github.com/epfl-dcsl/gotee@v0.0.0-20200909122901-014b35f5e5e9/src/gnet/ip.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // IP address manipulations
     6  //
     7  // IPv4 addresses are 4 bytes; IPv6 addresses are 16 bytes.
     8  // An IPv4 address can be converted to an IPv6 address by
     9  // adding a canonical prefix (10 zeros, 2 0xFFs).
    10  // This library accepts either size of byte slice but always
    11  // returns 16-byte addresses.
    12  
    13  package gnet
    14  
    15  import _ "unsafe" // for go:linkname
    16  
    17  import "bytes"
    18  
    19  // IP address lengths (bytes).
    20  const (
    21  	IPv4len = 4
    22  	IPv6len = 16
    23  )
    24  
    25  // An IP is a single IP address, a slice of bytes.
    26  // Functions in this package accept either 4-byte (IPv4)
    27  // or 16-byte (IPv6) slices as input.
    28  //
    29  // Note that in this documentation, referring to an
    30  // IP address as an IPv4 address or an IPv6 address
    31  // is a semantic property of the address, not just the
    32  // length of the byte slice: a 16-byte slice can still
    33  // be an IPv4 address.
    34  type IP []byte
    35  
    36  // An IP mask is an IP address.
    37  type IPMask []byte
    38  
    39  // An IPNet represents an IP network.
    40  type IPNet struct {
    41  	IP   IP     // network number
    42  	Mask IPMask // network mask
    43  }
    44  
    45  // IPv4 returns the IP address (in 16-byte form) of the
    46  // IPv4 address a.b.c.d.
    47  func IPv4(a, b, c, d byte) IP {
    48  	p := make(IP, IPv6len)
    49  	copy(p, v4InV6Prefix)
    50  	p[12] = a
    51  	p[13] = b
    52  	p[14] = c
    53  	p[15] = d
    54  	return p
    55  }
    56  
    57  var v4InV6Prefix = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff}
    58  
    59  // IPv4Mask returns the IP mask (in 4-byte form) of the
    60  // IPv4 mask a.b.c.d.
    61  func IPv4Mask(a, b, c, d byte) IPMask {
    62  	p := make(IPMask, IPv4len)
    63  	p[0] = a
    64  	p[1] = b
    65  	p[2] = c
    66  	p[3] = d
    67  	return p
    68  }
    69  
    70  // CIDRMask returns an IPMask consisting of `ones' 1 bits
    71  // followed by 0s up to a total length of `bits' bits.
    72  // For a mask of this form, CIDRMask is the inverse of IPMask.Size.
    73  func CIDRMask(ones, bits int) IPMask {
    74  	if bits != 8*IPv4len && bits != 8*IPv6len {
    75  		return nil
    76  	}
    77  	if ones < 0 || ones > bits {
    78  		return nil
    79  	}
    80  	l := bits / 8
    81  	m := make(IPMask, l)
    82  	n := uint(ones)
    83  	for i := 0; i < l; i++ {
    84  		if n >= 8 {
    85  			m[i] = 0xff
    86  			n -= 8
    87  			continue
    88  		}
    89  		m[i] = ^byte(0xff >> n)
    90  		n = 0
    91  	}
    92  	return m
    93  }
    94  
    95  // Well-known IPv4 addresses
    96  var (
    97  	IPv4bcast     = IPv4(255, 255, 255, 255) // limited broadcast
    98  	IPv4allsys    = IPv4(224, 0, 0, 1)       // all systems
    99  	IPv4allrouter = IPv4(224, 0, 0, 2)       // all routers
   100  	IPv4zero      = IPv4(0, 0, 0, 0)         // all zeros
   101  )
   102  
   103  // Well-known IPv6 addresses
   104  var (
   105  	IPv6zero                   = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
   106  	IPv6unspecified            = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
   107  	IPv6loopback               = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
   108  	IPv6interfacelocalallnodes = IP{0xff, 0x01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
   109  	IPv6linklocalallnodes      = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
   110  	IPv6linklocalallrouters    = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x02}
   111  )
   112  
   113  // IsUnspecified reports whether ip is an unspecified address, either
   114  // the IPv4 address "0.0.0.0" or the IPv6 address "::".
   115  func (ip IP) IsUnspecified() bool {
   116  	return ip.Equal(IPv4zero) || ip.Equal(IPv6unspecified)
   117  }
   118  
   119  // IsLoopback reports whether ip is a loopback address.
   120  func (ip IP) IsLoopback() bool {
   121  	if ip4 := ip.To4(); ip4 != nil {
   122  		return ip4[0] == 127
   123  	}
   124  	return ip.Equal(IPv6loopback)
   125  }
   126  
   127  // IsMulticast reports whether ip is a multicast address.
   128  func (ip IP) IsMulticast() bool {
   129  	if ip4 := ip.To4(); ip4 != nil {
   130  		return ip4[0]&0xf0 == 0xe0
   131  	}
   132  	return len(ip) == IPv6len && ip[0] == 0xff
   133  }
   134  
   135  // IsInterfaceLocalMulticast reports whether ip is
   136  // an interface-local multicast address.
   137  func (ip IP) IsInterfaceLocalMulticast() bool {
   138  	return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x01
   139  }
   140  
   141  // IsLinkLocalMulticast reports whether ip is a link-local
   142  // multicast address.
   143  func (ip IP) IsLinkLocalMulticast() bool {
   144  	if ip4 := ip.To4(); ip4 != nil {
   145  		return ip4[0] == 224 && ip4[1] == 0 && ip4[2] == 0
   146  	}
   147  	return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x02
   148  }
   149  
   150  // IsLinkLocalUnicast reports whether ip is a link-local
   151  // unicast address.
   152  func (ip IP) IsLinkLocalUnicast() bool {
   153  	if ip4 := ip.To4(); ip4 != nil {
   154  		return ip4[0] == 169 && ip4[1] == 254
   155  	}
   156  	return len(ip) == IPv6len && ip[0] == 0xfe && ip[1]&0xc0 == 0x80
   157  }
   158  
   159  // IsGlobalUnicast reports whether ip is a global unicast
   160  // address.
   161  //
   162  // The identification of global unicast addresses uses address type
   163  // identification as defined in RFC 1122, RFC 4632 and RFC 4291 with
   164  // the exception of IPv4 directed broadcast addresses.
   165  // It returns true even if ip is in IPv4 private address space or
   166  // local IPv6 unicast address space.
   167  func (ip IP) IsGlobalUnicast() bool {
   168  	return (len(ip) == IPv4len || len(ip) == IPv6len) &&
   169  		!ip.Equal(IPv4bcast) &&
   170  		!ip.IsUnspecified() &&
   171  		!ip.IsLoopback() &&
   172  		!ip.IsMulticast() &&
   173  		!ip.IsLinkLocalUnicast()
   174  }
   175  
   176  // Is p all zeros?
   177  func isZeros(p IP) bool {
   178  	for i := 0; i < len(p); i++ {
   179  		if p[i] != 0 {
   180  			return false
   181  		}
   182  	}
   183  	return true
   184  }
   185  
   186  // To4 converts the IPv4 address ip to a 4-byte representation.
   187  // If ip is not an IPv4 address, To4 returns nil.
   188  func (ip IP) To4() IP {
   189  	if len(ip) == IPv4len {
   190  		return ip
   191  	}
   192  	if len(ip) == IPv6len &&
   193  		isZeros(ip[0:10]) &&
   194  		ip[10] == 0xff &&
   195  		ip[11] == 0xff {
   196  		return ip[12:16]
   197  	}
   198  	return nil
   199  }
   200  
   201  // To16 converts the IP address ip to a 16-byte representation.
   202  // If ip is not an IP address (it is the wrong length), To16 returns nil.
   203  func (ip IP) To16() IP {
   204  	if len(ip) == IPv4len {
   205  		return IPv4(ip[0], ip[1], ip[2], ip[3])
   206  	}
   207  	if len(ip) == IPv6len {
   208  		return ip
   209  	}
   210  	return nil
   211  }
   212  
   213  // Default route masks for IPv4.
   214  var (
   215  	classAMask = IPv4Mask(0xff, 0, 0, 0)
   216  	classBMask = IPv4Mask(0xff, 0xff, 0, 0)
   217  	classCMask = IPv4Mask(0xff, 0xff, 0xff, 0)
   218  )
   219  
   220  // DefaultMask returns the default IP mask for the IP address ip.
   221  // Only IPv4 addresses have default masks; DefaultMask returns
   222  // nil if ip is not a valid IPv4 address.
   223  func (ip IP) DefaultMask() IPMask {
   224  	if ip = ip.To4(); ip == nil {
   225  		return nil
   226  	}
   227  	switch true {
   228  	case ip[0] < 0x80:
   229  		return classAMask
   230  	case ip[0] < 0xC0:
   231  		return classBMask
   232  	default:
   233  		return classCMask
   234  	}
   235  }
   236  
   237  func allFF(b []byte) bool {
   238  	for _, c := range b {
   239  		if c != 0xff {
   240  			return false
   241  		}
   242  	}
   243  	return true
   244  }
   245  
   246  // Mask returns the result of masking the IP address ip with mask.
   247  func (ip IP) Mask(mask IPMask) IP {
   248  	if len(mask) == IPv6len && len(ip) == IPv4len && allFF(mask[:12]) {
   249  		mask = mask[12:]
   250  	}
   251  	if len(mask) == IPv4len && len(ip) == IPv6len && bytesEqual(ip[:12], v4InV6Prefix) {
   252  		ip = ip[12:]
   253  	}
   254  	n := len(ip)
   255  	if n != len(mask) {
   256  		return nil
   257  	}
   258  	out := make(IP, n)
   259  	for i := 0; i < n; i++ {
   260  		out[i] = ip[i] & mask[i]
   261  	}
   262  	return out
   263  }
   264  
   265  // String returns the string form of the IP address ip.
   266  // It returns one of 4 forms:
   267  //   - "<nil>", if ip has length 0
   268  //   - dotted decimal ("192.0.2.1"), if ip is an IPv4 or IP4-mapped IPv6 address
   269  //   - IPv6 ("2001:db8::1"), if ip is a valid IPv6 address
   270  //   - the hexadecimal form of ip, without punctuation, if no other cases apply
   271  func (ip IP) String() string {
   272  	p := ip
   273  
   274  	if len(ip) == 0 {
   275  		return "<nil>"
   276  	}
   277  
   278  	// If IPv4, use dotted notation.
   279  	if p4 := p.To4(); len(p4) == IPv4len {
   280  		return uitoa(uint(p4[0])) + "." +
   281  			uitoa(uint(p4[1])) + "." +
   282  			uitoa(uint(p4[2])) + "." +
   283  			uitoa(uint(p4[3]))
   284  	}
   285  	if len(p) != IPv6len {
   286  		return "?" + hexString(ip)
   287  	}
   288  
   289  	// Find longest run of zeros.
   290  	e0 := -1
   291  	e1 := -1
   292  	for i := 0; i < IPv6len; i += 2 {
   293  		j := i
   294  		for j < IPv6len && p[j] == 0 && p[j+1] == 0 {
   295  			j += 2
   296  		}
   297  		if j > i && j-i > e1-e0 {
   298  			e0 = i
   299  			e1 = j
   300  			i = j
   301  		}
   302  	}
   303  	// The symbol "::" MUST NOT be used to shorten just one 16 bit 0 field.
   304  	if e1-e0 <= 2 {
   305  		e0 = -1
   306  		e1 = -1
   307  	}
   308  
   309  	const maxLen = len("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff")
   310  	b := make([]byte, 0, maxLen)
   311  
   312  	// Print with possible :: in place of run of zeros
   313  	for i := 0; i < IPv6len; i += 2 {
   314  		if i == e0 {
   315  			b = append(b, ':', ':')
   316  			i = e1
   317  			if i >= IPv6len {
   318  				break
   319  			}
   320  		} else if i > 0 {
   321  			b = append(b, ':')
   322  		}
   323  		b = appendHex(b, (uint32(p[i])<<8)|uint32(p[i+1]))
   324  	}
   325  	return string(b)
   326  }
   327  
   328  func hexString(b []byte) string {
   329  	s := make([]byte, len(b)*2)
   330  	for i, tn := range b {
   331  		s[i*2], s[i*2+1] = hexDigit[tn>>4], hexDigit[tn&0xf]
   332  	}
   333  	return string(s)
   334  }
   335  
   336  // ipEmptyString is like ip.String except that it returns
   337  // an empty string when ip is unset.
   338  func ipEmptyString(ip IP) string {
   339  	if len(ip) == 0 {
   340  		return ""
   341  	}
   342  	return ip.String()
   343  }
   344  
   345  // MarshalText implements the encoding.TextMarshaler interface.
   346  // The encoding is the same as returned by String, with one exception:
   347  // When len(ip) is zero, it returns an empty slice.
   348  func (ip IP) MarshalText() ([]byte, error) {
   349  	if len(ip) == 0 {
   350  		return []byte(""), nil
   351  	}
   352  	if len(ip) != IPv4len && len(ip) != IPv6len {
   353  		return nil, &AddrError{Err: "invalid IP address", Addr: hexString(ip)}
   354  	}
   355  	return []byte(ip.String()), nil
   356  }
   357  
   358  // UnmarshalText implements the encoding.TextUnmarshaler interface.
   359  // The IP address is expected in a form accepted by ParseIP.
   360  func (ip *IP) UnmarshalText(text []byte) error {
   361  	if len(text) == 0 {
   362  		*ip = nil
   363  		return nil
   364  	}
   365  	s := string(text)
   366  	x := ParseIP(s)
   367  	if x == nil {
   368  		return &ParseError{Type: "IP address", Text: s}
   369  	}
   370  	*ip = x
   371  	return nil
   372  }
   373  
   374  // Equal reports whether ip and x are the same IP address.
   375  // An IPv4 address and that same address in IPv6 form are
   376  // considered to be equal.
   377  func (ip IP) Equal(x IP) bool {
   378  	if len(ip) == len(x) {
   379  		return bytesEqual(ip, x)
   380  	}
   381  	if len(ip) == IPv4len && len(x) == IPv6len {
   382  		return bytesEqual(x[0:12], v4InV6Prefix) && bytesEqual(ip, x[12:])
   383  	}
   384  	if len(ip) == IPv6len && len(x) == IPv4len {
   385  		return bytesEqual(ip[0:12], v4InV6Prefix) && bytesEqual(ip[12:], x)
   386  	}
   387  	return false
   388  }
   389  
   390  // bytes.Equal is implemented in runtime/asm_$goarch.s
   391  func bytesEqual(x, y []byte) bool {
   392  	//panic("TODO implement")
   393  	return bytes.Equal(x, y)
   394  }
   395  
   396  func (ip IP) matchAddrFamily(x IP) bool {
   397  	return ip.To4() != nil && x.To4() != nil || ip.To16() != nil && ip.To4() == nil && x.To16() != nil && x.To4() == nil
   398  }
   399  
   400  // If mask is a sequence of 1 bits followed by 0 bits,
   401  // return the number of 1 bits.
   402  func simpleMaskLength(mask IPMask) int {
   403  	var n int
   404  	for i, v := range mask {
   405  		if v == 0xff {
   406  			n += 8
   407  			continue
   408  		}
   409  		// found non-ff byte
   410  		// count 1 bits
   411  		for v&0x80 != 0 {
   412  			n++
   413  			v <<= 1
   414  		}
   415  		// rest must be 0 bits
   416  		if v != 0 {
   417  			return -1
   418  		}
   419  		for i++; i < len(mask); i++ {
   420  			if mask[i] != 0 {
   421  				return -1
   422  			}
   423  		}
   424  		break
   425  	}
   426  	return n
   427  }
   428  
   429  // Size returns the number of leading ones and total bits in the mask.
   430  // If the mask is not in the canonical form--ones followed by zeros--then
   431  // Size returns 0, 0.
   432  func (m IPMask) Size() (ones, bits int) {
   433  	ones, bits = simpleMaskLength(m), len(m)*8
   434  	if ones == -1 {
   435  		return 0, 0
   436  	}
   437  	return
   438  }
   439  
   440  // String returns the hexadecimal form of m, with no punctuation.
   441  func (m IPMask) String() string {
   442  	if len(m) == 0 {
   443  		return "<nil>"
   444  	}
   445  	return hexString(m)
   446  }
   447  
   448  func networkNumberAndMask(n *IPNet) (ip IP, m IPMask) {
   449  	if ip = n.IP.To4(); ip == nil {
   450  		ip = n.IP
   451  		if len(ip) != IPv6len {
   452  			return nil, nil
   453  		}
   454  	}
   455  	m = n.Mask
   456  	switch len(m) {
   457  	case IPv4len:
   458  		if len(ip) != IPv4len {
   459  			return nil, nil
   460  		}
   461  	case IPv6len:
   462  		if len(ip) == IPv4len {
   463  			m = m[12:]
   464  		}
   465  	default:
   466  		return nil, nil
   467  	}
   468  	return
   469  }
   470  
   471  // Contains reports whether the network includes ip.
   472  func (n *IPNet) Contains(ip IP) bool {
   473  	nn, m := networkNumberAndMask(n)
   474  	if x := ip.To4(); x != nil {
   475  		ip = x
   476  	}
   477  	l := len(ip)
   478  	if l != len(nn) {
   479  		return false
   480  	}
   481  	for i := 0; i < l; i++ {
   482  		if nn[i]&m[i] != ip[i]&m[i] {
   483  			return false
   484  		}
   485  	}
   486  	return true
   487  }
   488  
   489  // Network returns the address's network name, "ip+net".
   490  func (n *IPNet) Network() string { return "ip+net" }
   491  
   492  // String returns the CIDR notation of n like "192.0.2.1/24"
   493  // or "2001:db8::/48" as defined in RFC 4632 and RFC 4291.
   494  // If the mask is not in the canonical form, it returns the
   495  // string which consists of an IP address, followed by a slash
   496  // character and a mask expressed as hexadecimal form with no
   497  // punctuation like "198.51.100.1/c000ff00".
   498  func (n *IPNet) String() string {
   499  	nn, m := networkNumberAndMask(n)
   500  	if nn == nil || m == nil {
   501  		return "<nil>"
   502  	}
   503  	l := simpleMaskLength(m)
   504  	if l == -1 {
   505  		return nn.String() + "/" + m.String()
   506  	}
   507  	return nn.String() + "/" + uitoa(uint(l))
   508  }
   509  
   510  // Parse IPv4 address (d.d.d.d).
   511  func parseIPv4(s string) IP {
   512  	var p [IPv4len]byte
   513  	for i := 0; i < IPv4len; i++ {
   514  		if len(s) == 0 {
   515  			// Missing octets.
   516  			return nil
   517  		}
   518  		if i > 0 {
   519  			if s[0] != '.' {
   520  				return nil
   521  			}
   522  			s = s[1:]
   523  		}
   524  		n, c, ok := dtoi(s)
   525  		if !ok || n > 0xFF {
   526  			return nil
   527  		}
   528  		s = s[c:]
   529  		p[i] = byte(n)
   530  	}
   531  	if len(s) != 0 {
   532  		return nil
   533  	}
   534  	return IPv4(p[0], p[1], p[2], p[3])
   535  }
   536  
   537  // parseIPv6 parses s as a literal IPv6 address described in RFC 4291
   538  // and RFC 5952.  It can also parse a literal scoped IPv6 address with
   539  // zone identifier which is described in RFC 4007 when zoneAllowed is
   540  // true.
   541  func parseIPv6(s string, zoneAllowed bool) (ip IP, zone string) {
   542  	ip = make(IP, IPv6len)
   543  	ellipsis := -1 // position of ellipsis in ip
   544  
   545  	if zoneAllowed {
   546  		s, zone = splitHostZone(s)
   547  	}
   548  
   549  	// Might have leading ellipsis
   550  	if len(s) >= 2 && s[0] == ':' && s[1] == ':' {
   551  		ellipsis = 0
   552  		s = s[2:]
   553  		// Might be only ellipsis
   554  		if len(s) == 0 {
   555  			return ip, zone
   556  		}
   557  	}
   558  
   559  	// Loop, parsing hex numbers followed by colon.
   560  	i := 0
   561  	for i < IPv6len {
   562  		// Hex number.
   563  		n, c, ok := xtoi(s)
   564  		if !ok || n > 0xFFFF {
   565  			return nil, zone
   566  		}
   567  
   568  		// If followed by dot, might be in trailing IPv4.
   569  		if c < len(s) && s[c] == '.' {
   570  			if ellipsis < 0 && i != IPv6len-IPv4len {
   571  				// Not the right place.
   572  				return nil, zone
   573  			}
   574  			if i+IPv4len > IPv6len {
   575  				// Not enough room.
   576  				return nil, zone
   577  			}
   578  			ip4 := parseIPv4(s)
   579  			if ip4 == nil {
   580  				return nil, zone
   581  			}
   582  			ip[i] = ip4[12]
   583  			ip[i+1] = ip4[13]
   584  			ip[i+2] = ip4[14]
   585  			ip[i+3] = ip4[15]
   586  			s = ""
   587  			i += IPv4len
   588  			break
   589  		}
   590  
   591  		// Save this 16-bit chunk.
   592  		ip[i] = byte(n >> 8)
   593  		ip[i+1] = byte(n)
   594  		i += 2
   595  
   596  		// Stop at end of string.
   597  		s = s[c:]
   598  		if len(s) == 0 {
   599  			break
   600  		}
   601  
   602  		// Otherwise must be followed by colon and more.
   603  		if s[0] != ':' || len(s) == 1 {
   604  			return nil, zone
   605  		}
   606  		s = s[1:]
   607  
   608  		// Look for ellipsis.
   609  		if s[0] == ':' {
   610  			if ellipsis >= 0 { // already have one
   611  				return nil, zone
   612  			}
   613  			ellipsis = i
   614  			s = s[1:]
   615  			if len(s) == 0 { // can be at end
   616  				break
   617  			}
   618  		}
   619  	}
   620  
   621  	// Must have used entire string.
   622  	if len(s) != 0 {
   623  		return nil, zone
   624  	}
   625  
   626  	// If didn't parse enough, expand ellipsis.
   627  	if i < IPv6len {
   628  		if ellipsis < 0 {
   629  			return nil, zone
   630  		}
   631  		n := IPv6len - i
   632  		for j := i - 1; j >= ellipsis; j-- {
   633  			ip[j+n] = ip[j]
   634  		}
   635  		for j := ellipsis + n - 1; j >= ellipsis; j-- {
   636  			ip[j] = 0
   637  		}
   638  	} else if ellipsis >= 0 {
   639  		// Ellipsis must represent at least one 0 group.
   640  		return nil, zone
   641  	}
   642  	return ip, zone
   643  }
   644  
   645  // ParseIP parses s as an IP address, returning the result.
   646  // The string s can be in dotted decimal ("192.0.2.1")
   647  // or IPv6 ("2001:db8::68") form.
   648  // If s is not a valid textual representation of an IP address,
   649  // ParseIP returns nil.
   650  func ParseIP(s string) IP {
   651  	for i := 0; i < len(s); i++ {
   652  		switch s[i] {
   653  		case '.':
   654  			return parseIPv4(s)
   655  		case ':':
   656  			ip, _ := parseIPv6(s, false)
   657  			return ip
   658  		}
   659  	}
   660  	return nil
   661  }
   662  
   663  // ParseCIDR parses s as a CIDR notation IP address and prefix length,
   664  // like "192.0.2.0/24" or "2001:db8::/32", as defined in
   665  // RFC 4632 and RFC 4291.
   666  //
   667  // It returns the IP address and the network implied by the IP and
   668  // prefix length.
   669  // For example, ParseCIDR("192.0.2.1/24") returns the IP address
   670  // 192.0.2.1 and the network 192.0.2.0/24.
   671  func ParseCIDR(s string) (IP, *IPNet, error) {
   672  	i := byteIndex(s, '/')
   673  	if i < 0 {
   674  		return nil, nil, &ParseError{Type: "CIDR address", Text: s}
   675  	}
   676  	addr, mask := s[:i], s[i+1:]
   677  	iplen := IPv4len
   678  	ip := parseIPv4(addr)
   679  	if ip == nil {
   680  		iplen = IPv6len
   681  		ip, _ = parseIPv6(addr, false)
   682  	}
   683  	n, i, ok := dtoi(mask)
   684  	if ip == nil || !ok || i != len(mask) || n < 0 || n > 8*iplen {
   685  		return nil, nil, &ParseError{Type: "CIDR address", Text: s}
   686  	}
   687  	m := CIDRMask(n, 8*iplen)
   688  	return ip, &IPNet{IP: ip.Mask(m), Mask: m}, nil
   689  }