  		// If likely==1, then we don't have enough info to decide
  2405  		// the likelihood of the first branch.
  2406  	case ONOT:
  2407  		s.stmtList(cond.Ninit)
  2408  		s.condBranch(cond.Left, no, yes, -likely)
  2409  		return
  2410  	}
  2411  	c := s.expr(cond)
  2412  	b := s.endBlock()
  2413  	b.Kind = ssa.BlockIf
  2414  	b.SetControl(c)
  2415  	b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
  2416  	b.AddEdgeTo(yes)
  2417  	b.AddEdgeTo(no)
  2418  }
  2419  
  2420  type skipMask uint8
  2421  
  2422  const (
  2423  	skipPtr skipMask = 1 << iota
  2424  	skipLen
  2425  	skipCap
  2426  )
  2427  
  2428  // assign does left = right.
  2429  // Right has already been evaluated to ssa, left has not.
  2430  // If deref is true, then we do left = *right instead (and right has already been nil-checked).
  2431  // If deref is true and right == nil, just do left = 0.
  2432  // skip indicates assignments (at the top level) that can be avoided.
  2433  func (s *state) assign(left *Node, right *ssa.Value, deref bool, skip skipMask) {
  2434  	if left.Op == ONAME && isblank(left) {
  2435  		return
  2436  	}
  2437  	t := left.Type
  2438  	dowidth(t)
  2439  	if s.canSSA(left) {
  2440  		if deref {
  2441  			s.Fatalf("can SSA LHS %v but not RHS %s", left, right)
  2442  		}
  2443  		if left.Op == ODOT {
  2444  			// We're assigning to a field of an ssa-able value.
  2445  			// We need to build a new structure with the new value for the
  2446  			// field we're assigning and the old values for the other fields.
  2447  			// For instance:
  2448  			//   type T struct {a, b, c int}
  2449  			//   var T x
  2450  			//   x.b = 5
  2451  			// For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}
  2452  
  2453  			// Grab information about the structure type.
  2454  			t := left.Left.Type
  2455  			nf := t.NumFields()
  2456  			idx := fieldIdx(left)
  2457  
  2458  			// Grab old value of structure.
  2459  			old := s.expr(left.Left)
  2460  
  2461  			// Make new structure.
  2462  			new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)
  2463  
  2464  			// Add fields as args.
  2465  			for i := 0; i < nf; i++ {
  2466  				if i == idx {
  2467  					new.AddArg(right)
  2468  				} else {
  2469  					new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old))
  2470  				}
  2471  			}
  2472  
  2473  			// Recursively assign the new value we've made to the base of the dot op.
  2474  			s.assign(left.Left, new, false, 0)
  2475  			// TODO: do we need to update named values here?
  2476  			return
  2477  		}
  2478  		if left.Op == OINDEX && left.Left.Type.IsArray() {
  2479  			// We're assigning to an element of an ssa-able array.
  2480  			// a[i] = v
  2481  			t := left.Left.Type
  2482  			n := t.NumElem()
  2483  
  2484  			i := s.expr(left.Right) // index
  2485  			if n == 0 {
  2486  				// The bounds check must fail.  Might as well
  2487  				// ignore the actual index and just use zeros.
  2488  				z := s.constInt(types.Types[TINT], 0)
  2489  				s.boundsCheck(z, z)
  2490  				return
  2491  			}
  2492  			if n != 1 {
  2493  				s.Fatalf("assigning to non-1-length array")
  2494  			}
  2495  			// Rewrite to a = [1]{v}
  2496  			i = s.extendIndex(i, panicindex)
  2497  			s.boundsCheck(i, s.constInt(types.Types[TINT], 1))
  2498  			v := s.newValue1(ssa.OpArrayMake1, t, right)
  2499  			s.assign(left.Left, v, false, 0)
  2500  			return
  2501  		}
  2502  		// Update variable assignment.
  2503  		s.vars[left] = right
  2504  		s.addNamedValue(left, right)
  2505  		return
  2506  	}
  2507  	// Left is not ssa-able. Compute its address.
  2508  	addr := s.addr(left, false)
  2509  	if left.Op == ONAME && left.Class() != PEXTERN && skip == 0 {
  2510  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, left, s.mem())
  2511  	}
  2512  	if isReflectHeaderDataField(left) {
  2513  		// Package unsafe's documentation says storing pointers into
  2514  		// reflect.SliceHeader and reflect.StringHeader's Data fields
  2515  		// is valid, even though they have type uintptr (#19168).
  2516  		// Mark it pointer type to signal the writebarrier pass to
  2517  		// insert a write barrier.
  2518  		t = types.Types[TUNSAFEPTR]
  2519  	}
  2520  	if deref {
  2521  		// Treat as a mem->mem move.
  2522  		var store *ssa.Value
  2523  		if right == nil {
  2524  			store = s.newValue2I(ssa.OpZero, types.TypeMem, t.Size(), addr, s.mem())
  2525  		} else {
  2526  			store = s.newValue3I(ssa.OpMove, types.TypeMem, t.Size(), addr, right, s.mem())
  2527  		}
  2528  		store.Aux = t
  2529  		s.vars[&memVar] = store
  2530  		return
  2531  	}
  2532  	// Treat as a store.
  2533  	s.storeType(t, addr, right, skip)
  2534  }
  2535  
  2536  // zeroVal returns the zero value for type t.
  2537  func (s *state) zeroVal(t *types.Type) *ssa.Value {
  2538  	switch {
  2539  	case t.IsInteger():
  2540  		switch t.Size() {
  2541  		case 1:
  2542  			return s.constInt8(t, 0)
  2543  		case 2:
  2544  			return s.constInt16(t, 0)
  2545  		case 4:
  2546  			return s.constInt32(t, 0)
  2547  		case 8:
  2548  			return s.constInt64(t, 0)
  2549  		default:
  2550  			s.Fatalf("bad sized integer type %v", t)
  2551  		}
  2552  	case t.IsFloat():
  2553  		switch t.Size() {
  2554  		case 4:
  2555  			return s.constFloat32(t, 0)
  2556  		case 8:
  2557  			return s.constFloat64(t, 0)
  2558  		default:
  2559  			s.Fatalf("bad sized float type %v", t)
  2560  		}
  2561  	case t.IsComplex():
  2562  		switch t.Size() {
  2563  		case 8:
  2564  			z := s.constFloat32(types.Types[TFLOAT32], 0)
  2565  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2566  		case 16:
  2567  			z := s.constFloat64(types.Types[TFLOAT64], 0)
  2568  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2569  		default:
  2570  			s.Fatalf("bad sized complex type %v", t)
  2571  		}
  2572  
  2573  	case t.IsString():
  2574  		return s.constEmptyString(t)
  2575  	case t.IsPtrShaped():
  2576  		return s.constNil(t)
  2577  	case t.IsBoolean():
  2578  		return s.constBool(false)
  2579  	case t.IsInterface():
  2580  		return s.constInterface(t)
  2581  	case t.IsSlice():
  2582  		return s.constSlice(t)
  2583  	case t.IsStruct():
  2584  		n := t.NumFields()
  2585  		v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
  2586  		for i := 0; i < n; i++ {
  2587  			v.AddArg(s.zeroVal(t.FieldType(i)))
  2588  		}
  2589  		return v
  2590  	case t.IsArray():
  2591  		switch t.NumElem() {
  2592  		case 0:
  2593  			return s.entryNewValue0(ssa.OpArrayMake0, t)
  2594  		case 1:
  2595  			return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem()))
  2596  		}
  2597  	}
  2598  	s.Fatalf("zero for type %v not implemented", t)
  2599  	return nil
  2600  }
  2601  
  2602  type callKind int8
  2603  
  2604  const (
  2605  	callNormal callKind = iota
  2606  	callDefer
  2607  	callGo
  2608  	callGosecure
  2609  )
  2610  
  2611  type sfRtCallDef struct {
  2612  	rtfn  *obj.LSym
  2613  	rtype types.EType
  2614  }
  2615  
  2616  var softFloatOps map[ssa.Op]sfRtCallDef
  2617  
  2618  func softfloatInit() {
  2619  	// Some of these operations get transformed by sfcall.
  2620  	softFloatOps = map[ssa.Op]sfRtCallDef{
  2621  		ssa.OpAdd32F: sfRtCallDef{sysfunc("fadd32"), TFLOAT32},
  2622  		ssa.OpAdd64F: sfRtCallDef{sysfunc("fadd64"), TFLOAT64},
  2623  		ssa.OpSub32F: sfRtCallDef{sysfunc("fadd32"), TFLOAT32},
  2624  		ssa.OpSub64F: sfRtCallDef{sysfunc("fadd64"), TFLOAT64},
  2625  		ssa.OpMul32F: sfRtCallDef{sysfunc("fmul32"), TFLOAT32},
  2626  		ssa.OpMul64F: sfRtCallDef{sysfunc("fmul64"), TFLOAT64},
  2627  		ssa.OpDiv32F: sfRtCallDef{sysfunc("fdiv32"), TFLOAT32},
  2628  		ssa.OpDiv64F: sfRtCallDef{sysfunc("fdiv64"), TFLOAT64},
  2629  
  2630  		ssa.OpEq64F:      sfRtCallDef{sysfunc("feq64"), TBOOL},
  2631  		ssa.OpEq32F:      sfRtCallDef{sysfunc("feq32"), TBOOL},
  2632  		ssa.OpNeq64F:     sfRtCallDef{sysfunc("feq64"), TBOOL},
  2633  		ssa.OpNeq32F:     sfRtCallDef{sysfunc("feq32"), TBOOL},
  2634  		ssa.OpLess64F:    sfRtCallDef{sysfunc("fgt64"), TBOOL},
  2635  		ssa.OpLess32F:    sfRtCallDef{sysfunc("fgt32"), TBOOL},
  2636  		ssa.OpGreater64F: sfRtCallDef{sysfunc("fgt64"), TBOOL},
  2637  		ssa.OpGreater32F: sfRtCallDef{sysfunc("fgt32"), TBOOL},
  2638  		ssa.OpLeq64F:     sfRtCallDef{sysfunc("fge64"), TBOOL},
  2639  		ssa.OpLeq32F:     sfRtCallDef{sysfunc("fge32"), TBOOL},
  2640  		ssa.OpGeq64F:     sfRtCallDef{sysfunc("fge64"), TBOOL},
  2641  		ssa.OpGeq32F:     sfRtCallDef{sysfunc("fge32"), TBOOL},
  2642  
  2643  		ssa.OpCvt32to32F:  sfRtCallDef{sysfunc("fint32to32"), TFLOAT32},
  2644  		ssa.OpCvt32Fto32:  sfRtCallDef{sysfunc("f32toint32"), TINT32},
  2645  		ssa.OpCvt64to32F:  sfRtCallDef{sysfunc("fint64to32"), TFLOAT32},
  2646  		ssa.OpCvt32Fto64:  sfRtCallDef{sysfunc("f32toint64"), TINT64},
  2647  		ssa.OpCvt64Uto32F: sfRtCallDef{sysfunc("fuint64to32"), TFLOAT32},
  2648  		ssa.OpCvt32Fto64U: sfRtCallDef{sysfunc("f32touint64"), TUINT64},
  2649  		ssa.OpCvt32to64F:  sfRtCallDef{sysfunc("fint32to64"), TFLOAT64},
  2650  		ssa.OpCvt64Fto32:  sfRtCallDef{sysfunc("f64toint32"), TINT32},
  2651  		ssa.OpCvt64to64F:  sfRtCallDef{sysfunc("fint64to64"), TFLOAT64},
  2652  		ssa.OpCvt64Fto64:  sfRtCallDef{sysfunc("f64toint64"), TINT64},
  2653  		ssa.OpCvt64Uto64F: sfRtCallDef{sysfunc("fuint64to64"), TFLOAT64},
  2654  		ssa.OpCvt64Fto64U: sfRtCallDef{sysfunc("f64touint64"), TUINT64},
  2655  		ssa.OpCvt32Fto64F: sfRtCallDef{sysfunc("f32to64"), TFLOAT64},
  2656  		ssa.OpCvt64Fto32F: sfRtCallDef{sysfunc("f64to32"), TFLOAT32},
  2657  	}
  2658  }
  2659  
  2660  // TODO: do not emit sfcall if operation can be optimized to constant in later
  2661  // opt phase
  2662  func (s *state) sfcall(op ssa.Op, args ...*ssa.Value) (*ssa.Value, bool) {
  2663  	if callDef, ok := softFloatOps[op]; ok {
  2664  		switch op {
  2665  		case ssa.OpLess32F,
  2666  			ssa.OpLess64F,
  2667  			ssa.OpLeq32F,
  2668  			ssa.OpLeq64F:
  2669  			args[0], args[1] = args[1], args[0]
  2670  		case ssa.OpSub32F,
  2671  			ssa.OpSub64F:
  2672  			args[1] = s.newValue1(s.ssaOp(OMINUS, types.Types[callDef.rtype]), args[1].Type, args[1])
  2673  		}
  2674  
  2675  		result := s.rtcall(callDef.rtfn, true, []*types.Type{types.Types[callDef.rtype]}, args...)[0]
  2676  		if op == ssa.OpNeq32F || op == ssa.OpNeq64F {
  2677  			result = s.newValue1(ssa.OpNot, result.Type, result)
  2678  		}
  2679  		return result, true
  2680  	}
  2681  	return nil, false
  2682  }
  2683  
  2684  var intrinsics map[intrinsicKey]intrinsicBuilder
  2685  
  2686  // An intrinsicBuilder converts a call node n into an ssa value that
  2687  // implements that call as an intrinsic. args is a list of arguments to the func.
  2688  type intrinsicBuilder func(s *state, n *Node, args []*ssa.Value) *ssa.Value
  2689  
  2690  type intrinsicKey struct {
  2691  	arch *sys.Arch
  2692  	pkg  string
  2693  	fn   string
  2694  }
  2695  
  2696  func init() {
  2697  	intrinsics = map[intrinsicKey]intrinsicBuilder{}
  2698  
  2699  	var all []*sys.Arch
  2700  	var p4 []*sys.Arch
  2701  	var p8 []*sys.Arch
  2702  	for _, a := range sys.Archs {
  2703  		all = append(all, a)
  2704  		if a.PtrSize == 4 {
  2705  			p4 = append(p4, a)
  2706  		} else {
  2707  			p8 = append(p8, a)
  2708  		}
  2709  	}
  2710  
  2711  	// add adds the intrinsic b for pkg.fn for the given list of architectures.
  2712  	add := func(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) {
  2713  		for _, a := range archs {
  2714  			intrinsics[intrinsicKey{a, pkg, fn}] = b
  2715  		}
  2716  	}
  2717  	// addF does the same as add but operates on architecture families.
  2718  	addF := func(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) {
  2719  		m := 0
  2720  		for _, f := range archFamilies {
  2721  			if f >= 32 {
  2722  				panic("too many architecture families")
  2723  			}
  2724  			m |= 1 << uint(f)
  2725  		}
  2726  		for _, a := range all {
  2727  			if m>>uint(a.Family)&1 != 0 {
  2728  				intrinsics[intrinsicKey{a, pkg, fn}] = b
  2729  			}
  2730  		}
  2731  	}
  2732  	// alias defines pkg.fn = pkg2.fn2 for all architectures in archs for which pkg2.fn2 exists.
  2733  	alias := func(pkg, fn, pkg2, fn2 string, archs ...*sys.Arch) {
  2734  		for _, a := range archs {
  2735  			if b, ok := intrinsics[intrinsicKey{a, pkg2, fn2}]; ok {
  2736  				intrinsics[intrinsicKey{a, pkg, fn}] = b
  2737  			}
  2738  		}
  2739  	}
  2740  
  2741  	/******** runtime ********/
  2742  	if !instrumenting {
  2743  		add("runtime", "slicebytetostringtmp",
  2744  			func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2745  				// Compiler frontend optimizations emit OARRAYBYTESTRTMP nodes
  2746  				// for the backend instead of slicebytetostringtmp calls
  2747  				// when not instrumenting.
  2748  				slice := args[0]
  2749  				ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice)
  2750  				len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  2751  				return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
  2752  			},
  2753  			all...)
  2754  	}
  2755  	add("runtime", "KeepAlive",
  2756  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2757  			data := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, args[0])
  2758  			s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, types.TypeMem, data, s.mem())
  2759  			return nil
  2760  		},
  2761  		all...)
  2762  	add("runtime", "getclosureptr",
  2763  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2764  			return s.newValue0(ssa.OpGetClosurePtr, s.f.Config.Types.Uintptr)
  2765  		},
  2766  		all...)
  2767  
  2768  	addF("runtime", "getcallerpc",
  2769  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2770  			return s.newValue0(ssa.OpGetCallerPC, s.f.Config.Types.Uintptr)
  2771  		}, sys.AMD64, sys.I386)
  2772  
  2773  	add("runtime", "getcallersp",
  2774  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2775  			return s.newValue0(ssa.OpGetCallerSP, s.f.Config.Types.Uintptr)
  2776  		},
  2777  		all...)
  2778  
  2779  	/******** runtime/internal/sys ********/
  2780  	addF("runtime/internal/sys", "Ctz32",
  2781  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2782  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0])
  2783  		},
  2784  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2785  	addF("runtime/internal/sys", "Ctz64",
  2786  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2787  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0])
  2788  		},
  2789  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2790  	addF("runtime/internal/sys", "Bswap32",
  2791  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2792  			return s.newValue1(ssa.OpBswap32, types.Types[TUINT32], args[0])
  2793  		},
  2794  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X)
  2795  	addF("runtime/internal/sys", "Bswap64",
  2796  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2797  			return s.newValue1(ssa.OpBswap64, types.Types[TUINT64], args[0])
  2798  		},
  2799  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X)
  2800  
  2801  	/******** runtime/internal/atomic ********/
  2802  	addF("runtime/internal/atomic", "Load",
  2803  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2804  			v := s.newValue2(ssa.OpAtomicLoad32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], s.mem())
  2805  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2806  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2807  		},
  2808  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2809  	addF("runtime/internal/atomic", "Load64",
  2810  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2811  			v := s.newValue2(ssa.OpAtomicLoad64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], s.mem())
  2812  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2813  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  2814  		},
  2815  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  2816  	addF("runtime/internal/atomic", "Loadp",
  2817  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2818  			v := s.newValue2(ssa.OpAtomicLoadPtr, types.NewTuple(s.f.Config.Types.BytePtr, types.TypeMem), args[0], s.mem())
  2819  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2820  			return s.newValue1(ssa.OpSelect0, s.f.Config.Types.BytePtr, v)
  2821  		},
  2822  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2823  
  2824  	addF("runtime/internal/atomic", "Store",
  2825  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2826  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore32, types.TypeMem, args[0], args[1], s.mem())
  2827  			return nil
  2828  		},
  2829  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2830  	addF("runtime/internal/atomic", "Store64",
  2831  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2832  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore64, types.TypeMem, args[0], args[1], s.mem())
  2833  			return nil
  2834  		},
  2835  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  2836  	addF("runtime/internal/atomic", "StorepNoWB",
  2837  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2838  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, types.TypeMem, args[0], args[1], s.mem())
  2839  			return nil
  2840  		},
  2841  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64)
  2842  
  2843  	addF("runtime/internal/atomic", "Xchg",
  2844  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2845  			v := s.newValue3(ssa.OpAtomicExchange32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem())
  2846  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2847  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2848  		},
  2849  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2850  	addF("runtime/internal/atomic", "Xchg64",
  2851  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2852  			v := s.newValue3(ssa.OpAtomicExchange64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem())
  2853  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2854  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  2855  		},
  2856  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  2857  
  2858  	addF("runtime/internal/atomic", "Xadd",
  2859  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2860  			v := s.newValue3(ssa.OpAtomicAdd32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem())
  2861  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2862  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2863  		},
  2864  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2865  	addF("runtime/internal/atomic", "Xadd64",
  2866  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2867  			v := s.newValue3(ssa.OpAtomicAdd64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem())
  2868  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2869  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  2870  		},
  2871  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  2872  
  2873  	addF("runtime/internal/atomic", "Cas",
  2874  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2875  			v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
  2876  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2877  			return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v)
  2878  		},
  2879  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2880  	addF("runtime/internal/atomic", "Cas64",
  2881  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2882  			v := s.newValue4(ssa.OpAtomicCompareAndSwap64, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
  2883  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2884  			return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v)
  2885  		},
  2886  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  2887  
  2888  	addF("runtime/internal/atomic", "And8",
  2889  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2890  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicAnd8, types.TypeMem, args[0], args[1], s.mem())
  2891  			return nil
  2892  		},
  2893  		sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64)
  2894  	addF("runtime/internal/atomic", "Or8",
  2895  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2896  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicOr8, types.TypeMem, args[0], args[1], s.mem())
  2897  			return nil
  2898  		},
  2899  		sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64)
  2900  
  2901  	alias("runtime/internal/atomic", "Loadint64", "runtime/internal/atomic", "Load64", all...)
  2902  	alias("runtime/internal/atomic", "Xaddint64", "runtime/internal/atomic", "Xadd64", all...)
  2903  	alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load", p4...)
  2904  	alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load64", p8...)
  2905  	alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load", p4...)
  2906  	alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load64", p8...)
  2907  	alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store", p4...)
  2908  	alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store64", p8...)
  2909  	alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg", p4...)
  2910  	alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg64", p8...)
  2911  	alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd", p4...)
  2912  	alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd64", p8...)
  2913  	alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas", p4...)
  2914  	alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas64", p8...)
  2915  	alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas", p4...)
  2916  	alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas64", p8...)
  2917  
  2918  	/******** math ********/
  2919  	addF("math", "Sqrt",
  2920  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2921  			return s.newValue1(ssa.OpSqrt, types.Types[TFLOAT64], args[0])
  2922  		},
  2923  		sys.AMD64, sys.ARM, sys.ARM64, sys.MIPS, sys.PPC64, sys.S390X)
  2924  	addF("math", "Trunc",
  2925  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2926  			return s.newValue1(ssa.OpTrunc, types.Types[TFLOAT64], args[0])
  2927  		},
  2928  		sys.PPC64, sys.S390X)
  2929  	addF("math", "Ceil",
  2930  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2931  			return s.newValue1(ssa.OpCeil, types.Types[TFLOAT64], args[0])
  2932  		},
  2933  		sys.PPC64, sys.S390X)
  2934  	addF("math", "Floor",
  2935  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2936  			return s.newValue1(ssa.OpFloor, types.Types[TFLOAT64], args[0])
  2937  		},
  2938  		sys.PPC64, sys.S390X)
  2939  	addF("math", "Round",
  2940  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2941  			return s.newValue1(ssa.OpRound, types.Types[TFLOAT64], args[0])
  2942  		},
  2943  		sys.S390X)
  2944  	addF("math", "RoundToEven",
  2945  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2946  			return s.newValue1(ssa.OpRoundToEven, types.Types[TFLOAT64], args[0])
  2947  		},
  2948  		sys.S390X)
  2949  	addF("math", "Abs",
  2950  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2951  			return s.newValue1(ssa.OpAbs, types.Types[TFLOAT64], args[0])
  2952  		},
  2953  		sys.PPC64)
  2954  	addF("math", "Copysign",
  2955  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2956  			return s.newValue2(ssa.OpCopysign, types.Types[TFLOAT64], args[0], args[1])
  2957  		},
  2958  		sys.PPC64)
  2959  
  2960  	makeRoundAMD64 := func(op ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2961  		return func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2962  			aux := syslook("support_sse41").Sym.Linksym()
  2963  			addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), aux, s.sb)
  2964  			v := s.newValue2(ssa.OpLoad, types.Types[TBOOL], addr, s.mem())
  2965  			b := s.endBlock()
  2966  			b.Kind = ssa.BlockIf
  2967  			b.SetControl(v)
  2968  			bTrue := s.f.NewBlock(ssa.BlockPlain)
  2969  			bFalse := s.f.NewBlock(ssa.BlockPlain)
  2970  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  2971  			b.AddEdgeTo(bTrue)
  2972  			b.AddEdgeTo(bFalse)
  2973  			b.Likely = ssa.BranchLikely // most machines have sse4.1 nowadays
  2974  
  2975  			// We have the intrinsic - use it directly.
  2976  			s.startBlock(bTrue)
  2977  			s.vars[n] = s.newValue1(op, types.Types[TFLOAT64], args[0])
  2978  			s.endBlock().AddEdgeTo(bEnd)
  2979  
  2980  			// Call the pure Go version.
  2981  			s.startBlock(bFalse)
  2982  			a := s.call(n, callNormal)
  2983  			s.vars[n] = s.newValue2(ssa.OpLoad, types.Types[TFLOAT64], a, s.mem())
  2984  			s.endBlock().AddEdgeTo(bEnd)
  2985  
  2986  			// Merge results.
  2987  			s.startBlock(bEnd)
  2988  			return s.variable(n, types.Types[TFLOAT64])
  2989  		}
  2990  	}
  2991  	addF("math", "RoundToEven",
  2992  		makeRoundAMD64(ssa.OpRoundToEven),
  2993  		sys.AMD64)
  2994  	addF("math", "Floor",
  2995  		makeRoundAMD64(ssa.OpFloor),
  2996  		sys.AMD64)
  2997  	addF("math", "Ceil",
  2998  		makeRoundAMD64(ssa.OpCeil),
  2999  		sys.AMD64)
  3000  	addF("math", "Trunc",
  3001  		makeRoundAMD64(ssa.OpTrunc),
  3002  		sys.AMD64)
  3003  
  3004  	/******** math/bits ********/
  3005  	addF("math/bits", "TrailingZeros64",
  3006  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3007  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0])
  3008  		},
  3009  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  3010  	addF("math/bits", "TrailingZeros32",
  3011  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3012  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0])
  3013  		},
  3014  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  3015  	addF("math/bits", "TrailingZeros16",
  3016  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3017  			x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0])
  3018  			c := s.constInt32(types.Types[TUINT32], 1<<16)
  3019  			y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c)
  3020  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], y)
  3021  		},
  3022  		sys.ARM, sys.MIPS)
  3023  	addF("math/bits", "TrailingZeros16",
  3024  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3025  			x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0])
  3026  			c := s.constInt64(types.Types[TUINT64], 1<<16)
  3027  			y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c)
  3028  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], y)
  3029  		},
  3030  		sys.AMD64, sys.ARM64, sys.S390X)
  3031  	addF("math/bits", "TrailingZeros8",
  3032  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3033  			x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0])
  3034  			c := s.constInt32(types.Types[TUINT32], 1<<8)
  3035  			y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c)
  3036  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], y)
  3037  		},
  3038  		sys.ARM, sys.MIPS)
  3039  	addF("math/bits", "TrailingZeros8",
  3040  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3041  			x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0])
  3042  			c := s.constInt64(types.Types[TUINT64], 1<<8)
  3043  			y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c)
  3044  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], y)
  3045  		},
  3046  		sys.AMD64, sys.ARM64, sys.S390X)
  3047  	alias("math/bits", "ReverseBytes64", "runtime/internal/sys", "Bswap64", all...)
  3048  	alias("math/bits", "ReverseBytes32", "runtime/internal/sys", "Bswap32", all...)
  3049  	// ReverseBytes inlines correctly, no need to intrinsify it.
  3050  	// ReverseBytes16 lowers to a rotate, no need for anything special here.
  3051  	addF("math/bits", "Len64",
  3052  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3053  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0])
  3054  		},
  3055  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  3056  	addF("math/bits", "Len32",
  3057  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3058  			if s.config.PtrSize == 4 {
  3059  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0])
  3060  			}
  3061  			x := s.newValue1(ssa.OpZeroExt32to64, types.Types[TUINT64], args[0])
  3062  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  3063  		},
  3064  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  3065  	addF("math/bits", "Len16",
  3066  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3067  			if s.config.PtrSize == 4 {
  3068  				x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0])
  3069  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x)
  3070  			}
  3071  			x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0])
  3072  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  3073  		},
  3074  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  3075  	// Note: disabled on AMD64 because the Go code is faster!
  3076  	addF("math/bits", "Len8",
  3077  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3078  			if s.config.PtrSize == 4 {
  3079  				x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0])
  3080  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x)
  3081  			}
  3082  			x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0])
  3083  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  3084  		},
  3085  		sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  3086  
  3087  	addF("math/bits", "Len",
  3088  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3089  			if s.config.PtrSize == 4 {
  3090  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0])
  3091  			}
  3092  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0])
  3093  		},
  3094  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  3095  	// LeadingZeros is handled because it trivially calls Len.
  3096  	addF("math/bits", "Reverse64",
  3097  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3098  			return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0])
  3099  		},
  3100  		sys.ARM64)
  3101  	addF("math/bits", "Reverse32",
  3102  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3103  			return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0])
  3104  		},
  3105  		sys.ARM64)
  3106  	addF("math/bits", "Reverse16",
  3107  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3108  			return s.newValue1(ssa.OpBitRev16, types.Types[TINT], args[0])
  3109  		},
  3110  		sys.ARM64)
  3111  	addF("math/bits", "Reverse8",
  3112  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3113  			return s.newValue1(ssa.OpBitRev8, types.Types[TINT], args[0])
  3114  		},
  3115  		sys.ARM64)
  3116  	addF("math/bits", "Reverse",
  3117  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3118  			if s.config.PtrSize == 4 {
  3119  				return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0])
  3120  			}
  3121  			return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0])
  3122  		},
  3123  		sys.ARM64)
  3124  	makeOnesCountAMD64 := func(op64 ssa.Op, op32 ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3125  		return func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3126  			aux := syslook("support_popcnt").Sym.Linksym()
  3127  			addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), aux, s.sb)
  3128  			v := s.newValue2(ssa.OpLoad, types.Types[TBOOL], addr, s.mem())
  3129  			b := s.endBlock()
  3130  			b.Kind = ssa.BlockIf
  3131  			b.SetControl(v)
  3132  			bTrue := s.f.NewBlock(ssa.BlockPlain)
  3133  			bFalse := s.f.NewBlock(ssa.BlockPlain)
  3134  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  3135  			b.AddEdgeTo(bTrue)
  3136  			b.AddEdgeTo(bFalse)
  3137  			b.Likely = ssa.BranchLikely // most machines have popcnt nowadays
  3138  
  3139  			// We have the intrinsic - use it directly.
  3140  			s.startBlock(bTrue)
  3141  			op := op64
  3142  			if s.config.PtrSize == 4 {
  3143  				op = op32
  3144  			}
  3145  			s.vars[n] = s.newValue1(op, types.Types[TINT], args[0])
  3146  			s.endBlock().AddEdgeTo(bEnd)
  3147  
  3148  			// Call the pure Go version.
  3149  			s.startBlock(bFalse)
  3150  			a := s.call(n, callNormal)
  3151  			s.vars[n] = s.newValue2(ssa.OpLoad, types.Types[TINT], a, s.mem())
  3152  			s.endBlock().AddEdgeTo(bEnd)
  3153  
  3154  			// Merge results.
  3155  			s.startBlock(bEnd)
  3156  			return s.variable(n, types.Types[TINT])
  3157  		}
  3158  	}
  3159  	addF("math/bits", "OnesCount64",
  3160  		makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount64),
  3161  		sys.AMD64)
  3162  	addF("math/bits", "OnesCount64",
  3163  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3164  			return s.newValue1(ssa.OpPopCount64, types.Types[TINT], args[0])
  3165  		},
  3166  		sys.PPC64)
  3167  	addF("math/bits", "OnesCount32",
  3168  		makeOnesCountAMD64(ssa.OpPopCount32, ssa.OpPopCount32),
  3169  		sys.AMD64)
  3170  	addF("math/bits", "OnesCount32",
  3171  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3172  			return s.newValue1(ssa.OpPopCount32, types.Types[TINT], args[0])
  3173  		},
  3174  		sys.PPC64)
  3175  	addF("math/bits", "OnesCount16",
  3176  		makeOnesCountAMD64(ssa.OpPopCount16, ssa.OpPopCount16),
  3177  		sys.AMD64)
  3178  	// Note: no OnesCount8, the Go implementation is faster - just a table load.
  3179  	addF("math/bits", "OnesCount",
  3180  		makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount32),
  3181  		sys.AMD64)
  3182  
  3183  	/******** sync/atomic ********/
  3184  
  3185  	// Note: these are disabled by flag_race in findIntrinsic below.
  3186  	alias("sync/atomic", "LoadInt32", "runtime/internal/atomic", "Load", all...)
  3187  	alias("sync/atomic", "LoadInt64", "runtime/internal/atomic", "Load64", all...)
  3188  	alias("sync/atomic", "LoadPointer", "runtime/internal/atomic", "Loadp", all...)
  3189  	alias("sync/atomic", "LoadUint32", "runtime/internal/atomic", "Load", all...)
  3190  	alias("sync/atomic", "LoadUint64", "runtime/internal/atomic", "Load64", all...)
  3191  	alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load", p4...)
  3192  	alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load64", p8...)
  3193  
  3194  	alias("sync/atomic", "StoreInt32", "runtime/internal/atomic", "Store", all...)
  3195  	alias("sync/atomic", "StoreInt64", "runtime/internal/atomic", "Store64", all...)
  3196  	// Note: not StorePointer, that needs a write barrier.  Same below for {CompareAnd}Swap.
  3197  	alias("sync/atomic", "StoreUint32", "runtime/internal/atomic", "Store", all...)
  3198  	alias("sync/atomic", "StoreUint64", "runtime/internal/atomic", "Store64", all...)
  3199  	alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store", p4...)
  3200  	alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store64", p8...)
  3201  
  3202  	alias("sync/atomic", "SwapInt32", "runtime/internal/atomic", "Xchg", all...)
  3203  	alias("sync/atomic", "SwapInt64", "runtime/internal/atomic", "Xchg64", all...)
  3204  	alias("sync/atomic", "SwapUint32", "runtime/internal/atomic", "Xchg", all...)
  3205  	alias("sync/atomic", "SwapUint64", "runtime/internal/atomic", "Xchg64", all...)
  3206  	alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg", p4...)
  3207  	alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg64", p8...)
  3208  
  3209  	alias("sync/atomic", "CompareAndSwapInt32", "runtime/internal/atomic", "Cas", all...)
  3210  	alias("sync/atomic", "CompareAndSwapInt64", "runtime/internal/atomic", "Cas64", all...)
  3211  	alias("sync/atomic", "CompareAndSwapUint32", "runtime/internal/atomic", "Cas", all...)
  3212  	alias("sync/atomic", "CompareAndSwapUint64", "runtime/internal/atomic", "Cas64", all...)
  3213  	alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas", p4...)
  3214  	alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas64", p8...)
  3215  
  3216  	alias("sync/atomic", "AddInt32", "runtime/internal/atomic", "Xadd", all...)
  3217  	alias("sync/atomic", "AddInt64", "runtime/internal/atomic", "Xadd64", all...)
  3218  	alias("sync/atomic", "AddUint32", "runtime/internal/atomic", "Xadd", all...)
  3219  	alias("sync/atomic", "AddUint64", "runtime/internal/atomic", "Xadd64", all...)
  3220  	alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd", p4...)
  3221  	alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd64", p8...)
  3222  
  3223  	/******** math/big ********/
  3224  	add("math/big", "mulWW",
  3225  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3226  			return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1])
  3227  		},
  3228  		sys.ArchAMD64)
  3229  	add("math/big", "divWW",
  3230  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3231  			return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2])
  3232  		},
  3233  		sys.ArchAMD64)
  3234  }
  3235  
  3236  // findIntrinsic returns a function which builds the SSA equivalent of the
  3237  // function identified by the symbol sym.  If sym is not an intrinsic call, returns nil.
  3238  func findIntrinsic(sym *types.Sym) intrinsicBuilder {
  3239  	if ssa.IntrinsicsDisable {
  3240  		return nil
  3241  	}
  3242  	if sym == nil || sym.Pkg == nil {
  3243  		return nil
  3244  	}
  3245  	pkg := sym.Pkg.Path
  3246  	if sym.Pkg == localpkg {
  3247  		pkg = myimportpath
  3248  	}
  3249  	if flag_race && pkg == "sync/atomic" {
  3250  		// The race detector needs to be able to intercept these calls.
  3251  		// We can't intrinsify them.
  3252  		return nil
  3253  	}
  3254  	// Skip intrinsifying math functions (which may contain hard-float
  3255  	// instructions) when soft-float
  3256  	if thearch.SoftFloat && pkg == "math" {
  3257  		return nil
  3258  	}
  3259  
  3260  	fn := sym.Name
  3261  	return intrinsics[intrinsicKey{thearch.LinkArch.Arch, pkg, fn}]
  3262  }
  3263  
  3264  func isIntrinsicCall(n *Node) bool {
  3265  	if n == nil || n.Left == nil {
  3266  		return false
  3267  	}
  3268  	return findIntrinsic(n.Left.Sym) != nil
  3269  }
  3270  
  3271  // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation.
  3272  func (s *state) intrinsicCall(n *Node) *ssa.Value {
  3273  	v := findIntrinsic(n.Left.Sym)(s, n, s.intrinsicArgs(n))
  3274  	if ssa.IntrinsicsDebug > 0 {
  3275  		x := v
  3276  		if x == nil {
  3277  			x = s.mem()
  3278  		}
  3279  		if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 {
  3280  			x = x.Args[0]
  3281  		}
  3282  		Warnl(n.Pos, "intrinsic substitution for %v with %s", n.Left.Sym.Name, x.LongString())
  3283  	}
  3284  	return v
  3285  }
  3286  
  3287  type callArg struct {
  3288  	offset int64
  3289  	v      *ssa.Value
  3290  }
  3291  type byOffset []callArg
  3292  
  3293  func (x byOffset) Len() int      { return len(x) }
  3294  func (x byOffset) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
  3295  func (x byOffset) Less(i, j int) bool {
  3296  	return x[i].offset < x[j].offset
  3297  }
  3298  
  3299  // intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them.
  3300  func (s *state) intrinsicArgs(n *Node) []*ssa.Value {
  3301  	// This code is complicated because of how walk transforms calls. For a call node,
  3302  	// each entry in n.List is either an assignment to OINDREGSP which actually
  3303  	// stores an arg, or an assignment to a temporary which computes an arg
  3304  	// which is later assigned.
  3305  	// The args can also be out of order.
  3306  	// TODO: when walk goes away someday, this code can go away also.
  3307  	var args []callArg
  3308  	temps := map[*Node]*ssa.Value{}
  3309  	for _, a := range n.List.Slice() {
  3310  		if a.Op != OAS {
  3311  			s.Fatalf("non-assignment as a function argument %v", a.Op)
  3312  		}
  3313  		l, r := a.Left, a.Right
  3314  		switch l.Op {
  3315  		case ONAME:
  3316  			// Evaluate and store to "temporary".
  3317  			// Walk ensures these temporaries are dead outside of n.
  3318  			temps[l] = s.expr(r)
  3319  		case OINDREGSP:
  3320  			// Store a value to an argument slot.
  3321  			var v *ssa.Value
  3322  			if x, ok := temps[r]; ok {
  3323  				// This is a previously computed temporary.
  3324  				v = x
  3325  			} else {
  3326  				// This is an explicit value; evaluate it.
  3327  				v = s.expr(r)
  3328  			}
  3329  			args = append(args, callArg{l.Xoffset, v})
  3330  		default:
  3331  			s.Fatalf("function argument assignment target not allowed: %v", l.Op)
  3332  		}
  3333  	}
  3334  	sort.Sort(byOffset(args))
  3335  	res := make([]*ssa.Value, len(args))
  3336  	for i, a := range args {
  3337  		res[i] = a.v
  3338  	}
  3339  	return res
  3340  }
  3341  
  3342  // Calls the function n using the specified call type.
  3343  // Returns the address of the return value (or nil if none).
  3344  func (s *state) call(n *Node, k callKind) *ssa.Value {
  3345  	var sym *types.Sym     // target symbol (if static)
  3346  	var closure *ssa.Value // ptr to closure to run (if dynamic)
  3347  	var codeptr *ssa.Value // ptr to target code (if dynamic)
  3348  	var rcvr *ssa.Value    // receiver to set
  3349  	fn := n.Left
  3350  	switch n.Op {
  3351  	case OCALLFUNC:
  3352  		if k == callNormal && fn.Op == ONAME && fn.Class() == PFUNC {
  3353  			sym = fn.Sym
  3354  			break
  3355  		}
  3356  		closure = s.expr(fn)
  3357  	case OCALLMETH:
  3358  		if fn.Op != ODOTMETH {
  3359  			Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn)
  3360  		}
  3361  		if k == callNormal {
  3362  			sym = fn.Sym
  3363  			break
  3364  		}
  3365  		// Make a name n2 for the function.
  3366  		// fn.Sym might be sync.(*Mutex).Unlock.
  3367  		// Make a PFUNC node out of that, then evaluate it.
  3368  		// We get back an SSA value representing &sync.(*Mutex).Unlock·f.
  3369  		// We can then pass that to defer or go.
  3370  		n2 := newnamel(fn.Pos, fn.Sym)
  3371  		n2.Name.Curfn = s.curfn
  3372  		n2.SetClass(PFUNC)
  3373  		n2.Pos = fn.Pos
  3374  		n2.Type = types.Types[TUINT8] // dummy type for a static closure. Could use runtime.funcval if we had it.
  3375  		closure = s.expr(n2)
  3376  		// Note: receiver is already assigned in n.List, so we don't
  3377  		// want to set it here.
  3378  	case OCALLINTER:
  3379  		if fn.Op != ODOTINTER {
  3380  			Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op)
  3381  		}
  3382  		i := s.expr(fn.Left)
  3383  		itab := s.newValue1(ssa.OpITab, types.Types[TUINTPTR], i)
  3384  		s.nilCheck(itab)
  3385  		itabidx := fn.Xoffset + 2*int64(Widthptr) + 8 // offset of fun field in runtime.itab
  3386  		itab = s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.UintptrPtr, itabidx, itab)
  3387  		if k == callNormal {
  3388  			codeptr = s.newValue2(ssa.OpLoad, types.Types[TUINTPTR], itab, s.mem())
  3389  		} else {
  3390  			closure = itab
  3391  		}
  3392  		rcvr = s.newValue1(ssa.OpIData, types.Types[TUINTPTR], i)
  3393  	}
  3394  	dowidth(fn.Type)
  3395  	stksize := fn.Type.ArgWidth() // includes receiver
  3396  
  3397  	// Run all argument assignments. The arg slots have already
  3398  	// been offset by the appropriate amount (+2*widthptr for go/defer,
  3399  	// +widthptr for interface calls).
  3400  	// For OCALLMETH, the receiver is set in these statements.
  3401  	s.stmtList(n.List)
  3402  
  3403  	// Set receiver (for interface calls)
  3404  	if rcvr != nil {
  3405  		argStart := Ctxt.FixedFrameSize()
  3406  		if k != callNormal {
  3407  			argStart += int64(2 * Widthptr)
  3408  		}
  3409  		addr := s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart)
  3410  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINTPTR], addr, rcvr, s.mem())
  3411  	}
  3412  
  3413  	// Defer/go/gosecure args
  3414  	if k != callNormal {
  3415  		// Write argsize and closure (args to Newproc/Deferproc).
  3416  		argStart := Ctxt.FixedFrameSize()
  3417  		argsize := s.constInt32(types.Types[TUINT32], int32(stksize))
  3418  		addr := s.constOffPtrSP(s.f.Config.Types.UInt32Ptr, argStart)
  3419  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINT32], addr, argsize, s.mem())
  3420  		addr = s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart+int64(Widthptr))
  3421  		//TODO @aghosn here we can pass the shitty shit to gosecure. Write an ID instead?
  3422  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINTPTR], addr, closure, s.mem())
  3423  		stksize += 2 * int64(Widthptr)
  3424  	}
  3425  
  3426  	// call target
  3427  	var call *ssa.Value
  3428  	switch {
  3429  	case k == callDefer:
  3430  		call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, Deferproc, s.mem())
  3431  	case k == callGo:
  3432  		call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, Newproc, s.mem())
  3433  	case k == callGosecure:
  3434  		call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, Gosecload, s.mem())
  3435  		//call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, Newproc, s.mem())
  3436  	case closure != nil:
  3437  		codeptr = s.newValue2(ssa.OpLoad, types.Types[TUINTPTR], closure, s.mem())
  3438  		call = s.newValue3(ssa.OpClosureCall, types.TypeMem, codeptr, closure, s.mem())
  3439  	case codeptr != nil:
  3440  		call = s.newValue2(ssa.OpInterCall, types.TypeMem, codeptr, s.mem())
  3441  	case sym != nil:
  3442  		call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, sym.Linksym(), s.mem())
  3443  	default:
  3444  		Fatalf("bad call type %v %v", n.Op, n)
  3445  	}
  3446  	call.AuxInt = stksize // Call operations carry the argsize of the callee along with them
  3447  	s.vars[&memVar] = call
  3448  
  3449  	// Finish block for defers
  3450  	if k == callDefer {
  3451  		b := s.endBlock()
  3452  		b.Kind = ssa.BlockDefer
  3453  		b.SetControl(call)
  3454  		bNext := s.f.NewBlock(ssa.BlockPlain)
  3455  		b.AddEdgeTo(bNext)
  3456  		// Add recover edge to exit code.
  3457  		r := s.f.NewBlock(ssa.BlockPlain)
  3458  		s.startBlock(r)
  3459  		s.exit()
  3460  		b.AddEdgeTo(r)
  3461  		b.Likely = ssa.BranchLikely
  3462  		s.startBlock(bNext)
  3463  	}
  3464  
  3465  	res := n.Left.Type.Results()
  3466  	if res.NumFields() == 0 || k != callNormal {
  3467  		// call has no return value. Continue with the next statement.
  3468  		return nil
  3469  	}
  3470  	fp := res.Field(0)
  3471  	return s.constOffPtrSP(types.NewPtr(fp.Type), fp.Offset+Ctxt.FixedFrameSize())
  3472  }
  3473  
  3474  // etypesign returns the signed-ness of e, for integer/pointer etypes.
  3475  // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
  3476  func etypesign(e types.EType) int8 {
  3477  	switch e {
  3478  	case TINT8, TINT16, TINT32, TINT64, TINT:
  3479  		return -1
  3480  	case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR:
  3481  		return +1
  3482  	}
  3483  	return 0
  3484  }
  3485  
  3486  // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
  3487  // The value that the returned Value represents is guaranteed to be non-nil.
  3488  // If bounded is true then this address does not require a nil check for its operand
  3489  // even if that would otherwise be implied.
  3490  func (s *state) addr(n *Node, bounded bool) *ssa.Value {
  3491  	t := types.NewPtr(n.Type)
  3492  	switch n.Op {
  3493  	case ONAME:
  3494  		switch n.Class() {
  3495  		case PEXTERN:
  3496  			// global variable
  3497  			v := s.entryNewValue1A(ssa.OpAddr, t, n.Sym.Linksym(), s.sb)
  3498  			// TODO: Make OpAddr use AuxInt as well as Aux.
  3499  			if n.Xoffset != 0 {
  3500  				v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v)
  3501  			}
  3502  			return v
  3503  		case PPARAM:
  3504  			// parameter slot
  3505  			v := s.decladdrs[n]
  3506  			if v != nil {
  3507  				return v
  3508  			}
  3509  			if n == nodfp {
  3510  				// Special arg that points to the frame pointer (Used by ORECOVER).
  3511  				return s.entryNewValue1A(ssa.OpAddr, t, n, s.sp)
  3512  			}
  3513  			s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
  3514  			return nil
  3515  		case PAUTO:
  3516  			return s.newValue1A(ssa.OpAddr, t, n, s.sp)
  3517  		case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
  3518  			// ensure that we reuse symbols for out parameters so
  3519  			// that cse works on their addresses
  3520  			return s.newValue1A(ssa.OpAddr, t, n, s.sp)
  3521  		default:
  3522  			s.Fatalf("variable address class %v not implemented", n.Class())
  3523  			return nil
  3524  		}
  3525  	case OINDREGSP:
  3526  		// indirect off REGSP
  3527  		// used for storing/loading arguments/returns to/from callees
  3528  		return s.constOffPtrSP(t, n.Xoffset)
  3529  	case OINDEX:
  3530  		if n.Left.Type.IsSlice() {
  3531  			a := s.expr(n.Left)
  3532  			i := s.expr(n.Right)
  3533  			i = s.extendIndex(i, panicindex)
  3534  			len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], a)
  3535  			if !n.Bounded() {
  3536  				s.boundsCheck(i, len)
  3537  			}
  3538  			p := s.newValue1(ssa.OpSlicePtr, t, a)
  3539  			return s.newValue2(ssa.OpPtrIndex, t, p, i)
  3540  		} else { // array
  3541  			a := s.addr(n.Left, bounded)
  3542  			i := s.expr(n.Right)
  3543  			i = s.extendIndex(i, panicindex)
  3544  			len := s.constInt(types.Types[TINT], n.Left.Type.NumElem())
  3545  			if !n.Bounded() {
  3546  				s.boundsCheck(i, len)
  3547  			}
  3548  			return s.newValue2(ssa.OpPtrIndex, types.NewPtr(n.Left.Type.Elem()), a, i)
  3549  		}
  3550  	case OIND:
  3551  		return s.exprPtr(n.Left, bounded, n.Pos)
  3552  	case ODOT:
  3553  		p := s.addr(n.Left, bounded)
  3554  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p)
  3555  	case ODOTPTR:
  3556  		p := s.exprPtr(n.Left, bounded, n.Pos)
  3557  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p)
  3558  	case OCLOSUREVAR:
  3559  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset,
  3560  			s.entryNewValue0(ssa.OpGetClosurePtr, s.f.Config.Types.BytePtr))
  3561  	case OCONVNOP:
  3562  		addr := s.addr(n.Left, bounded)
  3563  		return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type
  3564  	case OCALLFUNC, OCALLINTER, OCALLMETH:
  3565  		return s.call(n, callNormal)
  3566  	case ODOTTYPE:
  3567  		v, _ := s.dottype(n, false)
  3568  		if v.Op != ssa.OpLoad {
  3569  			s.Fatalf("dottype of non-load")
  3570  		}
  3571  		if v.Args[1] != s.mem() {
  3572  			s.Fatalf("memory no longer live from dottype load")
  3573  		}
  3574  		return v.Args[0]
  3575  	default:
  3576  		s.Fatalf("unhandled addr %v", n.Op)
  3577  		return nil
  3578  	}
  3579  }
  3580  
  3581  // canSSA reports whether n is SSA-able.
  3582  // n must be an ONAME (or an ODOT sequence with an ONAME base).
  3583  func (s *state) canSSA(n *Node) bool {
  3584  	if Debug['N'] != 0 {
  3585  		return false
  3586  	}
  3587  	for n.Op == ODOT || (n.Op == OINDEX && n.Left.Type.IsArray()) {
  3588  		n = n.Left
  3589  	}
  3590  	if n.Op != ONAME {
  3591  		return false
  3592  	}
  3593  	if n.Addrtaken() {
  3594  		return false
  3595  	}
  3596  	if n.isParamHeapCopy() {
  3597  		return false
  3598  	}
  3599  	if n.Class() == PAUTOHEAP {
  3600  		Fatalf("canSSA of PAUTOHEAP %v", n)
  3601  	}
  3602  	switch n.Class() {
  3603  	case PEXTERN:
  3604  		return false
  3605  	case PPARAMOUT:
  3606  		if s.hasdefer {
  3607  			// TODO: handle this case? Named return values must be
  3608  			// in memory so that the deferred function can see them.
  3609  			// Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
  3610  			// Or maybe not, see issue 18860.  Even unnamed return values
  3611  			// must be written back so if a defer recovers, the caller can see them.
  3612  			return false
  3613  		}
  3614  		if s.cgoUnsafeArgs {
  3615  			// Cgo effectively takes the address of all result args,
  3616  			// but the compiler can't see that.
  3617  			return false
  3618  		}
  3619  	}
  3620  	if n.Class() == PPARAM && n.Sym != nil && n.Sym.Name == ".this" {
  3621  		// wrappers generated by genwrapper need to update
  3622  		// the .this pointer in place.
  3623  		// TODO: treat as a PPARMOUT?
  3624  		return false
  3625  	}
  3626  	return canSSAType(n.Type)
  3627  	// TODO: try to make more variables SSAable?
  3628  }
  3629  
  3630  // canSSA reports whether variables of type t are SSA-able.
  3631  func canSSAType(t *types.Type) bool {
  3632  	dowidth(t)
  3633  	if t.Width > int64(4*Widthptr) {
  3634  		// 4*Widthptr is an arbitrary constant. We want it
  3635  		// to be at least 3*Widthptr so slices can be registerized.
  3636  		// Too big and we'll introduce too much register pressure.
  3637  		return false
  3638  	}
  3639  	switch t.Etype {
  3640  	case TARRAY:
  3641  		// We can't do larger arrays because dynamic indexing is
  3642  		// not supported on SSA variables.
  3643  		// TODO: allow if all indexes are constant.
  3644  		if t.NumElem() <= 1 {
  3645  			return canSSAType(t.Elem())
  3646  		}
  3647  		return false
  3648  	case TSTRUCT:
  3649  		if t.NumFields() > ssa.MaxStruct {
  3650  			return false
  3651  		}
  3652  		for _, t1 := range t.Fields().Slice() {
  3653  			if !canSSAType(t1.Type) {
  3654  				return false
  3655  			}
  3656  		}
  3657  		return true
  3658  	default:
  3659  		return true
  3660  	}
  3661  }
  3662  
  3663  // exprPtr evaluates n to a pointer and nil-checks it.
  3664  func (s *state) exprPtr(n *Node, bounded bool, lineno src.XPos) *ssa.Value {
  3665  	p := s.expr(n)
  3666  	if bounded || n.NonNil() {
  3667  		if s.f.Frontend().Debug_checknil() && lineno.Line() > 1 {
  3668  			s.f.Warnl(lineno, "removed nil check")
  3669  		}
  3670  		return p
  3671  	}
  3672  	s.nilCheck(p)
  3673  	return p
  3674  }
  3675  
  3676  // nilCheck generates nil pointer checking code.
  3677  // Used only for automatically inserted nil checks,
  3678  // not for user code like 'x != nil'.
  3679  func (s *state) nilCheck(ptr *ssa.Value) {
  3680  	if disable_checknil != 0 || s.curfn.Func.NilCheckDisabled() {
  3681  		return
  3682  	}
  3683  	s.newValue2(ssa.OpNilCheck, types.TypeVoid, ptr, s.mem())
  3684  }
  3685  
  3686  // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not.
  3687  // Starts a new block on return.
  3688  // idx is already converted to full int width.
  3689  func (s *state) boundsCheck(idx, len *ssa.Value) {
  3690  	if Debug['B'] != 0 {
  3691  		return
  3692  	}
  3693  
  3694  	// bounds check
  3695  	cmp := s.newValue2(ssa.OpIsInBounds, types.Types[TBOOL], idx, len)
  3696  	s.check(cmp, panicindex)
  3697  }
  3698  
  3699  // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not.
  3700  // Starts a new block on return.
  3701  // idx and len are already converted to full int width.
  3702  func (s *state) sliceBoundsCheck(idx, len *ssa.Value) {
  3703  	if Debug['B'] != 0 {
  3704  		return
  3705  	}
  3706  
  3707  	// bounds check
  3708  	cmp := s.newValue2(ssa.OpIsSliceInBounds, types.Types[TBOOL], idx, len)
  3709  	s.check(cmp, panicslice)
  3710  }
  3711  
  3712  // If cmp (a bool) is false, panic using the given function.
  3713  func (s *state) check(cmp *ssa.Value, fn *obj.LSym) {
  3714  	b := s.endBlock()
  3715  	b.Kind = ssa.BlockIf
  3716  	b.SetControl(cmp)
  3717  	b.Likely = ssa.BranchLikely
  3718  	bNext := s.f.NewBlock(ssa.BlockPlain)
  3719  	line := s.peekPos()
  3720  	pos := Ctxt.PosTable.Pos(line)
  3721  	fl := funcLine{f: fn, base: pos.Base(), line: pos.Line()}
  3722  	bPanic := s.panics[fl]
  3723  	if bPanic == nil {
  3724  		bPanic = s.f.NewBlock(ssa.BlockPlain)
  3725  		s.panics[fl] = bPanic
  3726  		s.startBlock(bPanic)
  3727  		// The panic call takes/returns memory to ensure that the right
  3728  		// memory state is observed if the panic happens.
  3729  		s.rtcall(fn, false, nil)
  3730  	}
  3731  	b.AddEdgeTo(bNext)
  3732  	b.AddEdgeTo(bPanic)
  3733  	s.startBlock(bNext)
  3734  }
  3735  
  3736  func (s *state) intDivide(n *Node, a, b *ssa.Value) *ssa.Value {
  3737  	needcheck := true
  3738  	switch b.Op {
  3739  	case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64:
  3740  		if b.AuxInt != 0 {
  3741  			needcheck = false
  3742  		}
  3743  	}
  3744  	if needcheck {
  3745  		// do a size-appropriate check for zero
  3746  		cmp := s.newValue2(s.ssaOp(ONE, n.Type), types.Types[TBOOL], b, s.zeroVal(n.Type))
  3747  		s.check(cmp, panicdivide)
  3748  	}
  3749  	return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  3750  }
  3751  
  3752  // rtcall issues a call to the given runtime function fn with the listed args.
  3753  // Returns a slice of results of the given result types.
  3754  // The call is added to the end of the current block.
  3755  // If returns is false, the block is marked as an exit block.
  3756  func (s *state) rtcall(fn *obj.LSym, returns bool, results []*types.Type, args ...*ssa.Value) []*ssa.Value {
  3757  	// Write args to the stack
  3758  	off := Ctxt.FixedFrameSize()
  3759  	for _, arg := range args {
  3760  		t := arg.Type
  3761  		off = Rnd(off, t.Alignment())
  3762  		ptr := s.constOffPtrSP(t.PtrTo(), off)
  3763  		size := t.Size()
  3764  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, ptr, arg, s.mem())
  3765  		off += size
  3766  	}
  3767  	off = Rnd(off, int64(Widthreg))
  3768  
  3769  	// Issue call
  3770  	call := s.newValue1A(ssa.OpStaticCall, types.TypeMem, fn, s.mem())
  3771  	s.vars[&memVar] = call
  3772  
  3773  	if !returns {
  3774  		// Finish block
  3775  		b := s.endBlock()
  3776  		b.Kind = ssa.BlockExit
  3777  		b.SetControl(call)
  3778  		call.AuxInt = off - Ctxt.FixedFrameSize()
  3779  		if len(results) > 0 {
  3780  			Fatalf("panic call can't have results")
  3781  		}
  3782  		return nil
  3783  	}
  3784  
  3785  	// Load results
  3786  	res := make([]*ssa.Value, len(results))
  3787  	for i, t := range results {
  3788  		off = Rnd(off, t.Alignment())
  3789  		ptr := s.constOffPtrSP(types.NewPtr(t), off)
  3790  		res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem())
  3791  		off += t.Size()
  3792  	}
  3793  	off = Rnd(off, int64(Widthptr))
  3794  
  3795  	// Remember how much callee stack space we needed.
  3796  	call.AuxInt = off
  3797  
  3798  	return res
  3799  }
  3800  
  3801  // do *left = right for type t.
  3802  func (s *state) storeType(t *types.Type, left, right *ssa.Value, skip skipMask) {
  3803  	if skip == 0 && (!types.Haspointers(t) || ssa.IsStackAddr(left)) {
  3804  		// Known to not have write barrier. Store the whole type.
  3805  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, left, right, s.mem())
  3806  		return
  3807  	}
  3808  
  3809  	// store scalar fields first, so write barrier stores for
  3810  	// pointer fields can be grouped together, and scalar values
  3811  	// don't need to be live across the write barrier call.
  3812  	// TODO: if the writebarrier pass knows how to reorder stores,
  3813  	// we can do a single store here as long as skip==0.
  3814  	s.storeTypeScalars(t, left, right, skip)
  3815  	if skip&skipPtr == 0 && types.Haspointers(t) {
  3816  		s.storeTypePtrs(t, left, right)
  3817  	}
  3818  }
  3819  
  3820  // do *left = right for all scalar (non-pointer) parts of t.
  3821  func (s *state) storeTypeScalars(t *types.Type, left, right *ssa.Value, skip skipMask) {
  3822  	switch {
  3823  	case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
  3824  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, left, right, s.mem())
  3825  	case t.IsPtrShaped():
  3826  		// no scalar fields.
  3827  	case t.IsString():
  3828  		if skip&skipLen != 0 {
  3829  			return
  3830  		}
  3831  		len := s.newValue1(ssa.OpStringLen, types.Types[TINT], right)
  3832  		lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left)
  3833  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], lenAddr, len, s.mem())
  3834  	case t.IsSlice():
  3835  		if skip&skipLen == 0 {
  3836  			len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], right)
  3837  			lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left)
  3838  			s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], lenAddr, len, s.mem())
  3839  		}
  3840  		if skip&skipCap == 0 {
  3841  			cap := s.newValue1(ssa.OpSliceCap, types.Types[TINT], right)
  3842  			capAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, 2*s.config.PtrSize, left)
  3843  			s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], capAddr, cap, s.mem())
  3844  		}
  3845  	case t.IsInterface():
  3846  		// itab field doesn't need a write barrier (even though it is a pointer).
  3847  		itab := s.newValue1(ssa.OpITab, s.f.Config.Types.BytePtr, right)
  3848  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINTPTR], left, itab, s.mem())
  3849  	case t.IsStruct():
  3850  		n := t.NumFields()
  3851  		for i := 0; i < n; i++ {
  3852  			ft := t.FieldType(i)
  3853  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3854  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3855  			s.storeTypeScalars(ft, addr, val, 0)
  3856  		}
  3857  	case t.IsArray() && t.NumElem() == 0:
  3858  		// nothing
  3859  	case t.IsArray() && t.NumElem() == 1:
  3860  		s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0)
  3861  	default:
  3862  		s.Fatalf("bad write barrier type %v", t)
  3863  	}
  3864  }
  3865  
  3866  // do *left = right for all pointer parts of t.
  3867  func (s *state) storeTypePtrs(t *types.Type, left, right *ssa.Value) {
  3868  	switch {
  3869  	case t.IsPtrShaped():
  3870  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, left, right, s.mem())
  3871  	case t.IsString():
  3872  		ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, right)
  3873  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, s.f.Config.Types.BytePtr, left, ptr, s.mem())
  3874  	case t.IsSlice():
  3875  		elType := types.NewPtr(t.Elem())
  3876  		ptr := s.newValue1(ssa.OpSlicePtr, elType, right)
  3877  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, elType, left, ptr, s.mem())
  3878  	case t.IsInterface():
  3879  		// itab field is treated as a scalar.
  3880  		idata := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, right)
  3881  		idataAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.BytePtrPtr, s.config.PtrSize, left)
  3882  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, s.f.Config.Types.BytePtr, idataAddr, idata, s.mem())
  3883  	case t.IsStruct():
  3884  		n := t.NumFields()
  3885  		for i := 0; i < n; i++ {
  3886  			ft := t.FieldType(i)
  3887  			if !types.Haspointers(ft) {
  3888  				continue
  3889  			}
  3890  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3891  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3892  			s.storeTypePtrs(ft, addr, val)
  3893  		}
  3894  	case t.IsArray() && t.NumElem() == 0:
  3895  		// nothing
  3896  	case t.IsArray() && t.NumElem() == 1:
  3897  		s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right))
  3898  	default:
  3899  		s.Fatalf("bad write barrier type %v", t)
  3900  	}
  3901  }
  3902  
  3903  // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
  3904  // i,j,k may be nil, in which case they are set to their default value.
  3905  // t is a slice, ptr to array, or string type.
  3906  func (s *state) slice(t *types.Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) {
  3907  	var elemtype *types.Type
  3908  	var ptrtype *types.Type
  3909  	var ptr *ssa.Value
  3910  	var len *ssa.Value
  3911  	var cap *ssa.Value
  3912  	zero := s.constInt(types.Types[TINT], 0)
  3913  	switch {
  3914  	case t.IsSlice():
  3915  		elemtype = t.Elem()
  3916  		ptrtype = types.NewPtr(elemtype)
  3917  		ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v)
  3918  		len = s.newValue1(ssa.OpSliceLen, types.Types[TINT], v)
  3919  		cap = s.newValue1(ssa.OpSliceCap, types.Types[TINT], v)
  3920  	case t.IsString():
  3921  		elemtype = types.Types[TUINT8]
  3922  		ptrtype = types.NewPtr(elemtype)
  3923  		ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v)
  3924  		len = s.newValue1(ssa.OpStringLen, types.Types[TINT], v)
  3925  		cap = len
  3926  	case t.IsPtr():
  3927  		if !t.Elem().IsArray() {
  3928  			s.Fatalf("bad ptr to array in slice %v\n", t)
  3929  		}
  3930  		elemtype = t.Elem().Elem()
  3931  		ptrtype = types.NewPtr(elemtype)
  3932  		s.nilCheck(v)
  3933  		ptr = v
  3934  		len = s.constInt(types.Types[TINT], t.Elem().NumElem())
  3935  		cap = len
  3936  	default:
  3937  		s.Fatalf("bad type in slice %v\n", t)
  3938  	}
  3939  
  3940  	// Set default values
  3941  	if i == nil {
  3942  		i = zero
  3943  	}
  3944  	if j == nil {
  3945  		j = len
  3946  	}
  3947  	if k == nil {
  3948  		k = cap
  3949  	}
  3950  
  3951  	// Panic if slice indices are not in bounds.
  3952  	s.sliceBoundsCheck(i, j)
  3953  	if j != k {
  3954  		s.sliceBoundsCheck(j, k)
  3955  	}
  3956  	if k != cap {
  3957  		s.sliceBoundsCheck(k, cap)
  3958  	}
  3959  
  3960  	// Generate the following code assuming that indexes are in bounds.
  3961  	// The masking is to make sure that we don't generate a slice
  3962  	// that points to the next object in memory.
  3963  	// rlen = j - i
  3964  	// rcap = k - i
  3965  	// delta = i * elemsize
  3966  	// rptr = p + delta&mask(rcap)
  3967  	// result = (SliceMake rptr rlen rcap)
  3968  	// where mask(x) is 0 if x==0 and -1 if x>0.
  3969  	subOp := s.ssaOp(OSUB, types.Types[TINT])
  3970  	mulOp := s.ssaOp(OMUL, types.Types[TINT])
  3971  	andOp := s.ssaOp(OAND, types.Types[TINT])
  3972  	rlen := s.newValue2(subOp, types.Types[TINT], j, i)
  3973  	var rcap *ssa.Value
  3974  	switch {
  3975  	case t.IsString():
  3976  		// Capacity of the result is unimportant. However, we use
  3977  		// rcap to test if we've generated a zero-length slice.
  3978  		// Use length of strings for that.
  3979  		rcap = rlen
  3980  	case j == k:
  3981  		rcap = rlen
  3982  	default:
  3983  		rcap = s.newValue2(subOp, types.Types[TINT], k, i)
  3984  	}
  3985  
  3986  	var rptr *ssa.Value
  3987  	if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 {
  3988  		// No pointer arithmetic necessary.
  3989  		rptr = ptr
  3990  	} else {
  3991  		// delta = # of bytes to offset pointer by.
  3992  		delta := s.newValue2(mulOp, types.Types[TINT], i, s.constInt(types.Types[TINT], elemtype.Width))
  3993  		// If we're slicing to the point where the capacity is zero,
  3994  		// zero out the delta.
  3995  		mask := s.newValue1(ssa.OpSlicemask, types.Types[TINT], rcap)
  3996  		delta = s.newValue2(andOp, types.Types[TINT], delta, mask)
  3997  		// Compute rptr = ptr + delta
  3998  		rptr = s.newValue2(ssa.OpAddPtr, ptrtype, ptr, delta)
  3999  	}
  4000  
  4001  	return rptr, rlen, rcap
  4002  }
  4003  
  4004  type u642fcvtTab struct {
  4005  	geq, cvt2F, and, rsh, or, add ssa.Op
  4006  	one                           func(*state, *types.Type, int64) *ssa.Value
  4007  }
  4008  
  4009  var u64_f64 = u642fcvtTab{
  4010  	geq:   ssa.OpGeq64,
  4011  	cvt2F: ssa.OpCvt64to64F,
  4012  	and:   ssa.OpAnd64,
  4013  	rsh:   ssa.OpRsh64Ux64,
  4014  	or:    ssa.OpOr64,
  4015  	add:   ssa.OpAdd64F,
  4016  	one:   (*state).constInt64,
  4017  }
  4018  
  4019  var u64_f32 = u642fcvtTab{
  4020  	geq:   ssa.OpGeq64,
  4021  	cvt2F: ssa.OpCvt64to32F,
  4022  	and:   ssa.OpAnd64,
  4023  	rsh:   ssa.OpRsh64Ux64,
  4024  	or:    ssa.OpOr64,
  4025  	add:   ssa.OpAdd32F,
  4026  	one:   (*state).constInt64,
  4027  }
  4028  
  4029  func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4030  	return s.uint64Tofloat(&u64_f64, n, x, ft, tt)
  4031  }
  4032  
  4033  func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4034  	return s.uint64Tofloat(&u64_f32, n, x, ft, tt)
  4035  }
  4036  
  4037  func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4038  	// if x >= 0 {
  4039  	//    result = (floatY) x
  4040  	// } else {
  4041  	// 	  y = uintX(x) ; y = x & 1
  4042  	// 	  z = uintX(x) ; z = z >> 1
  4043  	// 	  z = z >> 1
  4044  	// 	  z = z | y
  4045  	// 	  result = floatY(z)
  4046  	// 	  result = result + result
  4047  	// }
  4048  	//
  4049  	// Code borrowed from old code generator.
  4050  	// What's going on: large 64-bit "unsigned" looks like
  4051  	// negative number to hardware's integer-to-float
  4052  	// conversion. However, because the mantissa is only
  4053  	// 63 bits, we don't need the LSB, so instead we do an
  4054  	// unsigned right shift (divide by two), convert, and
  4055  	// double. However, before we do that, we need to be
  4056  	// sure that we do not lose a "1" if that made the
  4057  	// difference in the resulting rounding. Therefore, we
  4058  	// preserve it, and OR (not ADD) it back in. The case
  4059  	// that matters is when the eleven discarded bits are
  4060  	// equal to 10000000001; that rounds up, and the 1 cannot
  4061  	// be lost else it would round down if the LSB of the
  4062  	// candidate mantissa is 0.
  4063  	cmp := s.newValue2(cvttab.geq, types.Types[TBOOL], x, s.zeroVal(ft))
  4064  	b := s.endBlock()
  4065  	b.Kind = ssa.BlockIf
  4066  	b.SetControl(cmp)
  4067  	b.Likely = ssa.BranchLikely
  4068  
  4069  	bThen := s.f.NewBlock(ssa.BlockPlain)
  4070  	bElse := s.f.NewBlock(ssa.BlockPlain)
  4071  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  4072  
  4073  	b.AddEdgeTo(bThen)
  4074  	s.startBlock(bThen)
  4075  	a0 := s.newValue1(cvttab.cvt2F, tt, x)
  4076  	s.vars[n] = a0
  4077  	s.endBlock()
  4078  	bThen.AddEdgeTo(bAfter)
  4079  
  4080  	b.AddEdgeTo(bElse)
  4081  	s.startBlock(bElse)
  4082  	one := cvttab.one(s, ft, 1)
  4083  	y := s.newValue2(cvttab.and, ft, x, one)
  4084  	z := s.newValue2(cvttab.rsh, ft, x, one)
  4085  	z = s.newValue2(cvttab.or, ft, z, y)
  4086  	a := s.newValue1(cvttab.cvt2F, tt, z)
  4087  	a1 := s.newValue2(cvttab.add, tt, a, a)
  4088  	s.vars[n] = a1
  4089  	s.endBlock()
  4090  	bElse.AddEdgeTo(bAfter)
  4091  
  4092  	s.startBlock(bAfter)
  4093  	return s.variable(n, n.Type)
  4094  }
  4095  
  4096  type u322fcvtTab struct {
  4097  	cvtI2F, cvtF2F ssa.Op
  4098  }
  4099  
  4100  var u32_f64 = u322fcvtTab{
  4101  	cvtI2F: ssa.OpCvt32to64F,
  4102  	cvtF2F: ssa.OpCopy,
  4103  }
  4104  
  4105  var u32_f32 = u322fcvtTab{
  4106  	cvtI2F: ssa.OpCvt32to32F,
  4107  	cvtF2F: ssa.OpCvt64Fto32F,
  4108  }
  4109  
  4110  func (s *state) uint32Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4111  	return s.uint32Tofloat(&u32_f64, n, x, ft, tt)
  4112  }
  4113  
  4114  func (s *state) uint32Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4115  	return s.uint32Tofloat(&u32_f32, n, x, ft, tt)
  4116  }
  4117  
  4118  func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4119  	// if x >= 0 {
  4120  	// 	result = floatY(x)
  4121  	// } else {
  4122  	// 	result = floatY(float64(x) + (1<<32))
  4123  	// }
  4124  	cmp := s.newValue2(ssa.OpGeq32, types.Types[TBOOL], x, s.zeroVal(ft))
  4125  	b := s.endBlock()
  4126  	b.Kind = ssa.BlockIf
  4127  	b.SetControl(cmp)
  4128  	b.Likely = ssa.BranchLikely
  4129  
  4130  	bThen := s.f.NewBlock(ssa.BlockPlain)
  4131  	bElse := s.f.NewBlock(ssa.BlockPlain)
  4132  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  4133  
  4134  	b.AddEdgeTo(bThen)
  4135  	s.startBlock(bThen)
  4136  	a0 := s.newValue1(cvttab.cvtI2F, tt, x)
  4137  	s.vars[n] = a0
  4138  	s.endBlock()
  4139  	bThen.AddEdgeTo(bAfter)
  4140  
  4141  	b.AddEdgeTo(bElse)
  4142  	s.startBlock(bElse)
  4143  	a1 := s.newValue1(ssa.OpCvt32to64F, types.Types[TFLOAT64], x)
  4144  	twoToThe32 := s.constFloat64(types.Types[TFLOAT64], float64(1<<32))
  4145  	a2 := s.newValue2(ssa.OpAdd64F, types.Types[TFLOAT64], a1, twoToThe32)
  4146  	a3 := s.newValue1(cvttab.cvtF2F, tt, a2)
  4147  
  4148  	s.vars[n] = a3
  4149  	s.endBlock()
  4150  	bElse.AddEdgeTo(bAfter)
  4151  
  4152  	s.startBlock(bAfter)
  4153  	return s.variable(n, n.Type)
  4154  }
  4155  
  4156  // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
  4157  func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value {
  4158  	if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() {
  4159  		s.Fatalf("node must be a map or a channel")
  4160  	}
  4161  	// if n == nil {
  4162  	//   return 0
  4163  	// } else {
  4164  	//   // len
  4165  	//   return *((*int)n)
  4166  	//   // cap
  4167  	//   return *(((*int)n)+1)
  4168  	// }
  4169  	lenType := n.Type
  4170  	nilValue := s.constNil(types.Types[TUINTPTR])
  4171  	cmp := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], x, nilValue)
  4172  	b := s.endBlock()
  4173  	b.Kind = ssa.BlockIf
  4174  	b.SetControl(cmp)
  4175  	b.Likely = ssa.BranchUnlikely
  4176  
  4177  	bThen := s.f.NewBlock(ssa.BlockPlain)
  4178  	bElse := s.f.NewBlock(ssa.BlockPlain)
  4179  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  4180  
  4181  	// length/capacity of a nil map/chan is zero
  4182  	b.AddEdgeTo(bThen)
  4183  	s.startBlock(bThen)
  4184  	s.vars[n] = s.zeroVal(lenType)
  4185  	s.endBlock()
  4186  	bThen.AddEdgeTo(bAfter)
  4187  
  4188  	b.AddEdgeTo(bElse)
  4189  	s.startBlock(bElse)
  4190  	switch n.Op {
  4191  	case OLEN:
  4192  		// length is stored in the first word for map/chan
  4193  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem())
  4194  	case OCAP:
  4195  		// capacity is stored in the second word for chan
  4196  		sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x)
  4197  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem())
  4198  	default:
  4199  		s.Fatalf("op must be OLEN or OCAP")
  4200  	}
  4201  	s.endBlock()
  4202  	bElse.AddEdgeTo(bAfter)
  4203  
  4204  	s.startBlock(bAfter)
  4205  	return s.variable(n, lenType)
  4206  }
  4207  
  4208  type f2uCvtTab struct {
  4209  	ltf, cvt2U, subf, or ssa.Op
  4210  	floatValue           func(*state, *types.Type, float64) *ssa.Value
  4211  	intValue             func(*state, *types.Type, int64) *ssa.Value
  4212  	cutoff               uint64
  4213  }
  4214  
  4215  var f32_u64 = f2uCvtTab{
  4216  	ltf:        ssa.OpLess32F,
  4217  	cvt2U:      ssa.OpCvt32Fto64,
  4218  	subf:       ssa.OpSub32F,
  4219  	or:         ssa.OpOr64,
  4220  	floatValue: (*state).constFloat32,
  4221  	intValue:   (*state).constInt64,
  4222  	cutoff:     9223372036854775808,
  4223  }
  4224  
  4225  var f64_u64 = f2uCvtTab{
  4226  	ltf:        ssa.OpLess64F,
  4227  	cvt2U:      ssa.OpCvt64Fto64,
  4228  	subf:       ssa.OpSub64F,
  4229  	or:         ssa.OpOr64,
  4230  	floatValue: (*state).constFloat64,
  4231  	intValue:   (*state).constInt64,
  4232  	cutoff:     9223372036854775808,
  4233  }
  4234  
  4235  var f32_u32 = f2uCvtTab{
  4236  	ltf:        ssa.OpLess32F,
  4237  	cvt2U:      ssa.OpCvt32Fto32,
  4238  	subf:       ssa.OpSub32F,
  4239  	or:         ssa.OpOr32,
  4240  	floatValue: (*state).constFloat32,
  4241  	intValue:   func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
  4242  	cutoff:     2147483648,
  4243  }
  4244  
  4245  var f64_u32 = f2uCvtTab{
  4246  	ltf:        ssa.OpLess64F,
  4247  	cvt2U:      ssa.OpCvt64Fto32,
  4248  	subf:       ssa.OpSub64F,
  4249  	or:         ssa.OpOr32,
  4250  	floatValue: (*state).constFloat64,
  4251  	intValue:   func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
  4252  	cutoff:     2147483648,
  4253  }
  4254  
  4255  func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4256  	return s.floatToUint(&f32_u64, n, x, ft, tt)
  4257  }
  4258  func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4259  	return s.floatToUint(&f64_u64, n, x, ft, tt)
  4260  }
  4261  
  4262  func (s *state) float32ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4263  	return s.floatToUint(&f32_u32, n, x, ft, tt)
  4264  }
  4265  
  4266  func (s *state) float64ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4267  	return s.floatToUint(&f64_u32, n, x, ft, tt)
  4268  }
  4269  
  4270  func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4271  	// cutoff:=1<<(intY_Size-1)
  4272  	// if x < floatX(cutoff) {
  4273  	// 	result = uintY(x)
  4274  	// } else {
  4275  	// 	y = x - floatX(cutoff)
  4276  	// 	z = uintY(y)
  4277  	// 	result = z | -(cutoff)
  4278  	// }
  4279  	cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff))
  4280  	cmp := s.newValue2(cvttab.ltf, types.Types[TBOOL], x, cutoff)
  4281  	b := s.endBlock()
  4282  	b.Kind = ssa.BlockIf
  4283  	b.SetControl(cmp)
  4284  	b.Likely = ssa.BranchLikely
  4285  
  4286  	bThen := s.f.NewBlock(ssa.BlockPlain)
  4287  	bElse := s.f.NewBlock(ssa.BlockPlain)
  4288  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  4289  
  4290  	b.AddEdgeTo(bThen)
  4291  	s.startBlock(bThen)
  4292  	a0 := s.newValue1(cvttab.cvt2U, tt, x)
  4293  	s.vars[n] = a0
  4294  	s.endBlock()
  4295  	bThen.AddEdgeTo(bAfter)
  4296  
  4297  	b.AddEdgeTo(bElse)
  4298  	s.startBlock(bElse)
  4299  	y := s.newValue2(cvttab.subf, ft, x, cutoff)
  4300  	y = s.newValue1(cvttab.cvt2U, tt, y)
  4301  	z := cvttab.intValue(s, tt, int64(-cvttab.cutoff))
  4302  	a1 := s.newValue2(cvttab.or, tt, y, z)
  4303  	s.vars[n] = a1
  4304  	s.endBlock()
  4305  	bElse.AddEdgeTo(bAfter)
  4306  
  4307  	s.startBlock(bAfter)
  4308  	return s.variable(n, n.Type)
  4309  }
  4310  
  4311  // dottype generates SSA for a type assertion node.
  4312  // commaok indicates whether to panic or return a bool.
  4313  // If commaok is false, resok will be nil.
  4314  func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) {
  4315  	iface := s.expr(n.Left)   // input interface
  4316  	target := s.expr(n.Right) // target type
  4317  	byteptr := s.f.Config.Types.BytePtr
  4318  
  4319  	if n.Type.IsInterface() {
  4320  		if n.Type.IsEmptyInterface() {
  4321  			// Converting to an empty interface.
  4322  			// Input could be an empty or nonempty interface.
  4323  			if Debug_typeassert > 0 {
  4324  				Warnl(n.Pos, "type assertion inlined")
  4325  			}
  4326  
  4327  			// Get itab/type field from input.
  4328  			itab := s.newValue1(ssa.OpITab, byteptr, iface)
  4329  			// Conversion succeeds iff that field is not nil.
  4330  			cond := s.newValue2(ssa.OpNeqPtr, types.Types[TBOOL], itab, s.constNil(byteptr))
  4331  
  4332  			if n.Left.Type.IsEmptyInterface() && commaok {
  4333  				// Converting empty interface to empty interface with ,ok is just a nil check.
  4334  				return iface, cond
  4335  			}
  4336  
  4337  			// Branch on nilness.
  4338  			b := s.endBlock()
  4339  			b.Kind = ssa.BlockIf
  4340  			b.SetControl(cond)
  4341  			b.Likely = ssa.BranchLikely
  4342  			bOk := s.f.NewBlock(ssa.BlockPlain)
  4343  			bFail := s.f.NewBlock(ssa.BlockPlain)
  4344  			b.AddEdgeTo(bOk)
  4345  			b.AddEdgeTo(bFail)
  4346  
  4347  			if !commaok {
  4348  				// On failure, panic by calling panicnildottype.
  4349  				s.startBlock(bFail)
  4350  				s.rtcall(panicnildottype, false, nil, target)
  4351  
  4352  				// On success, return (perhaps modified) input interface.
  4353  				s.startBlock(bOk)
  4354  				if n.Left.Type.IsEmptyInterface() {
  4355  					res = iface // Use input interface unchanged.
  4356  					return
  4357  				}
  4358  				// Load type out of itab, build interface with existing idata.
  4359  				off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
  4360  				typ := s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  4361  				idata := s.newValue1(ssa.OpIData, n.Type, iface)
  4362  				res = s.newValue2(ssa.OpIMake, n.Type, typ, idata)
  4363  				return
  4364  			}
  4365  
  4366  			s.startBlock(bOk)
  4367  			// nonempty -> empty
  4368  			// Need to load type from itab
  4369  			off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
  4370  			s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  4371  			s.endBlock()
  4372  
  4373  			// itab is nil, might as well use that as the nil result.
  4374  			s.startBlock(bFail)
  4375  			s.vars[&typVar] = itab
  4376  			s.endBlock()
  4377  
  4378  			// Merge point.
  4379  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  4380  			bOk.AddEdgeTo(bEnd)
  4381  			bFail.AddEdgeTo(bEnd)
  4382  			s.startBlock(bEnd)
  4383  			idata := s.newValue1(ssa.OpIData, n.Type, iface)
  4384  			res = s.newValue2(ssa.OpIMake, n.Type, s.variable(&typVar, byteptr), idata)
  4385  			resok = cond
  4386  			delete(s.vars, &typVar)
  4387  			return
  4388  		}
  4389  		// converting to a nonempty interface needs a runtime call.
  4390  		if Debug_typeassert > 0 {
  4391  			Warnl(n.Pos, "type assertion not inlined")
  4392  		}
  4393  		if n.Left.Type.IsEmptyInterface() {
  4394  			if commaok {
  4395  				call := s.rtcall(assertE2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface)
  4396  				return call[0], call[1]
  4397  			}
  4398  			return s.rtcall(assertE2I, true, []*types.Type{n.Type}, target, iface)[0], nil
  4399  		}
  4400  		if commaok {
  4401  			call := s.rtcall(assertI2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface)
  4402  			return call[0], call[1]
  4403  		}
  4404  		return s.rtcall(assertI2I, true, []*types.Type{n.Type}, target, iface)[0], nil
  4405  	}
  4406  
  4407  	if Debug_typeassert > 0 {
  4408  		Warnl(n.Pos, "type assertion inlined")
  4409  	}
  4410  
  4411  	// Converting to a concrete type.
  4412  	direct := isdirectiface(n.Type)
  4413  	itab := s.newValue1(ssa.OpITab, byteptr, iface) // type word of interface
  4414  	if Debug_typeassert > 0 {
  4415  		Warnl(n.Pos, "type assertion inlined")
  4416  	}
  4417  	var targetITab *ssa.Value
  4418  	if n.Left.Type.IsEmptyInterface() {
  4419  		// Looking for pointer to target type.
  4420  		targetITab = target
  4421  	} else {
  4422  		// Looking for pointer to itab for target type and source interface.
  4423  		targetITab = s.expr(n.List.First())
  4424  	}
  4425  
  4426  	var tmp *Node       // temporary for use with large types
  4427  	var addr *ssa.Value // address of tmp
  4428  	if commaok && !canSSAType(n.Type) {
  4429  		// unSSAable type, use temporary.
  4430  		// TODO: get rid of some of these temporaries.
  4431  		tmp = tempAt(n.Pos, s.curfn, n.Type)
  4432  		addr = s.addr(tmp, false)
  4433  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, tmp, s.mem())
  4434  	}
  4435  
  4436  	cond := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], itab, targetITab)
  4437  	b := s.endBlock()
  4438  	b.Kind = ssa.BlockIf
  4439  	b.SetControl(cond)
  4440  	b.Likely = ssa.BranchLikely
  4441  
  4442  	bOk := s.f.NewBlock(ssa.BlockPlain)
  4443  	bFail := s.f.NewBlock(ssa.BlockPlain)
  4444  	b.AddEdgeTo(bOk)
  4445  	b.AddEdgeTo(bFail)
  4446  
  4447  	if !commaok {
  4448  		// on failure, panic by calling panicdottype
  4449  		s.startBlock(bFail)
  4450  		taddr := s.expr(n.Right.Right)
  4451  		if n.Left.Type.IsEmptyInterface() {
  4452  			s.rtcall(panicdottypeE, false, nil, itab, target, taddr)
  4453  		} else {
  4454  			s.rtcall(panicdottypeI, false, nil, itab, target, taddr)
  4455  		}
  4456  
  4457  		// on success, return data from interface
  4458  		s.startBlock(bOk)
  4459  		if direct {
  4460  			return s.newValue1(ssa.OpIData, n.Type, iface), nil
  4461  		}
  4462  		p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4463  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()), nil
  4464  	}
  4465  
  4466  	// commaok is the more complicated case because we have
  4467  	// a control flow merge point.
  4468  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  4469  	// Note that we need a new valVar each time (unlike okVar where we can
  4470  	// reuse the variable) because it might have a different type every time.
  4471  	valVar := &Node{Op: ONAME, Sym: &types.Sym{Name: "val"}}
  4472  
  4473  	// type assertion succeeded
  4474  	s.startBlock(bOk)
  4475  	if tmp == nil {
  4476  		if direct {
  4477  			s.vars[valVar] = s.newValue1(ssa.OpIData, n.Type, iface)
  4478  		} else {
  4479  			p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4480  			s.vars[valVar] = s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  4481  		}
  4482  	} else {
  4483  		p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4484  		store := s.newValue3I(ssa.OpMove, types.TypeMem, n.Type.Size(), addr, p, s.mem())
  4485  		store.Aux = n.Type
  4486  		s.vars[&memVar] = store
  4487  	}
  4488  	s.vars[&okVar] = s.constBool(true)
  4489  	s.endBlock()
  4490  	bOk.AddEdgeTo(bEnd)
  4491  
  4492  	// type assertion failed
  4493  	s.startBlock(bFail)
  4494  	if tmp == nil {
  4495  		s.vars[valVar] = s.zeroVal(n.Type)
  4496  	} else {
  4497  		store := s.newValue2I(ssa.OpZero, types.TypeMem, n.Type.Size(), addr, s.mem())
  4498  		store.Aux = n.Type
  4499  		s.vars[&memVar] = store
  4500  	}
  4501  	s.vars[&okVar] = s.constBool(false)
  4502  	s.endBlock()
  4503  	bFail.AddEdgeTo(bEnd)
  4504  
  4505  	// merge point
  4506  	s.startBlock(bEnd)
  4507  	if tmp == nil {
  4508  		res = s.variable(valVar, n.Type)
  4509  		delete(s.vars, valVar)
  4510  	} else {
  4511  		res = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  4512  		s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, types.TypeMem, tmp, s.mem())
  4513  	}
  4514  	resok = s.variable(&okVar, types.Types[TBOOL])
  4515  	delete(s.vars, &okVar)
  4516  	return res, resok
  4517  }
  4518  
  4519  // variable returns the value of a variable at the current location.
  4520  func (s *state) variable(name *Node, t *types.Type) *ssa.Value {
  4521  	v := s.vars[name]
  4522  	if v != nil {
  4523  		return v
  4524  	}
  4525  	v = s.fwdVars[name]
  4526  	if v != nil {
  4527  		return v
  4528  	}
  4529  
  4530  	if s.curBlock == s.f.Entry {
  4531  		// No variable should be live at entry.
  4532  		s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, name, v)
  4533  	}
  4534  	// Make a FwdRef, which records a value that's live on block input.
  4535  	// We'll find the matching definition as part of insertPhis.
  4536  	v = s.newValue0A(ssa.OpFwdRef, t, name)
  4537  	s.fwdVars[name] = v
  4538  	s.addNamedValue(name, v)
  4539  	return v
  4540  }
  4541  
  4542  func (s *state) mem() *ssa.Value {
  4543  	return s.variable(&memVar, types.TypeMem)
  4544  }
  4545  
  4546  func (s *state) addNamedValue(n *Node, v *ssa.Value) {
  4547  	if n.Class() == Pxxx {
  4548  		// Don't track our dummy nodes (&memVar etc.).
  4549  		return
  4550  	}
  4551  	if n.IsAutoTmp() {
  4552  		// Don't track temporary variables.
  4553  		return
  4554  	}
  4555  	if n.Class() == PPARAMOUT {
  4556  		// Don't track named output values.  This prevents return values
  4557  		// from being assigned too early. See #14591 and #14762. TODO: allow this.
  4558  		return
  4559  	}
  4560  	if n.Class() == PAUTO && n.Xoffset != 0 {
  4561  		s.Fatalf("AUTO var with offset %v %d", n, n.Xoffset)
  4562  	}
  4563  	loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0}
  4564  	values, ok := s.f.NamedValues[loc]
  4565  	if !ok {
  4566  		s.f.Names = append(s.f.Names, loc)
  4567  	}
  4568  	s.f.NamedValues[loc] = append(values, v)
  4569  }
  4570  
  4571  // Branch is an unresolved branch.
  4572  type Branch struct {
  4573  	P *obj.Prog  // branch instruction
  4574  	B *ssa.Block // target
  4575  }
  4576  
  4577  // SSAGenState contains state needed during Prog generation.
  4578  type SSAGenState struct {
  4579  	pp *Progs
  4580  
  4581  	// Branches remembers all the branch instructions we've seen
  4582  	// and where they would like to go.
  4583  	Branches []Branch
  4584  
  4585  	// bstart remembers where each block starts (indexed by block ID)
  4586  	bstart []*obj.Prog
  4587  
  4588  	// 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?)
  4589  	SSEto387 map[int16]int16
  4590  	// Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8.
  4591  	ScratchFpMem *Node
  4592  
  4593  	maxarg int64 // largest frame size for arguments to calls made by the function
  4594  
  4595  	// Map from GC safe points to stack map index, generated by
  4596  	// liveness analysis.
  4597  	stackMapIndex map[*ssa.Value]int
  4598  }
  4599  
  4600  // Prog appends a new Prog.
  4601  func (s *SSAGenState) Prog(as obj.As) *obj.Prog {
  4602  	return s.pp.Prog(as)
  4603  }
  4604  
  4605  // Pc returns the current Prog.
  4606  func (s *SSAGenState) Pc() *obj.Prog {
  4607  	return s.pp.next
  4608  }
  4609  
  4610  // SetPos sets the current source position.
  4611  func (s *SSAGenState) SetPos(pos src.XPos) {
  4612  	s.pp.pos = pos
  4613  }
  4614  
  4615  // DebugFriendlySetPos sets the position subject to heuristics
  4616  // that reduce "jumpy" line number churn when debugging.
  4617  // Spill/fill/copy instructions from the register allocator,
  4618  // phi functions, and instructions with a no-pos position
  4619  // are examples of instructions that can cause churn.
  4620  func (s *SSAGenState) DebugFriendlySetPosFrom(v *ssa.Value) {
  4621  	// The two choices here are either to leave lineno unchanged,
  4622  	// or to explicitly set it to src.NoXPos.  Leaving it unchanged
  4623  	// (reusing the preceding line number) produces slightly better-
  4624  	// looking assembly language output from the compiler, and is
  4625  	// expected by some already-existing tests.
  4626  	// The debug information appears to be the same in either case
  4627  	switch v.Op {
  4628  	case ssa.OpPhi, ssa.OpCopy, ssa.OpLoadReg, ssa.OpStoreReg:
  4629  		// leave the position unchanged from beginning of block
  4630  		// or previous line number.
  4631  	default:
  4632  		if v.Pos != src.NoXPos {
  4633  			s.SetPos(v.Pos)
  4634  		}
  4635  	}
  4636  }
  4637  
  4638  // genssa appends entries to pp for each instruction in f.
  4639  func genssa(f *ssa.Func, pp *Progs) {
  4640  	var s SSAGenState
  4641  
  4642  	e := f.Frontend().(*ssafn)
  4643  
  4644  	s.stackMapIndex = liveness(e, f)
  4645  
  4646  	// Remember where each block starts.
  4647  	s.bstart = make([]*obj.Prog, f.NumBlocks())
  4648  	s.pp = pp
  4649  	var progToValue map[*obj.Prog]*ssa.Value
  4650  	var progToBlock map[*obj.Prog]*ssa.Block
  4651  	var valueToProgAfter []*obj.Prog // The first Prog following computation of a value v; v is visible at this point.
  4652  	var logProgs = e.log
  4653  	if logProgs {
  4654  		progToValue = make(map[*obj.Prog]*ssa.Value, f.NumValues())
  4655  		progToBlock = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
  4656  		f.Logf("genssa %s\n", f.Name)
  4657  		progToBlock[s.pp.next] = f.Blocks[0]
  4658  	}
  4659  
  4660  	if thearch.Use387 {
  4661  		s.SSEto387 = map[int16]int16{}
  4662  	}
  4663  
  4664  	s.ScratchFpMem = e.scratchFpMem
  4665  
  4666  	logLocationLists := Debug_locationlist != 0
  4667  	if Ctxt.Flag_locationlists {
  4668  		e.curfn.Func.DebugInfo = ssa.BuildFuncDebug(f, logLocationLists)
  4669  		valueToProgAfter = make([]*obj.Prog, f.NumValues())
  4670  	}
  4671  
  4672  	// Emit basic blocks
  4673  	for i, b := range f.Blocks {
  4674  		s.bstart[b.ID] = s.pp.next
  4675  		// Emit values in block
  4676  		thearch.SSAMarkMoves(&s, b)
  4677  		for _, v := range b.Values {
  4678  			x := s.pp.next
  4679  			s.DebugFriendlySetPosFrom(v)
  4680  			switch v.Op {
  4681  			case ssa.OpInitMem:
  4682  				// memory arg needs no code
  4683  			case ssa.OpArg:
  4684  				// input args need no code
  4685  			case ssa.OpSP, ssa.OpSB:
  4686  				// nothing to do
  4687  			case ssa.OpSelect0, ssa.OpSelect1:
  4688  				// nothing to do
  4689  			case ssa.OpGetG:
  4690  				// nothing to do when there's a g register,
  4691  				// and checkLower complains if there's not
  4692  			case ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive:
  4693  				// nothing to do; already used by liveness
  4694  			case ssa.OpVarKill:
  4695  				// Zero variable if it is ambiguously live.
  4696  				// After the VARKILL anything this variable references
  4697  				// might be collected. If it were to become live again later,
  4698  				// the GC will see references to already-collected objects.
  4699  				// See issue 20029.
  4700  				n := v.Aux.(*Node)
  4701  				if n.Name.Needzero() {
  4702  					if n.Class() != PAUTO {
  4703  						v.Fatalf("zero of variable which isn't PAUTO %v", n)
  4704  					}
  4705  					if n.Type.Size()%int64(Widthptr) != 0 {
  4706  						v.Fatalf("zero of variable not a multiple of ptr size %v", n)
  4707  					}
  4708  					thearch.ZeroAuto(s.pp, n)
  4709  				}
  4710  			case ssa.OpPhi:
  4711  				CheckLoweredPhi(v)
  4712  			case ssa.OpRegKill:
  4713  				// nothing to do
  4714  			default:
  4715  				// let the backend handle it
  4716  				thearch.SSAGenValue(&s, v)
  4717  			}
  4718  
  4719  			if Ctxt.Flag_locationlists {
  4720  				valueToProgAfter[v.ID] = s.pp.next
  4721  			}
  4722  			if logProgs {
  4723  				for ; x != s.pp.next; x = x.Link {
  4724  					progToValue[x] = v
  4725  				}
  4726  			}
  4727  		}
  4728  		// Emit control flow instructions for block
  4729  		var next *ssa.Block
  4730  		if i < len(f.Blocks)-1 && Debug['N'] == 0 {
  4731  			// If -N, leave next==nil so every block with successors
  4732  			// ends in a JMP (except call blocks - plive doesn't like
  4733  			// select{send,recv} followed by a JMP call).  Helps keep
  4734  			// line numbers for otherwise empty blocks.
  4735  			next = f.Blocks[i+1]
  4736  		}
  4737  		x := s.pp.next
  4738  		s.SetPos(b.Pos)
  4739  		thearch.SSAGenBlock(&s, b, next)
  4740  		if logProgs {
  4741  			for ; x != s.pp.next; x = x.Link {
  4742  				progToBlock[x] = b
  4743  			}
  4744  		}
  4745  	}
  4746  
  4747  	if Ctxt.Flag_locationlists {
  4748  		for i := range f.Blocks {
  4749  			blockDebug := e.curfn.Func.DebugInfo.Blocks[i]
  4750  			for _, locList := range blockDebug.Variables {
  4751  				for _, loc := range locList.Locations {
  4752  					if loc.Start == ssa.BlockStart {
  4753  						loc.StartProg = s.bstart[f.Blocks[i].ID]
  4754  					} else {
  4755  						loc.StartProg = valueToProgAfter[loc.Start.ID]
  4756  					}
  4757  					if loc.End == nil {
  4758  						Fatalf("empty loc %v compiling %v", loc, f.Name)
  4759  					}
  4760  
  4761  					if loc.End == ssa.BlockEnd {
  4762  						// If this variable was live at the end of the block, it should be
  4763  						// live over the control flow instructions. Extend it up to the
  4764  						// beginning of the next block.
  4765  						// If this is the last block, then there's no Prog to use for it, and
  4766  						// EndProg is unset.
  4767  						if i < len(f.Blocks)-1 {
  4768  							loc.EndProg = s.bstart[f.Blocks[i+1].ID]
  4769  						}
  4770  					} else {
  4771  						// Advance the "end" forward by one; the end-of-range doesn't take effect
  4772  						// until the instruction actually executes.
  4773  						loc.EndProg = valueToProgAfter[loc.End.ID].Link
  4774  						if loc.EndProg == nil {
  4775  							Fatalf("nil loc.EndProg compiling %v, loc=%v", f.Name, loc)
  4776  						}
  4777  					}
  4778  					if !logLocationLists {
  4779  						loc.Start = nil
  4780  						loc.End = nil
  4781  					}
  4782  				}
  4783  			}
  4784  		}
  4785  	}
  4786  
  4787  	// Resolve branches
  4788  	for _, br := range s.Branches {
  4789  		br.P.To.Val = s.bstart[br.B.ID]
  4790  	}
  4791  
  4792  	if logProgs {
  4793  		filename := ""
  4794  		for p := pp.Text; p != nil; p = p.Link {
  4795  			if p.Pos.IsKnown() && p.InnermostFilename() != filename {
  4796  				filename = p.InnermostFilename()
  4797  				f.Logf("# %s\n", filename)
  4798  			}
  4799  
  4800  			var s string
  4801  			if v, ok := progToValue[p]; ok {
  4802  				s = v.String()
  4803  			} else if b, ok := progToBlock[p]; ok {
  4804  				s = b.String()
  4805  			} else {
  4806  				s = "   " // most value and branch strings are 2-3 characters long
  4807  			}
  4808  			f.Logf(" %-6s\t%.5d (%s)\t%s\n", s, p.Pc, p.InnermostLineNumber(), p.InstructionString())
  4809  		}
  4810  		if f.HTMLWriter != nil {
  4811  			// LineHist is defunct now - this code won't do
  4812  			// anything.
  4813  			// TODO: fix this (ideally without a global variable)
  4814  			// saved := pp.Text.Ctxt.LineHist.PrintFilenameOnly
  4815  			// pp.Text.Ctxt.LineHist.PrintFilenameOnly = true
  4816  			var buf bytes.Buffer
  4817  			buf.WriteString("<code>")
  4818  			buf.WriteString("<dl class=\"ssa-gen\">")
  4819  			filename := ""
  4820  			for p := pp.Text; p != nil; p = p.Link {
  4821  				// Don't spam every line with the file name, which is often huge.
  4822  				// Only print changes, and "unknown" is not a change.
  4823  				if p.Pos.IsKnown() && p.InnermostFilename() != filename {
  4824  					filename = p.InnermostFilename()
  4825  					buf.WriteString("<dt class=\"ssa-prog-src\"></dt><dd class=\"ssa-prog\">")
  4826  					buf.WriteString(html.EscapeString("# " + filename))
  4827  					buf.WriteString("</dd>")
  4828  				}
  4829  
  4830  				buf.WriteString("<dt class=\"ssa-prog-src\">")
  4831  				if v, ok := progToValue[p]; ok {
  4832  					buf.WriteString(v.HTML())
  4833  				} else if b, ok := progToBlock[p]; ok {
  4834  					buf.WriteString("<b>" + b.HTML() + "</b>")
  4835  				}
  4836  				buf.WriteString("</dt>")
  4837  				buf.WriteString("<dd class=\"ssa-prog\">")
  4838  				buf.WriteString(fmt.Sprintf("%.5d <span class=\"line-number\">(%s)</span> %s", p.Pc, p.InnermostLineNumber(), html.EscapeString(p.InstructionString())))
  4839  				buf.WriteString("</dd>")
  4840  			}
  4841  			buf.WriteString("</dl>")
  4842  			buf.WriteString("</code>")
  4843  			f.HTMLWriter.WriteColumn("genssa", "ssa-prog", buf.String())
  4844  			// pp.Text.Ctxt.LineHist.PrintFilenameOnly = saved
  4845  		}
  4846  	}
  4847  
  4848  	defframe(&s, e)
  4849  	if Debug['f'] != 0 {
  4850  		frame(0)
  4851  	}
  4852  
  4853  	f.HTMLWriter.Close()
  4854  	f.HTMLWriter = nil
  4855  }
  4856  
  4857  func defframe(s *SSAGenState, e *ssafn) {
  4858  	pp := s.pp
  4859  
  4860  	frame := Rnd(s.maxarg+e.stksize, int64(Widthreg))
  4861  	if thearch.PadFrame != nil {
  4862  		frame = thearch.PadFrame(frame)
  4863  	}
  4864  
  4865  	// Fill in argument and frame size.
  4866  	pp.Text.To.Type = obj.TYPE_TEXTSIZE
  4867  	pp.Text.To.Val = int32(Rnd(e.curfn.Type.ArgWidth(), int64(Widthreg)))
  4868  	pp.Text.To.Offset = frame
  4869  
  4870  	// Insert code to zero ambiguously live variables so that the
  4871  	// garbage collector only sees initialized values when it
  4872  	// looks for pointers.
  4873  	p := pp.Text
  4874  	var lo, hi int64
  4875  
  4876  	// Opaque state for backend to use. Current backends use it to
  4877  	// keep track of which helper registers have been zeroed.
  4878  	var state uint32
  4879  
  4880  	// Iterate through declarations. They are sorted in decreasing Xoffset order.
  4881  	for _, n := range e.curfn.Func.Dcl {
  4882  		if !n.Name.Needzero() {
  4883  			continue
  4884  		}
  4885  		if n.Class() != PAUTO {
  4886  			Fatalf("needzero class %d", n.Class())
  4887  		}
  4888  		if n.Type.Size()%int64(Widthptr) != 0 || n.Xoffset%int64(Widthptr) != 0 || n.Type.Size() == 0 {
  4889  			Fatalf("var %L has size %d offset %d", n, n.Type.Size(), n.Xoffset)
  4890  		}
  4891  
  4892  		if lo != hi && n.Xoffset+n.Type.Size() >= lo-int64(2*Widthreg) {
  4893  			// Merge with range we already have.
  4894  			lo = n.Xoffset
  4895  			continue
  4896  		}
  4897  
  4898  		// Zero old range
  4899  		p = thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
  4900  
  4901  		// Set new range.
  4902  		lo = n.Xoffset
  4903  		hi = lo + n.Type.Size()
  4904  	}
  4905  
  4906  	// Zero final range.
  4907  	thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
  4908  }
  4909  
  4910  type FloatingEQNEJump struct {
  4911  	Jump  obj.As
  4912  	Index int
  4913  }
  4914  
  4915  func (s *SSAGenState) oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump) {
  4916  	p := s.Prog(jumps.Jump)
  4917  	p.To.Type = obj.TYPE_BRANCH
  4918  	p.Pos = b.Pos
  4919  	to := jumps.Index
  4920  	s.Branches = append(s.Branches, Branch{p, b.Succs[to].Block()})
  4921  }
  4922  
  4923  func (s *SSAGenState) FPJump(b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) {
  4924  	switch next {
  4925  	case b.Succs[0].Block():
  4926  		s.oneFPJump(b, &jumps[0][0])
  4927  		s.oneFPJump(b, &jumps[0][1])
  4928  	case b.Succs[1].Block():
  4929  		s.oneFPJump(b, &jumps[1][0])
  4930  		s.oneFPJump(b, &jumps[1][1])
  4931  	default:
  4932  		s.oneFPJump(b, &jumps[1][0])
  4933  		s.oneFPJump(b, &jumps[1][1])
  4934  		q := s.Prog(obj.AJMP)
  4935  		q.Pos = b.Pos
  4936  		q.To.Type = obj.TYPE_BRANCH
  4937  		s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()})
  4938  	}
  4939  }
  4940  
  4941  func AuxOffset(v *ssa.Value) (offset int64) {
  4942  	if v.Aux == nil {
  4943  		return 0
  4944  	}
  4945  	n, ok := v.Aux.(*Node)
  4946  	if !ok {
  4947  		v.Fatalf("bad aux type in %s\n", v.LongString())
  4948  	}
  4949  	if n.Class() == PAUTO {
  4950  		return n.Xoffset
  4951  	}
  4952  	return 0
  4953  }
  4954  
  4955  // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
  4956  func AddAux(a *obj.Addr, v *ssa.Value) {
  4957  	AddAux2(a, v, v.AuxInt)
  4958  }
  4959  func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) {
  4960  	if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR {
  4961  		v.Fatalf("bad AddAux addr %v", a)
  4962  	}
  4963  	// add integer offset
  4964  	a.Offset += offset
  4965  
  4966  	// If no additional symbol offset, we're done.
  4967  	if v.Aux == nil {
  4968  		return
  4969  	}
  4970  	// Add symbol's offset from its base register.
  4971  	switch n := v.Aux.(type) {
  4972  	case *obj.LSym:
  4973  		a.Name = obj.NAME_EXTERN
  4974  		a.Sym = n
  4975  	case *Node:
  4976  		if n.Class() == PPARAM || n.Class() == PPARAMOUT {
  4977  			a.Name = obj.NAME_PARAM
  4978  			a.Sym = n.Orig.Sym.Linksym()
  4979  			a.Offset += n.Xoffset
  4980  			break
  4981  		}
  4982  		a.Name = obj.NAME_AUTO
  4983  		a.Sym = n.Sym.Linksym()
  4984  		a.Offset += n.Xoffset
  4985  	default:
  4986  		v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
  4987  	}
  4988  }
  4989  
  4990  // extendIndex extends v to a full int width.
  4991  // panic using the given function if v does not fit in an int (only on 32-bit archs).
  4992  func (s *state) extendIndex(v *ssa.Value, panicfn *obj.LSym) *ssa.Value {
  4993  	size := v.Type.Size()
  4994  	if size == s.config.PtrSize {
  4995  		return v
  4996  	}
  4997  	if size > s.config.PtrSize {
  4998  		// truncate 64-bit indexes on 32-bit pointer archs. Test the
  4999  		// high word and branch to out-of-bounds failure if it is not 0.
  5000  		if Debug['B'] == 0 {
  5001  			hi := s.newValue1(ssa.OpInt64Hi, types.Types[TUINT32], v)
  5002  			cmp := s.newValue2(ssa.OpEq32, types.Types[TBOOL], hi, s.constInt32(types.Types[TUINT32], 0))
  5003  			s.check(cmp, panicfn)
  5004  		}
  5005  		return s.newValue1(ssa.OpTrunc64to32, types.Types[TINT], v)
  5006  	}
  5007  
  5008  	// Extend value to the required size
  5009  	var op ssa.Op
  5010  	if v.Type.IsSigned() {
  5011  		switch 10*size + s.config.PtrSize {
  5012  		case 14:
  5013  			op = ssa.OpSignExt8to32
  5014  		case 18:
  5015  			op = ssa.OpSignExt8to64
  5016  		case 24:
  5017  			op = ssa.OpSignExt16to32
  5018  		case 28:
  5019  			op = ssa.OpSignExt16to64
  5020  		case 48:
  5021  			op = ssa.OpSignExt32to64
  5022  		default:
  5023  			s.Fatalf("bad signed index extension %s", v.Type)
  5024  		}
  5025  	} else {
  5026  		switch 10*size + s.config.PtrSize {
  5027  		case 14:
  5028  			op = ssa.OpZeroExt8to32
  5029  		case 18:
  5030  			op = ssa.OpZeroExt8to64
  5031  		case 24:
  5032  			op = ssa.OpZeroExt16to32
  5033  		case 28:
  5034  			op = ssa.OpZeroExt16to64
  5035  		case 48:
  5036  			op = ssa.OpZeroExt32to64
  5037  		default:
  5038  			s.Fatalf("bad unsigned index extension %s", v.Type)
  5039  		}
  5040  	}
  5041  	return s.newValue1(op, types.Types[TINT], v)
  5042  }
  5043  
  5044  // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values.
  5045  // Called during ssaGenValue.
  5046  func CheckLoweredPhi(v *ssa.Value) {
  5047  	if v.Op != ssa.OpPhi {
  5048  		v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString())
  5049  	}
  5050  	if v.Type.IsMemory() {
  5051  		return
  5052  	}
  5053  	f := v.Block.Func
  5054  	loc := f.RegAlloc[v.ID]
  5055  	for _, a := range v.Args {
  5056  		if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead?
  5057  			v.Fatalf("phi arg at different location than phi: %v @ %s, but arg %v @ %s\n%s\n", v, loc, a, aloc, v.Block.Func)
  5058  		}
  5059  	}
  5060  }
  5061  
  5062  // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block.
  5063  // The output of LoweredGetClosurePtr is generally hardwired to the correct register.
  5064  // That register contains the closure pointer on closure entry.
  5065  func CheckLoweredGetClosurePtr(v *ssa.Value) {
  5066  	entry := v.Block.Func.Entry
  5067  	if entry != v.Block || entry.Values[0] != v {
  5068  		Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
  5069  	}
  5070  }
  5071  
  5072  // AutoVar returns a *Node and int64 representing the auto variable and offset within it
  5073  // where v should be spilled.
  5074  func AutoVar(v *ssa.Value) (*Node, int64) {
  5075  	loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot)
  5076  	if v.Type.Size() > loc.Type.Size() {
  5077  		v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
  5078  	}
  5079  	return loc.N.(*Node), loc.Off
  5080  }
  5081  
  5082  func AddrAuto(a *obj.Addr, v *ssa.Value) {
  5083  	n, off := AutoVar(v)
  5084  	a.Type = obj.TYPE_MEM
  5085  	a.Sym = n.Sym.Linksym()
  5086  	a.Reg = int16(thearch.REGSP)
  5087  	a.Offset = n.Xoffset + off
  5088  	if n.Class() == PPARAM || n.Class() == PPARAMOUT {
  5089  		a.Name = obj.NAME_PARAM
  5090  	} else {
  5091  		a.Name = obj.NAME_AUTO
  5092  	}
  5093  }
  5094  
  5095  func (s *SSAGenState) AddrScratch(a *obj.Addr) {
  5096  	if s.ScratchFpMem == nil {
  5097  		panic("no scratch memory available; forgot to declare usesScratch for Op?")
  5098  	}
  5099  	a.Type = obj.TYPE_MEM
  5100  	a.Name = obj.NAME_AUTO
  5101  	a.Sym = s.ScratchFpMem.Sym.Linksym()
  5102  	a.Reg = int16(thearch.REGSP)
  5103  	a.Offset = s.ScratchFpMem.Xoffset
  5104  }
  5105  
  5106  func (s *SSAGenState) Call(v *ssa.Value) *obj.Prog {
  5107  	idx, ok := s.stackMapIndex[v]
  5108  	if !ok {
  5109  		Fatalf("missing stack map index for %v", v.LongString())
  5110  	}
  5111  	p := s.Prog(obj.APCDATA)
  5112  	Addrconst(&p.From, objabi.PCDATA_StackMapIndex)
  5113  	Addrconst(&p.To, int64(idx))
  5114  
  5115  	if sym, _ := v.Aux.(*obj.LSym); sym == Deferreturn {
  5116  		// Deferred calls will appear to be returning to
  5117  		// the CALL deferreturn(SB) that we are about to emit.
  5118  		// However, the stack trace code will show the line
  5119  		// of the instruction byte before the return PC.
  5120  		// To avoid that being an unrelated instruction,
  5121  		// insert an actual hardware NOP that will have the right line number.
  5122  		// This is different from obj.ANOP, which is a virtual no-op
  5123  		// that doesn't make it into the instruction stream.
  5124  		thearch.Ginsnop(s.pp)
  5125  	}
  5126  
  5127  	p = s.Prog(obj.ACALL)
  5128  	if sym, ok := v.Aux.(*obj.LSym); ok {
  5129  		p.To.Type = obj.TYPE_MEM
  5130  		p.To.Name = obj.NAME_EXTERN
  5131  		p.To.Sym = sym
  5132  
  5133  		// Record call graph information for nowritebarrierrec
  5134  		// analysis.
  5135  		if nowritebarrierrecCheck != nil {
  5136  			nowritebarrierrecCheck.recordCall(s.pp.curfn, sym, v.Pos)
  5137  		}
  5138  	} else {
  5139  		// TODO(mdempsky): Can these differences be eliminated?
  5140  		switch thearch.LinkArch.Family {
  5141  		case sys.AMD64, sys.I386, sys.PPC64, sys.S390X:
  5142  			p.To.Type = obj.TYPE_REG
  5143  		case sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64:
  5144  			p.To.Type = obj.TYPE_MEM
  5145  		default:
  5146  			Fatalf("unknown indirect call family")
  5147  		}
  5148  		p.To.Reg = v.Args[0].Reg()
  5149  	}
  5150  	if s.maxarg < v.AuxInt {
  5151  		s.maxarg = v.AuxInt
  5152  	}
  5153  	return p
  5154  }
  5155  
  5156  // fieldIdx finds the index of the field referred to by the ODOT node n.
  5157  func fieldIdx(n *Node) int {
  5158  	t := n.Left.Type
  5159  	f := n.Sym
  5160  	if !t.IsStruct() {
  5161  		panic("ODOT's LHS is not a struct")
  5162  	}
  5163  
  5164  	var i int
  5165  	for _, t1 := range t.Fields().Slice() {
  5166  		if t1.Sym != f {
  5167  			i++
  5168  			continue
  5169  		}
  5170  		if t1.Offset != n.Xoffset {
  5171  			panic("field offset doesn't match")
  5172  		}
  5173  		return i
  5174  	}
  5175  	panic(fmt.Sprintf("can't find field in expr %v\n", n))
  5176  
  5177  	// TODO: keep the result of this function somewhere in the ODOT Node
  5178  	// so we don't have to recompute it each time we need it.
  5179  }
  5180  
  5181  // ssafn holds frontend information about a function that the backend is processing.
  5182  // It also exports a bunch of compiler services for the ssa backend.
  5183  type ssafn struct {
  5184  	curfn        *Node
  5185  	strings      map[string]interface{} // map from constant string to data symbols
  5186  	scratchFpMem *Node                  // temp for floating point register / memory moves on some architectures
  5187  	stksize      int64                  // stack size for current frame
  5188  	stkptrsize   int64                  // prefix of stack containing pointers
  5189  	log          bool
  5190  }
  5191  
  5192  // StringData returns a symbol (a *types.Sym wrapped in an interface) which
  5193  // is the data component of a global string constant containing s.
  5194  func (e *ssafn) StringData(s string) interface{} {
  5195  	if aux, ok := e.strings[s]; ok {
  5196  		return aux
  5197  	}
  5198  	if e.strings == nil {
  5199  		e.strings = make(map[string]interface{})
  5200  	}
  5201  	data := stringsym(e.curfn.Pos, s)
  5202  	e.strings[s] = data
  5203  	return data
  5204  }
  5205  
  5206  func (e *ssafn) Auto(pos src.XPos, t *types.Type) ssa.GCNode {
  5207  	n := tempAt(pos, e.curfn, t) // Note: adds new auto to e.curfn.Func.Dcl list
  5208  	return n
  5209  }
  5210  
  5211  func (e *ssafn) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  5212  	n := name.N.(*Node)
  5213  	ptrType := types.NewPtr(types.Types[TUINT8])
  5214  	lenType := types.Types[TINT]
  5215  	if n.Class() == PAUTO && !n.Addrtaken() {
  5216  		// Split this string up into two separate variables.
  5217  		p := e.splitSlot(&name, ".ptr", 0, ptrType)
  5218  		l := e.splitSlot(&name, ".len", ptrType.Size(), lenType)
  5219  		return p, l
  5220  	}
  5221  	// Return the two parts of the larger variable.
  5222  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}
  5223  }
  5224  
  5225  func (e *ssafn) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  5226  	n := name.N.(*Node)
  5227  	t := types.NewPtr(types.Types[TUINT8])
  5228  	if n.Class() == PAUTO && !n.Addrtaken() {
  5229  		// Split this interface up into two separate variables.
  5230  		f := ".itab"
  5231  		if n.Type.IsEmptyInterface() {
  5232  			f = ".type"
  5233  		}
  5234  		c := e.splitSlot(&name, f, 0, t)
  5235  		d := e.splitSlot(&name, ".data", t.Size(), t)
  5236  		return c, d
  5237  	}
  5238  	// Return the two parts of the larger variable.
  5239  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)}
  5240  }
  5241  
  5242  func (e *ssafn) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) {
  5243  	n := name.N.(*Node)
  5244  	ptrType := types.NewPtr(name.Type.ElemType())
  5245  	lenType := types.Types[TINT]
  5246  	if n.Class() == PAUTO && !n.Addrtaken() {
  5247  		// Split this slice up into three separate variables.
  5248  		p := e.splitSlot(&name, ".ptr", 0, ptrType)
  5249  		l := e.splitSlot(&name, ".len", ptrType.Size(), lenType)
  5250  		c := e.splitSlot(&name, ".cap", ptrType.Size()+lenType.Size(), lenType)
  5251  		return p, l, c
  5252  	}
  5253  	// Return the three parts of the larger variable.
  5254  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off},
  5255  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)},
  5256  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)}
  5257  }
  5258  
  5259  func (e *ssafn) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  5260  	n := name.N.(*Node)
  5261  	s := name.Type.Size() / 2
  5262  	var t *types.Type
  5263  	if s == 8 {
  5264  		t = types.Types[TFLOAT64]
  5265  	} else {
  5266  		t = types.Types[TFLOAT32]
  5267  	}
  5268  	if n.Class() == PAUTO && !n.Addrtaken() {
  5269  		// Split this complex up into two separate variables.
  5270  		r := e.splitSlot(&name, ".real", 0, t)
  5271  		i := e.splitSlot(&name, ".imag", t.Size(), t)
  5272  		return r, i
  5273  	}
  5274  	// Return the two parts of the larger variable.
  5275  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s}
  5276  }
  5277  
  5278  func (e *ssafn) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  5279  	n := name.N.(*Node)
  5280  	var t *types.Type
  5281  	if name.Type.IsSigned() {
  5282  		t = types.Types[TINT32]
  5283  	} else {
  5284  		t = types.Types[TUINT32]
  5285  	}
  5286  	if n.Class() == PAUTO && !n.Addrtaken() {
  5287  		// Split this int64 up into two separate variables.
  5288  		if thearch.LinkArch.ByteOrder == binary.BigEndian {
  5289  			return e.splitSlot(&name, ".hi", 0, t), e.splitSlot(&name, ".lo", t.Size(), types.Types[TUINT32])
  5290  		}
  5291  		return e.splitSlot(&name, ".hi", t.Size(), t), e.splitSlot(&name, ".lo", 0, types.Types[TUINT32])
  5292  	}
  5293  	// Return the two parts of the larger variable.
  5294  	if thearch.LinkArch.ByteOrder == binary.BigEndian {
  5295  		return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off + 4}
  5296  	}
  5297  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off}
  5298  }
  5299  
  5300  func (e *ssafn) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot {
  5301  	n := name.N.(*Node)
  5302  	st := name.Type
  5303  	ft := st.FieldType(i)
  5304  	var offset int64
  5305  	for f := 0; f < i; f++ {
  5306  		offset += st.FieldType(f).Size()
  5307  	}
  5308  	if n.Class() == PAUTO && !n.Addrtaken() {
  5309  		// Note: the _ field may appear several times.  But
  5310  		// have no fear, identically-named but distinct Autos are
  5311  		// ok, albeit maybe confusing for a debugger.
  5312  		return e.splitSlot(&name, "."+st.FieldName(i), offset, ft)
  5313  	}
  5314  	return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)}
  5315  }
  5316  
  5317  func (e *ssafn) SplitArray(name ssa.LocalSlot) ssa.LocalSlot {
  5318  	n := name.N.(*Node)
  5319  	at := name.Type
  5320  	if at.NumElem() != 1 {
  5321  		Fatalf("bad array size")
  5322  	}
  5323  	et := at.ElemType()
  5324  	if n.Class() == PAUTO && !n.Addrtaken() {
  5325  		return e.splitSlot(&name, "[0]", 0, et)
  5326  	}
  5327  	return ssa.LocalSlot{N: n, Type: et, Off: name.Off}
  5328  }
  5329  
  5330  func (e *ssafn) DerefItab(it *obj.LSym, offset int64) *obj.LSym {
  5331  	return itabsym(it, offset)
  5332  }
  5333  
  5334  // splitSlot returns a slot representing the data of parent starting at offset.
  5335  func (e *ssafn) splitSlot(parent *ssa.LocalSlot, suffix string, offset int64, t *types.Type) ssa.LocalSlot {
  5336  	s := &types.Sym{Name: parent.N.(*Node).Sym.Name + suffix, Pkg: localpkg}
  5337  
  5338  	n := &Node{
  5339  		Name: new(Name),
  5340  		Op:   ONAME,
  5341  		Pos:  parent.N.(*Node).Pos,
  5342  	}
  5343  	n.Orig = n
  5344  
  5345  	s.Def = asTypesNode(n)
  5346  	asNode(s.Def).Name.SetUsed(true)
  5347  	n.Sym = s
  5348  	n.Type = t
  5349  	n.SetClass(PAUTO)
  5350  	n.SetAddable(true)
  5351  	n.Esc = EscNever
  5352  	n.Name.Curfn = e.curfn
  5353  	e.curfn.Func.Dcl = append(e.curfn.Func.Dcl, n)
  5354  	dowidth(t)
  5355  	return ssa.LocalSlot{N: n, Type: t, Off: 0, SplitOf: parent, SplitOffset: offset}
  5356  }
  5357  
  5358  func (e *ssafn) CanSSA(t *types.Type) bool {
  5359  	return canSSAType(t)
  5360  }
  5361  
  5362  func (e *ssafn) Line(pos src.XPos) string {
  5363  	return linestr(pos)
  5364  }
  5365  
  5366  // Log logs a message from the compiler.
  5367  func (e *ssafn) Logf(msg string, args ...interface{}) {
  5368  	if e.log {
  5369  		fmt.Printf(msg, args...)
  5370  	}
  5371  }
  5372  
  5373  func (e *ssafn) Log() bool {
  5374  	return e.log
  5375  }
  5376  
  5377  // Fatal reports a compiler error and exits.
  5378  func (e *ssafn) Fatalf(pos src.XPos, msg string, args ...interface{}) {
  5379  	lineno = pos
  5380  	Fatalf(msg, args...)
  5381  }
  5382  
  5383  // Warnl reports a "warning", which is usually flag-triggered
  5384  // logging output for the benefit of tests.
  5385  func (e *ssafn) Warnl(pos src.XPos, fmt_ string, args ...interface{}) {
  5386  	Warnl(pos, fmt_, args...)
  5387  }
  5388  
  5389  func (e *ssafn) Debug_checknil() bool {
  5390  	return Debug_checknil != 0
  5391  }
  5392  
  5393  func (e *ssafn) Debug_eagerwb() bool {
  5394  	return Debug_eagerwb != 0
  5395  }
  5396  
  5397  func (e *ssafn) UseWriteBarrier() bool {
  5398  	return use_writebarrier
  5399  }
  5400  
  5401  func (e *ssafn) Syslook(name string) *obj.LSym {
  5402  	switch name {
  5403  	case "goschedguarded":
  5404  		return goschedguarded
  5405  	case "writeBarrier":
  5406  		return writeBarrier
  5407  	case "writebarrierptr":
  5408  		return writebarrierptr
  5409  	case "gcWriteBarrier":
  5410  		return gcWriteBarrier
  5411  	case "typedmemmove":
  5412  		return typedmemmove
  5413  	case "typedmemclr":
  5414  		return typedmemclr
  5415  	}
  5416  	Fatalf("unknown Syslook func %v", name)
  5417  	return nil
  5418  }
  5419  
  5420  func (e *ssafn) SetWBPos(pos src.XPos) {
  5421  	e.curfn.Func.setWBPos(pos)
  5422  }
  5423  
  5424  func (n *Node) Typ() *types.Type {
  5425  	return n.Type
  5426  }
  5427  func (n *Node) StorageClass() ssa.StorageClass {
  5428  	switch n.Class() {
  5429  	case PPARAM:
  5430  		return ssa.ClassParam
  5431  	case PPARAMOUT:
  5432  		return ssa.ClassParamOut
  5433  	case PAUTO:
  5434  		return ssa.ClassAuto
  5435  	default:
  5436  		Fatalf("untranslateable storage class for %v: %s", n, n.Class())
  5437  		return 0
  5438  	}
  5439  }