github.com/epfl-dcsl/gotee@v0.0.0-20200909122901-014b35f5e5e9/src/cmd/compile/internal/gc/swt.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gc 6 7 import ( 8 "cmd/compile/internal/types" 9 "fmt" 10 "sort" 11 ) 12 13 const ( 14 // expression switch 15 switchKindExpr = iota // switch a {...} or switch 5 {...} 16 switchKindTrue // switch true {...} or switch {...} 17 switchKindFalse // switch false {...} 18 ) 19 20 const ( 21 binarySearchMin = 4 // minimum number of cases for binary search 22 integerRangeMin = 2 // minimum size of integer ranges 23 ) 24 25 // An exprSwitch walks an expression switch. 26 type exprSwitch struct { 27 exprname *Node // node for the expression being switched on 28 kind int // kind of switch statement (switchKind*) 29 } 30 31 // A typeSwitch walks a type switch. 32 type typeSwitch struct { 33 hashname *Node // node for the hash of the type of the variable being switched on 34 facename *Node // node for the concrete type of the variable being switched on 35 okname *Node // boolean node used for comma-ok type assertions 36 } 37 38 // A caseClause is a single case clause in a switch statement. 39 type caseClause struct { 40 node *Node // points at case statement 41 ordinal int // position in switch 42 hash uint32 // hash of a type switch 43 // isconst indicates whether this case clause is a constant, 44 // for the purposes of the switch code generation. 45 // For expression switches, that's generally literals (case 5:, not case x:). 46 // For type switches, that's concrete types (case time.Time:), not interfaces (case io.Reader:). 47 isconst bool 48 } 49 50 // caseClauses are all the case clauses in a switch statement. 51 type caseClauses struct { 52 list []caseClause // general cases 53 defjmp *Node // OGOTO for default case or OBREAK if no default case present 54 niljmp *Node // OGOTO for nil type case in a type switch 55 } 56 57 // typecheckswitch typechecks a switch statement. 58 func typecheckswitch(n *Node) { 59 typecheckslice(n.Ninit.Slice(), Etop) 60 61 var nilonly string 62 var top int 63 var t *types.Type 64 65 if n.Left != nil && n.Left.Op == OTYPESW { 66 // type switch 67 top = Etype 68 n.Left.Right = typecheck(n.Left.Right, Erv) 69 t = n.Left.Right.Type 70 if t != nil && !t.IsInterface() { 71 yyerrorl(n.Pos, "cannot type switch on non-interface value %L", n.Left.Right) 72 } 73 } else { 74 // expression switch 75 top = Erv 76 if n.Left != nil { 77 n.Left = typecheck(n.Left, Erv) 78 n.Left = defaultlit(n.Left, nil) 79 t = n.Left.Type 80 } else { 81 t = types.Types[TBOOL] 82 } 83 if t != nil { 84 switch { 85 case !okforeq[t.Etype]: 86 yyerrorl(n.Pos, "cannot switch on %L", n.Left) 87 case t.IsSlice(): 88 nilonly = "slice" 89 case t.IsArray() && !IsComparable(t): 90 yyerrorl(n.Pos, "cannot switch on %L", n.Left) 91 case t.IsStruct(): 92 if f := IncomparableField(t); f != nil { 93 yyerrorl(n.Pos, "cannot switch on %L (struct containing %v cannot be compared)", n.Left, f.Type) 94 } 95 case t.Etype == TFUNC: 96 nilonly = "func" 97 case t.IsMap(): 98 nilonly = "map" 99 } 100 } 101 } 102 103 n.Type = t 104 105 var def, niltype *Node 106 for _, ncase := range n.List.Slice() { 107 if ncase.List.Len() == 0 { 108 // default 109 if def != nil { 110 setlineno(ncase) 111 yyerrorl(ncase.Pos, "multiple defaults in switch (first at %v)", def.Line()) 112 } else { 113 def = ncase 114 } 115 } else { 116 ls := ncase.List.Slice() 117 for i1, n1 := range ls { 118 setlineno(n1) 119 ls[i1] = typecheck(ls[i1], Erv|Etype) 120 n1 = ls[i1] 121 if n1.Type == nil || t == nil { 122 continue 123 } 124 125 setlineno(ncase) 126 switch top { 127 // expression switch 128 case Erv: 129 ls[i1] = defaultlit(ls[i1], t) 130 n1 = ls[i1] 131 switch { 132 case n1.Op == OTYPE: 133 yyerrorl(ncase.Pos, "type %v is not an expression", n1.Type) 134 case n1.Type != nil && assignop(n1.Type, t, nil) == 0 && assignop(t, n1.Type, nil) == 0: 135 if n.Left != nil { 136 yyerrorl(ncase.Pos, "invalid case %v in switch on %v (mismatched types %v and %v)", n1, n.Left, n1.Type, t) 137 } else { 138 yyerrorl(ncase.Pos, "invalid case %v in switch (mismatched types %v and bool)", n1, n1.Type) 139 } 140 case nilonly != "" && !isnil(n1): 141 yyerrorl(ncase.Pos, "invalid case %v in switch (can only compare %s %v to nil)", n1, nilonly, n.Left) 142 case t.IsInterface() && !n1.Type.IsInterface() && !IsComparable(n1.Type): 143 yyerrorl(ncase.Pos, "invalid case %L in switch (incomparable type)", n1) 144 } 145 146 // type switch 147 case Etype: 148 var missing, have *types.Field 149 var ptr int 150 switch { 151 case n1.Op == OLITERAL && n1.Type.IsKind(TNIL): 152 // case nil: 153 if niltype != nil { 154 yyerrorl(ncase.Pos, "multiple nil cases in type switch (first at %v)", niltype.Line()) 155 } else { 156 niltype = ncase 157 } 158 case n1.Op != OTYPE && n1.Type != nil: // should this be ||? 159 yyerrorl(ncase.Pos, "%L is not a type", n1) 160 // reset to original type 161 n1 = n.Left.Right 162 ls[i1] = n1 163 case !n1.Type.IsInterface() && t.IsInterface() && !implements(n1.Type, t, &missing, &have, &ptr): 164 if have != nil && !missing.Broke() && !have.Broke() { 165 yyerrorl(ncase.Pos, "impossible type switch case: %L cannot have dynamic type %v"+ 166 " (wrong type for %v method)\n\thave %v%S\n\twant %v%S", n.Left.Right, n1.Type, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type) 167 } else if !missing.Broke() { 168 if ptr != 0 { 169 yyerrorl(ncase.Pos, "impossible type switch case: %L cannot have dynamic type %v"+ 170 " (%v method has pointer receiver)", n.Left.Right, n1.Type, missing.Sym) 171 } else { 172 yyerrorl(ncase.Pos, "impossible type switch case: %L cannot have dynamic type %v"+ 173 " (missing %v method)", n.Left.Right, n1.Type, missing.Sym) 174 } 175 } 176 } 177 } 178 } 179 } 180 181 if n.Type == nil || n.Type.IsUntyped() { 182 // if the value we're switching on has no type or is untyped, 183 // we've already printed an error and don't need to continue 184 // typechecking the body 185 return 186 } 187 188 if top == Etype { 189 ll := ncase.List 190 if ncase.Rlist.Len() != 0 { 191 nvar := ncase.Rlist.First() 192 if ll.Len() == 1 && ll.First().Type != nil && !ll.First().Type.IsKind(TNIL) { 193 // single entry type switch 194 nvar.Type = ll.First().Type 195 } else { 196 // multiple entry type switch or default 197 nvar.Type = n.Type 198 } 199 200 nvar = typecheck(nvar, Erv|Easgn) 201 ncase.Rlist.SetFirst(nvar) 202 } 203 } 204 205 typecheckslice(ncase.Nbody.Slice(), Etop) 206 } 207 switch top { 208 // expression switch 209 case Erv: 210 checkDupExprCases(n.Left, n.List.Slice()) 211 } 212 } 213 214 // walkswitch walks a switch statement. 215 func walkswitch(sw *Node) { 216 // convert switch {...} to switch true {...} 217 if sw.Left == nil { 218 sw.Left = nodbool(true) 219 sw.Left = typecheck(sw.Left, Erv) 220 } 221 222 if sw.Left.Op == OTYPESW { 223 var s typeSwitch 224 s.walk(sw) 225 } else { 226 var s exprSwitch 227 s.walk(sw) 228 } 229 } 230 231 // walk generates an AST implementing sw. 232 // sw is an expression switch. 233 // The AST is generally of the form of a linear 234 // search using if..goto, although binary search 235 // is used with long runs of constants. 236 func (s *exprSwitch) walk(sw *Node) { 237 casebody(sw, nil) 238 239 cond := sw.Left 240 sw.Left = nil 241 242 s.kind = switchKindExpr 243 if Isconst(cond, CTBOOL) { 244 s.kind = switchKindTrue 245 if !cond.Val().U.(bool) { 246 s.kind = switchKindFalse 247 } 248 } 249 250 cond = walkexpr(cond, &sw.Ninit) 251 t := sw.Type 252 if t == nil { 253 return 254 } 255 256 // convert the switch into OIF statements 257 var cas []*Node 258 if s.kind == switchKindTrue || s.kind == switchKindFalse { 259 s.exprname = nodbool(s.kind == switchKindTrue) 260 } else if consttype(cond) > 0 { 261 // leave constants to enable dead code elimination (issue 9608) 262 s.exprname = cond 263 } else { 264 s.exprname = temp(cond.Type) 265 cas = []*Node{nod(OAS, s.exprname, cond)} 266 typecheckslice(cas, Etop) 267 } 268 269 // Enumerate the cases and prepare the default case. 270 clauses := s.genCaseClauses(sw.List.Slice()) 271 sw.List.Set(nil) 272 cc := clauses.list 273 274 // handle the cases in order 275 for len(cc) > 0 { 276 run := 1 277 if okforcmp[t.Etype] && cc[0].isconst { 278 // do binary search on runs of constants 279 for ; run < len(cc) && cc[run].isconst; run++ { 280 } 281 // sort and compile constants 282 sort.Sort(caseClauseByConstVal(cc[:run])) 283 } 284 285 a := s.walkCases(cc[:run]) 286 cas = append(cas, a) 287 cc = cc[run:] 288 } 289 290 // handle default case 291 if nerrors == 0 { 292 cas = append(cas, clauses.defjmp) 293 sw.Nbody.Prepend(cas...) 294 walkstmtlist(sw.Nbody.Slice()) 295 } 296 } 297 298 // walkCases generates an AST implementing the cases in cc. 299 func (s *exprSwitch) walkCases(cc []caseClause) *Node { 300 if len(cc) < binarySearchMin { 301 // linear search 302 var cas []*Node 303 for _, c := range cc { 304 n := c.node 305 lno := setlineno(n) 306 307 a := nod(OIF, nil, nil) 308 if rng := n.List.Slice(); rng != nil { 309 // Integer range. 310 // exprname is a temp or a constant, 311 // so it is safe to evaluate twice. 312 // In most cases, this conjunction will be 313 // rewritten by walkinrange into a single comparison. 314 low := nod(OGE, s.exprname, rng[0]) 315 high := nod(OLE, s.exprname, rng[1]) 316 a.Left = nod(OANDAND, low, high) 317 a.Left = typecheck(a.Left, Erv) 318 a.Left = walkexpr(a.Left, nil) // give walk the opportunity to optimize the range check 319 } else if (s.kind != switchKindTrue && s.kind != switchKindFalse) || assignop(n.Left.Type, s.exprname.Type, nil) == OCONVIFACE || assignop(s.exprname.Type, n.Left.Type, nil) == OCONVIFACE { 320 a.Left = nod(OEQ, s.exprname, n.Left) // if name == val 321 a.Left = typecheck(a.Left, Erv) 322 } else if s.kind == switchKindTrue { 323 a.Left = n.Left // if val 324 } else { 325 // s.kind == switchKindFalse 326 a.Left = nod(ONOT, n.Left, nil) // if !val 327 a.Left = typecheck(a.Left, Erv) 328 } 329 a.Nbody.Set1(n.Right) // goto l 330 331 cas = append(cas, a) 332 lineno = lno 333 } 334 return liststmt(cas) 335 } 336 337 // find the middle and recur 338 half := len(cc) / 2 339 a := nod(OIF, nil, nil) 340 n := cc[half-1].node 341 var mid *Node 342 if rng := n.List.Slice(); rng != nil { 343 mid = rng[1] // high end of range 344 } else { 345 mid = n.Left 346 } 347 le := nod(OLE, s.exprname, mid) 348 if Isconst(mid, CTSTR) { 349 // Search by length and then by value; see caseClauseByConstVal. 350 lenlt := nod(OLT, nod(OLEN, s.exprname, nil), nod(OLEN, mid, nil)) 351 leneq := nod(OEQ, nod(OLEN, s.exprname, nil), nod(OLEN, mid, nil)) 352 a.Left = nod(OOROR, lenlt, nod(OANDAND, leneq, le)) 353 } else { 354 a.Left = le 355 } 356 a.Left = typecheck(a.Left, Erv) 357 a.Nbody.Set1(s.walkCases(cc[:half])) 358 a.Rlist.Set1(s.walkCases(cc[half:])) 359 return a 360 } 361 362 // casebody builds separate lists of statements and cases. 363 // It makes labels between cases and statements 364 // and deals with fallthrough, break, and unreachable statements. 365 func casebody(sw *Node, typeswvar *Node) { 366 if sw.List.Len() == 0 { 367 return 368 } 369 370 lno := setlineno(sw) 371 372 var cas []*Node // cases 373 var stat []*Node // statements 374 var def *Node // defaults 375 br := nod(OBREAK, nil, nil) 376 377 for _, n := range sw.List.Slice() { 378 setlineno(n) 379 if n.Op != OXCASE { 380 Fatalf("casebody %v", n.Op) 381 } 382 n.Op = OCASE 383 needvar := n.List.Len() != 1 || n.List.First().Op == OLITERAL 384 385 jmp := nod(OGOTO, autolabel(".s"), nil) 386 switch n.List.Len() { 387 case 0: 388 // default 389 if def != nil { 390 yyerrorl(n.Pos, "more than one default case") 391 } 392 // reuse original default case 393 n.Right = jmp 394 def = n 395 case 1: 396 // one case -- reuse OCASE node 397 n.Left = n.List.First() 398 n.Right = jmp 399 n.List.Set(nil) 400 cas = append(cas, n) 401 default: 402 // Expand multi-valued cases and detect ranges of integer cases. 403 if typeswvar != nil || sw.Left.Type.IsInterface() || !n.List.First().Type.IsInteger() || n.List.Len() < integerRangeMin { 404 // Can't use integer ranges. Expand each case into a separate node. 405 for _, n1 := range n.List.Slice() { 406 cas = append(cas, nod(OCASE, n1, jmp)) 407 } 408 break 409 } 410 // Find integer ranges within runs of constants. 411 s := n.List.Slice() 412 j := 0 413 for j < len(s) { 414 // Find a run of constants. 415 var run int 416 for run = j; run < len(s) && Isconst(s[run], CTINT); run++ { 417 } 418 if run-j >= integerRangeMin { 419 // Search for integer ranges in s[j:run]. 420 // Typechecking is done, so all values are already in an appropriate range. 421 search := s[j:run] 422 sort.Sort(constIntNodesByVal(search)) 423 for beg, end := 0, 1; end <= len(search); end++ { 424 if end < len(search) && search[end].Int64() == search[end-1].Int64()+1 { 425 continue 426 } 427 if end-beg >= integerRangeMin { 428 // Record range in List. 429 c := nod(OCASE, nil, jmp) 430 c.List.Set2(search[beg], search[end-1]) 431 cas = append(cas, c) 432 } else { 433 // Not large enough for range; record separately. 434 for _, n := range search[beg:end] { 435 cas = append(cas, nod(OCASE, n, jmp)) 436 } 437 } 438 beg = end 439 } 440 j = run 441 } 442 // Advance to next constant, adding individual non-constant 443 // or as-yet-unhandled constant cases as we go. 444 for ; j < len(s) && (j < run || !Isconst(s[j], CTINT)); j++ { 445 cas = append(cas, nod(OCASE, s[j], jmp)) 446 } 447 } 448 } 449 450 stat = append(stat, nod(OLABEL, jmp.Left, nil)) 451 if typeswvar != nil && needvar && n.Rlist.Len() != 0 { 452 l := []*Node{ 453 nod(ODCL, n.Rlist.First(), nil), 454 nod(OAS, n.Rlist.First(), typeswvar), 455 } 456 typecheckslice(l, Etop) 457 stat = append(stat, l...) 458 } 459 stat = append(stat, n.Nbody.Slice()...) 460 461 // Search backwards for the index of the fallthrough 462 // statement. Do not assume it'll be in the last 463 // position, since in some cases (e.g. when the statement 464 // list contains autotmp_ variables), one or more OVARKILL 465 // nodes will be at the end of the list. 466 fallIndex := len(stat) - 1 467 for stat[fallIndex].Op == OVARKILL { 468 fallIndex-- 469 } 470 last := stat[fallIndex] 471 if last.Op != OFALL { 472 stat = append(stat, br) 473 } 474 } 475 476 stat = append(stat, br) 477 if def != nil { 478 cas = append(cas, def) 479 } 480 481 sw.List.Set(cas) 482 sw.Nbody.Set(stat) 483 lineno = lno 484 } 485 486 // genCaseClauses generates the caseClauses value for clauses. 487 func (s *exprSwitch) genCaseClauses(clauses []*Node) caseClauses { 488 var cc caseClauses 489 for _, n := range clauses { 490 if n.Left == nil && n.List.Len() == 0 { 491 // default case 492 if cc.defjmp != nil { 493 Fatalf("duplicate default case not detected during typechecking") 494 } 495 cc.defjmp = n.Right 496 continue 497 } 498 c := caseClause{node: n, ordinal: len(cc.list)} 499 if n.List.Len() > 0 { 500 c.isconst = true 501 } 502 switch consttype(n.Left) { 503 case CTFLT, CTINT, CTRUNE, CTSTR: 504 c.isconst = true 505 } 506 cc.list = append(cc.list, c) 507 } 508 509 if cc.defjmp == nil { 510 cc.defjmp = nod(OBREAK, nil, nil) 511 } 512 return cc 513 } 514 515 // genCaseClauses generates the caseClauses value for clauses. 516 func (s *typeSwitch) genCaseClauses(clauses []*Node) caseClauses { 517 var cc caseClauses 518 for _, n := range clauses { 519 switch { 520 case n.Left == nil: 521 // default case 522 if cc.defjmp != nil { 523 Fatalf("duplicate default case not detected during typechecking") 524 } 525 cc.defjmp = n.Right 526 continue 527 case n.Left.Op == OLITERAL: 528 // nil case in type switch 529 if cc.niljmp != nil { 530 Fatalf("duplicate nil case not detected during typechecking") 531 } 532 cc.niljmp = n.Right 533 continue 534 } 535 536 // general case 537 c := caseClause{ 538 node: n, 539 ordinal: len(cc.list), 540 isconst: !n.Left.Type.IsInterface(), 541 hash: typehash(n.Left.Type), 542 } 543 cc.list = append(cc.list, c) 544 } 545 546 if cc.defjmp == nil { 547 cc.defjmp = nod(OBREAK, nil, nil) 548 } 549 550 // diagnose duplicate cases 551 s.checkDupCases(cc.list) 552 return cc 553 } 554 555 func (s *typeSwitch) checkDupCases(cc []caseClause) { 556 if len(cc) < 2 { 557 return 558 } 559 // We store seen types in a map keyed by type hash. 560 // It is possible, but very unlikely, for multiple distinct types to have the same hash. 561 seen := make(map[uint32][]*Node) 562 // To avoid many small allocations of length 1 slices, 563 // also set up a single large slice to slice into. 564 nn := make([]*Node, 0, len(cc)) 565 Outer: 566 for _, c := range cc { 567 prev, ok := seen[c.hash] 568 if !ok { 569 // First entry for this hash. 570 nn = append(nn, c.node) 571 seen[c.hash] = nn[len(nn)-1 : len(nn) : len(nn)] 572 continue 573 } 574 for _, n := range prev { 575 if eqtype(n.Left.Type, c.node.Left.Type) { 576 yyerrorl(c.node.Pos, "duplicate case %v in type switch\n\tprevious case at %v", c.node.Left.Type, n.Line()) 577 // avoid double-reporting errors 578 continue Outer 579 } 580 } 581 seen[c.hash] = append(seen[c.hash], c.node) 582 } 583 } 584 585 func checkDupExprCases(exprname *Node, clauses []*Node) { 586 // boolean (naked) switch, nothing to do. 587 if exprname == nil { 588 return 589 } 590 // The common case is that s's expression is not an interface. 591 // In that case, all constant clauses have the same type, 592 // so checking for duplicates can be done solely by value. 593 if !exprname.Type.IsInterface() { 594 seen := make(map[interface{}]*Node) 595 for _, ncase := range clauses { 596 for _, n := range ncase.List.Slice() { 597 // Can't check for duplicates that aren't constants, per the spec. Issue 15896. 598 // Don't check for duplicate bools. Although the spec allows it, 599 // (1) the compiler hasn't checked it in the past, so compatibility mandates it, and 600 // (2) it would disallow useful things like 601 // case GOARCH == "arm" && GOARM == "5": 602 // case GOARCH == "arm": 603 // which would both evaluate to false for non-ARM compiles. 604 if ct := consttype(n); ct == 0 || ct == CTBOOL { 605 continue 606 } 607 608 val := n.Val().Interface() 609 prev, dup := seen[val] 610 if !dup { 611 seen[val] = n 612 continue 613 } 614 yyerrorl(ncase.Pos, "duplicate case %s in switch\n\tprevious case at %v", 615 nodeAndVal(n), prev.Line()) 616 } 617 } 618 return 619 } 620 // s's expression is an interface. This is fairly rare, so keep this simple. 621 // Duplicates are only duplicates if they have the same type and the same value. 622 type typeVal struct { 623 typ string 624 val interface{} 625 } 626 seen := make(map[typeVal]*Node) 627 for _, ncase := range clauses { 628 for _, n := range ncase.List.Slice() { 629 if ct := consttype(n); ct == 0 || ct == CTBOOL { 630 continue 631 } 632 tv := typeVal{ 633 typ: n.Type.LongString(), 634 val: n.Val().Interface(), 635 } 636 prev, dup := seen[tv] 637 if !dup { 638 seen[tv] = n 639 continue 640 } 641 yyerrorl(ncase.Pos, "duplicate case %s in switch\n\tprevious case at %v", 642 nodeAndVal(n), prev.Line()) 643 } 644 } 645 } 646 647 func nodeAndVal(n *Node) string { 648 show := n.String() 649 val := n.Val().Interface() 650 if s := fmt.Sprintf("%#v", val); show != s { 651 show += " (value " + s + ")" 652 } 653 return show 654 } 655 656 // walk generates an AST that implements sw, 657 // where sw is a type switch. 658 // The AST is generally of the form of a linear 659 // search using if..goto, although binary search 660 // is used with long runs of concrete types. 661 func (s *typeSwitch) walk(sw *Node) { 662 cond := sw.Left 663 sw.Left = nil 664 665 if cond == nil { 666 sw.List.Set(nil) 667 return 668 } 669 if cond.Right == nil { 670 yyerrorl(sw.Pos, "type switch must have an assignment") 671 return 672 } 673 674 cond.Right = walkexpr(cond.Right, &sw.Ninit) 675 if !cond.Right.Type.IsInterface() { 676 yyerrorl(sw.Pos, "type switch must be on an interface") 677 return 678 } 679 680 var cas []*Node 681 682 // predeclare temporary variables and the boolean var 683 s.facename = temp(cond.Right.Type) 684 685 a := nod(OAS, s.facename, cond.Right) 686 a = typecheck(a, Etop) 687 cas = append(cas, a) 688 689 s.okname = temp(types.Types[TBOOL]) 690 s.okname = typecheck(s.okname, Erv) 691 692 s.hashname = temp(types.Types[TUINT32]) 693 s.hashname = typecheck(s.hashname, Erv) 694 695 // set up labels and jumps 696 casebody(sw, s.facename) 697 698 clauses := s.genCaseClauses(sw.List.Slice()) 699 sw.List.Set(nil) 700 def := clauses.defjmp 701 702 // For empty interfaces, do: 703 // if e._type == nil { 704 // do nil case if it exists, otherwise default 705 // } 706 // h := e._type.hash 707 // Use a similar strategy for non-empty interfaces. 708 709 // Get interface descriptor word. 710 // For empty interfaces this will be the type. 711 // For non-empty interfaces this will be the itab. 712 itab := nod(OITAB, s.facename, nil) 713 714 // Check for nil first. 715 i := nod(OIF, nil, nil) 716 i.Left = nod(OEQ, itab, nodnil()) 717 if clauses.niljmp != nil { 718 // Do explicit nil case right here. 719 i.Nbody.Set1(clauses.niljmp) 720 } else { 721 // Jump to default case. 722 lbl := autolabel(".s") 723 i.Nbody.Set1(nod(OGOTO, lbl, nil)) 724 // Wrap default case with label. 725 blk := nod(OBLOCK, nil, nil) 726 blk.List.Set2(nod(OLABEL, lbl, nil), def) 727 def = blk 728 } 729 i.Left = typecheck(i.Left, Erv) 730 cas = append(cas, i) 731 732 // Load hash from type or itab. 733 h := nodSym(ODOTPTR, itab, nil) 734 h.Type = types.Types[TUINT32] 735 h.SetTypecheck(1) 736 if cond.Right.Type.IsEmptyInterface() { 737 h.Xoffset = int64(2 * Widthptr) // offset of hash in runtime._type 738 } else { 739 h.Xoffset = int64(2 * Widthptr) // offset of hash in runtime.itab 740 } 741 h.SetBounded(true) // guaranteed not to fault 742 a = nod(OAS, s.hashname, h) 743 a = typecheck(a, Etop) 744 cas = append(cas, a) 745 746 cc := clauses.list 747 748 // insert type equality check into each case block 749 for _, c := range cc { 750 c.node.Right = s.typeone(c.node) 751 } 752 753 // generate list of if statements, binary search for constant sequences 754 for len(cc) > 0 { 755 if !cc[0].isconst { 756 n := cc[0].node 757 cas = append(cas, n.Right) 758 cc = cc[1:] 759 continue 760 } 761 762 // identify run of constants 763 var run int 764 for run = 1; run < len(cc) && cc[run].isconst; run++ { 765 } 766 767 // sort by hash 768 sort.Sort(caseClauseByType(cc[:run])) 769 770 // for debugging: linear search 771 if false { 772 for i := 0; i < run; i++ { 773 n := cc[i].node 774 cas = append(cas, n.Right) 775 } 776 continue 777 } 778 779 // combine adjacent cases with the same hash 780 ncase := 0 781 for i := 0; i < run; i++ { 782 ncase++ 783 hash := []*Node{cc[i].node.Right} 784 for j := i + 1; j < run && cc[i].hash == cc[j].hash; j++ { 785 hash = append(hash, cc[j].node.Right) 786 } 787 cc[i].node.Right = liststmt(hash) 788 } 789 790 // binary search among cases to narrow by hash 791 cas = append(cas, s.walkCases(cc[:ncase])) 792 cc = cc[ncase:] 793 } 794 795 // handle default case 796 if nerrors == 0 { 797 cas = append(cas, def) 798 sw.Nbody.Prepend(cas...) 799 sw.List.Set(nil) 800 walkstmtlist(sw.Nbody.Slice()) 801 } 802 } 803 804 // typeone generates an AST that jumps to the 805 // case body if the variable is of type t. 806 func (s *typeSwitch) typeone(t *Node) *Node { 807 var name *Node 808 var init Nodes 809 if t.Rlist.Len() == 0 { 810 name = nblank 811 nblank = typecheck(nblank, Erv|Easgn) 812 } else { 813 name = t.Rlist.First() 814 init.Append(nod(ODCL, name, nil)) 815 a := nod(OAS, name, nil) 816 a = typecheck(a, Etop) 817 init.Append(a) 818 } 819 820 a := nod(OAS2, nil, nil) 821 a.List.Set2(name, s.okname) // name, ok = 822 b := nod(ODOTTYPE, s.facename, nil) 823 b.Type = t.Left.Type // interface.(type) 824 a.Rlist.Set1(b) 825 a = typecheck(a, Etop) 826 a = walkexpr(a, &init) 827 init.Append(a) 828 829 c := nod(OIF, nil, nil) 830 c.Left = s.okname 831 c.Nbody.Set1(t.Right) // if ok { goto l } 832 833 init.Append(c) 834 return init.asblock() 835 } 836 837 // walkCases generates an AST implementing the cases in cc. 838 func (s *typeSwitch) walkCases(cc []caseClause) *Node { 839 if len(cc) < binarySearchMin { 840 var cas []*Node 841 for _, c := range cc { 842 n := c.node 843 if !c.isconst { 844 Fatalf("typeSwitch walkCases") 845 } 846 a := nod(OIF, nil, nil) 847 a.Left = nod(OEQ, s.hashname, nodintconst(int64(c.hash))) 848 a.Left = typecheck(a.Left, Erv) 849 a.Nbody.Set1(n.Right) 850 cas = append(cas, a) 851 } 852 return liststmt(cas) 853 } 854 855 // find the middle and recur 856 half := len(cc) / 2 857 a := nod(OIF, nil, nil) 858 a.Left = nod(OLE, s.hashname, nodintconst(int64(cc[half-1].hash))) 859 a.Left = typecheck(a.Left, Erv) 860 a.Nbody.Set1(s.walkCases(cc[:half])) 861 a.Rlist.Set1(s.walkCases(cc[half:])) 862 return a 863 } 864 865 // caseClauseByConstVal sorts clauses by constant value to enable binary search. 866 type caseClauseByConstVal []caseClause 867 868 func (x caseClauseByConstVal) Len() int { return len(x) } 869 func (x caseClauseByConstVal) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 870 func (x caseClauseByConstVal) Less(i, j int) bool { 871 // n1 and n2 might be individual constants or integer ranges. 872 // We have checked for duplicates already, 873 // so ranges can be safely represented by any value in the range. 874 n1 := x[i].node 875 var v1 interface{} 876 if s := n1.List.Slice(); s != nil { 877 v1 = s[0].Val().U 878 } else { 879 v1 = n1.Left.Val().U 880 } 881 882 n2 := x[j].node 883 var v2 interface{} 884 if s := n2.List.Slice(); s != nil { 885 v2 = s[0].Val().U 886 } else { 887 v2 = n2.Left.Val().U 888 } 889 890 switch v1 := v1.(type) { 891 case *Mpflt: 892 return v1.Cmp(v2.(*Mpflt)) < 0 893 case *Mpint: 894 return v1.Cmp(v2.(*Mpint)) < 0 895 case string: 896 // Sort strings by length and then by value. 897 // It is much cheaper to compare lengths than values, 898 // and all we need here is consistency. 899 // We respect this sorting in exprSwitch.walkCases. 900 a := v1 901 b := v2.(string) 902 if len(a) != len(b) { 903 return len(a) < len(b) 904 } 905 return a < b 906 } 907 908 Fatalf("caseClauseByConstVal passed bad clauses %v < %v", x[i].node.Left, x[j].node.Left) 909 return false 910 } 911 912 type caseClauseByType []caseClause 913 914 func (x caseClauseByType) Len() int { return len(x) } 915 func (x caseClauseByType) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 916 func (x caseClauseByType) Less(i, j int) bool { 917 c1, c2 := x[i], x[j] 918 // sort by hash code, then ordinal (for the rare case of hash collisions) 919 if c1.hash != c2.hash { 920 return c1.hash < c2.hash 921 } 922 return c1.ordinal < c2.ordinal 923 } 924 925 type constIntNodesByVal []*Node 926 927 func (x constIntNodesByVal) Len() int { return len(x) } 928 func (x constIntNodesByVal) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 929 func (x constIntNodesByVal) Less(i, j int) bool { 930 return x[i].Val().U.(*Mpint).Cmp(x[j].Val().U.(*Mpint)) < 0 931 }