github.com/epfl-dcsl/gotee@v0.0.0-20200909122901-014b35f5e5e9/test/chan/powser1.go (about) 1 // run 2 3 // Copyright 2009 The Go Authors. All rights reserved. 4 // Use of this source code is governed by a BSD-style 5 // license that can be found in the LICENSE file. 6 7 // Test concurrency primitives: power series. 8 9 // Power series package 10 // A power series is a channel, along which flow rational 11 // coefficients. A denominator of zero signifies the end. 12 // Original code in Newsqueak by Doug McIlroy. 13 // See Squinting at Power Series by Doug McIlroy, 14 // http://www.cs.bell-labs.com/who/rsc/thread/squint.pdf 15 16 package main 17 18 import "os" 19 20 type rat struct { 21 num, den int64 // numerator, denominator 22 } 23 24 func (u rat) pr() { 25 if u.den == 1 { 26 print(u.num) 27 } else { 28 print(u.num, "/", u.den) 29 } 30 print(" ") 31 } 32 33 func (u rat) eq(c rat) bool { 34 return u.num == c.num && u.den == c.den 35 } 36 37 type dch struct { 38 req chan int 39 dat chan rat 40 nam int 41 } 42 43 type dch2 [2]*dch 44 45 var chnames string 46 var chnameserial int 47 var seqno int 48 49 func mkdch() *dch { 50 c := chnameserial % len(chnames) 51 chnameserial++ 52 d := new(dch) 53 d.req = make(chan int) 54 d.dat = make(chan rat) 55 d.nam = c 56 return d 57 } 58 59 func mkdch2() *dch2 { 60 d2 := new(dch2) 61 d2[0] = mkdch() 62 d2[1] = mkdch() 63 return d2 64 } 65 66 // split reads a single demand channel and replicates its 67 // output onto two, which may be read at different rates. 68 // A process is created at first demand for a rat and dies 69 // after the rat has been sent to both outputs. 70 71 // When multiple generations of split exist, the newest 72 // will service requests on one channel, which is 73 // always renamed to be out[0]; the oldest will service 74 // requests on the other channel, out[1]. All generations but the 75 // newest hold queued data that has already been sent to 76 // out[0]. When data has finally been sent to out[1], 77 // a signal on the release-wait channel tells the next newer 78 // generation to begin servicing out[1]. 79 80 func dosplit(in *dch, out *dch2, wait chan int) { 81 both := false // do not service both channels 82 83 select { 84 case <-out[0].req: 85 86 case <-wait: 87 both = true 88 select { 89 case <-out[0].req: 90 91 case <-out[1].req: 92 out[0], out[1] = out[1], out[0] 93 } 94 } 95 96 seqno++ 97 in.req <- seqno 98 release := make(chan int) 99 go dosplit(in, out, release) 100 dat := <-in.dat 101 out[0].dat <- dat 102 if !both { 103 <-wait 104 } 105 <-out[1].req 106 out[1].dat <- dat 107 release <- 0 108 } 109 110 func split(in *dch, out *dch2) { 111 release := make(chan int) 112 go dosplit(in, out, release) 113 release <- 0 114 } 115 116 func put(dat rat, out *dch) { 117 <-out.req 118 out.dat <- dat 119 } 120 121 func get(in *dch) rat { 122 seqno++ 123 in.req <- seqno 124 return <-in.dat 125 } 126 127 // Get one rat from each of n demand channels 128 129 func getn(in []*dch) []rat { 130 n := len(in) 131 if n != 2 { 132 panic("bad n in getn") 133 } 134 req := new([2]chan int) 135 dat := new([2]chan rat) 136 out := make([]rat, 2) 137 var i int 138 var it rat 139 for i = 0; i < n; i++ { 140 req[i] = in[i].req 141 dat[i] = nil 142 } 143 for n = 2 * n; n > 0; n-- { 144 seqno++ 145 146 select { 147 case req[0] <- seqno: 148 dat[0] = in[0].dat 149 req[0] = nil 150 case req[1] <- seqno: 151 dat[1] = in[1].dat 152 req[1] = nil 153 case it = <-dat[0]: 154 out[0] = it 155 dat[0] = nil 156 case it = <-dat[1]: 157 out[1] = it 158 dat[1] = nil 159 } 160 } 161 return out 162 } 163 164 // Get one rat from each of 2 demand channels 165 166 func get2(in0 *dch, in1 *dch) []rat { 167 return getn([]*dch{in0, in1}) 168 } 169 170 func copy(in *dch, out *dch) { 171 for { 172 <-out.req 173 out.dat <- get(in) 174 } 175 } 176 177 func repeat(dat rat, out *dch) { 178 for { 179 put(dat, out) 180 } 181 } 182 183 type PS *dch // power series 184 type PS2 *[2]PS // pair of power series 185 186 var Ones PS 187 var Twos PS 188 189 func mkPS() *dch { 190 return mkdch() 191 } 192 193 func mkPS2() *dch2 { 194 return mkdch2() 195 } 196 197 // Conventions 198 // Upper-case for power series. 199 // Lower-case for rationals. 200 // Input variables: U,V,... 201 // Output variables: ...,Y,Z 202 203 // Integer gcd; needed for rational arithmetic 204 205 func gcd(u, v int64) int64 { 206 if u < 0 { 207 return gcd(-u, v) 208 } 209 if u == 0 { 210 return v 211 } 212 return gcd(v%u, u) 213 } 214 215 // Make a rational from two ints and from one int 216 217 func i2tor(u, v int64) rat { 218 g := gcd(u, v) 219 var r rat 220 if v > 0 { 221 r.num = u / g 222 r.den = v / g 223 } else { 224 r.num = -u / g 225 r.den = -v / g 226 } 227 return r 228 } 229 230 func itor(u int64) rat { 231 return i2tor(u, 1) 232 } 233 234 var zero rat 235 var one rat 236 237 // End mark and end test 238 239 var finis rat 240 241 func end(u rat) int64 { 242 if u.den == 0 { 243 return 1 244 } 245 return 0 246 } 247 248 // Operations on rationals 249 250 func add(u, v rat) rat { 251 g := gcd(u.den, v.den) 252 return i2tor(u.num*(v.den/g)+v.num*(u.den/g), u.den*(v.den/g)) 253 } 254 255 func mul(u, v rat) rat { 256 g1 := gcd(u.num, v.den) 257 g2 := gcd(u.den, v.num) 258 var r rat 259 r.num = (u.num / g1) * (v.num / g2) 260 r.den = (u.den / g2) * (v.den / g1) 261 return r 262 } 263 264 func neg(u rat) rat { 265 return i2tor(-u.num, u.den) 266 } 267 268 func sub(u, v rat) rat { 269 return add(u, neg(v)) 270 } 271 272 func inv(u rat) rat { // invert a rat 273 if u.num == 0 { 274 panic("zero divide in inv") 275 } 276 return i2tor(u.den, u.num) 277 } 278 279 // print eval in floating point of PS at x=c to n terms 280 func evaln(c rat, U PS, n int) { 281 xn := float64(1) 282 x := float64(c.num) / float64(c.den) 283 val := float64(0) 284 for i := 0; i < n; i++ { 285 u := get(U) 286 if end(u) != 0 { 287 break 288 } 289 val = val + x*float64(u.num)/float64(u.den) 290 xn = xn * x 291 } 292 print(val, "\n") 293 } 294 295 // Print n terms of a power series 296 func printn(U PS, n int) { 297 done := false 298 for ; !done && n > 0; n-- { 299 u := get(U) 300 if end(u) != 0 { 301 done = true 302 } else { 303 u.pr() 304 } 305 } 306 print(("\n")) 307 } 308 309 // Evaluate n terms of power series U at x=c 310 func eval(c rat, U PS, n int) rat { 311 if n == 0 { 312 return zero 313 } 314 y := get(U) 315 if end(y) != 0 { 316 return zero 317 } 318 return add(y, mul(c, eval(c, U, n-1))) 319 } 320 321 // Power-series constructors return channels on which power 322 // series flow. They start an encapsulated generator that 323 // puts the terms of the series on the channel. 324 325 // Make a pair of power series identical to a given power series 326 327 func Split(U PS) *dch2 { 328 UU := mkdch2() 329 go split(U, UU) 330 return UU 331 } 332 333 // Add two power series 334 func Add(U, V PS) PS { 335 Z := mkPS() 336 go func() { 337 var uv []rat 338 for { 339 <-Z.req 340 uv = get2(U, V) 341 switch end(uv[0]) + 2*end(uv[1]) { 342 case 0: 343 Z.dat <- add(uv[0], uv[1]) 344 case 1: 345 Z.dat <- uv[1] 346 copy(V, Z) 347 case 2: 348 Z.dat <- uv[0] 349 copy(U, Z) 350 case 3: 351 Z.dat <- finis 352 } 353 } 354 }() 355 return Z 356 } 357 358 // Multiply a power series by a constant 359 func Cmul(c rat, U PS) PS { 360 Z := mkPS() 361 go func() { 362 done := false 363 for !done { 364 <-Z.req 365 u := get(U) 366 if end(u) != 0 { 367 done = true 368 } else { 369 Z.dat <- mul(c, u) 370 } 371 } 372 Z.dat <- finis 373 }() 374 return Z 375 } 376 377 // Subtract 378 379 func Sub(U, V PS) PS { 380 return Add(U, Cmul(neg(one), V)) 381 } 382 383 // Multiply a power series by the monomial x^n 384 385 func Monmul(U PS, n int) PS { 386 Z := mkPS() 387 go func() { 388 for ; n > 0; n-- { 389 put(zero, Z) 390 } 391 copy(U, Z) 392 }() 393 return Z 394 } 395 396 // Multiply by x 397 398 func Xmul(U PS) PS { 399 return Monmul(U, 1) 400 } 401 402 func Rep(c rat) PS { 403 Z := mkPS() 404 go repeat(c, Z) 405 return Z 406 } 407 408 // Monomial c*x^n 409 410 func Mon(c rat, n int) PS { 411 Z := mkPS() 412 go func() { 413 if c.num != 0 { 414 for ; n > 0; n = n - 1 { 415 put(zero, Z) 416 } 417 put(c, Z) 418 } 419 put(finis, Z) 420 }() 421 return Z 422 } 423 424 func Shift(c rat, U PS) PS { 425 Z := mkPS() 426 go func() { 427 put(c, Z) 428 copy(U, Z) 429 }() 430 return Z 431 } 432 433 // simple pole at 1: 1/(1-x) = 1 1 1 1 1 ... 434 435 // Convert array of coefficients, constant term first 436 // to a (finite) power series 437 438 /* 439 func Poly(a []rat) PS { 440 Z:=mkPS() 441 begin func(a []rat, Z PS) { 442 j:=0 443 done:=0 444 for j=len(a); !done&&j>0; j=j-1) 445 if(a[j-1].num!=0) done=1 446 i:=0 447 for(; i<j; i=i+1) put(a[i],Z) 448 put(finis,Z) 449 }() 450 return Z 451 } 452 */ 453 454 // Multiply. The algorithm is 455 // let U = u + x*UU 456 // let V = v + x*VV 457 // then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV 458 459 func Mul(U, V PS) PS { 460 Z := mkPS() 461 go func() { 462 <-Z.req 463 uv := get2(U, V) 464 if end(uv[0]) != 0 || end(uv[1]) != 0 { 465 Z.dat <- finis 466 } else { 467 Z.dat <- mul(uv[0], uv[1]) 468 UU := Split(U) 469 VV := Split(V) 470 W := Add(Cmul(uv[0], VV[0]), Cmul(uv[1], UU[0])) 471 <-Z.req 472 Z.dat <- get(W) 473 copy(Add(W, Mul(UU[1], VV[1])), Z) 474 } 475 }() 476 return Z 477 } 478 479 // Differentiate 480 481 func Diff(U PS) PS { 482 Z := mkPS() 483 go func() { 484 <-Z.req 485 u := get(U) 486 if end(u) == 0 { 487 done := false 488 for i := 1; !done; i++ { 489 u = get(U) 490 if end(u) != 0 { 491 done = true 492 } else { 493 Z.dat <- mul(itor(int64(i)), u) 494 <-Z.req 495 } 496 } 497 } 498 Z.dat <- finis 499 }() 500 return Z 501 } 502 503 // Integrate, with const of integration 504 func Integ(c rat, U PS) PS { 505 Z := mkPS() 506 go func() { 507 put(c, Z) 508 done := false 509 for i := 1; !done; i++ { 510 <-Z.req 511 u := get(U) 512 if end(u) != 0 { 513 done = true 514 } 515 Z.dat <- mul(i2tor(1, int64(i)), u) 516 } 517 Z.dat <- finis 518 }() 519 return Z 520 } 521 522 // Binomial theorem (1+x)^c 523 524 func Binom(c rat) PS { 525 Z := mkPS() 526 go func() { 527 n := 1 528 t := itor(1) 529 for c.num != 0 { 530 put(t, Z) 531 t = mul(mul(t, c), i2tor(1, int64(n))) 532 c = sub(c, one) 533 n++ 534 } 535 put(finis, Z) 536 }() 537 return Z 538 } 539 540 // Reciprocal of a power series 541 // let U = u + x*UU 542 // let Z = z + x*ZZ 543 // (u+x*UU)*(z+x*ZZ) = 1 544 // z = 1/u 545 // u*ZZ + z*UU +x*UU*ZZ = 0 546 // ZZ = -UU*(z+x*ZZ)/u 547 548 func Recip(U PS) PS { 549 Z := mkPS() 550 go func() { 551 ZZ := mkPS2() 552 <-Z.req 553 z := inv(get(U)) 554 Z.dat <- z 555 split(Mul(Cmul(neg(z), U), Shift(z, ZZ[0])), ZZ) 556 copy(ZZ[1], Z) 557 }() 558 return Z 559 } 560 561 // Exponential of a power series with constant term 0 562 // (nonzero constant term would make nonrational coefficients) 563 // bug: the constant term is simply ignored 564 // Z = exp(U) 565 // DZ = Z*DU 566 // integrate to get Z 567 568 func Exp(U PS) PS { 569 ZZ := mkPS2() 570 split(Integ(one, Mul(ZZ[0], Diff(U))), ZZ) 571 return ZZ[1] 572 } 573 574 // Substitute V for x in U, where the leading term of V is zero 575 // let U = u + x*UU 576 // let V = v + x*VV 577 // then S(U,V) = u + VV*S(V,UU) 578 // bug: a nonzero constant term is ignored 579 580 func Subst(U, V PS) PS { 581 Z := mkPS() 582 go func() { 583 VV := Split(V) 584 <-Z.req 585 u := get(U) 586 Z.dat <- u 587 if end(u) == 0 { 588 if end(get(VV[0])) != 0 { 589 put(finis, Z) 590 } else { 591 copy(Mul(VV[0], Subst(U, VV[1])), Z) 592 } 593 } 594 }() 595 return Z 596 } 597 598 // Monomial Substition: U(c x^n) 599 // Each Ui is multiplied by c^i and followed by n-1 zeros 600 601 func MonSubst(U PS, c0 rat, n int) PS { 602 Z := mkPS() 603 go func() { 604 c := one 605 for { 606 <-Z.req 607 u := get(U) 608 Z.dat <- mul(u, c) 609 c = mul(c, c0) 610 if end(u) != 0 { 611 Z.dat <- finis 612 break 613 } 614 for i := 1; i < n; i++ { 615 <-Z.req 616 Z.dat <- zero 617 } 618 } 619 }() 620 return Z 621 } 622 623 func Init() { 624 chnameserial = -1 625 seqno = 0 626 chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" 627 zero = itor(0) 628 one = itor(1) 629 finis = i2tor(1, 0) 630 Ones = Rep(one) 631 Twos = Rep(itor(2)) 632 } 633 634 func check(U PS, c rat, count int, str string) { 635 for i := 0; i < count; i++ { 636 r := get(U) 637 if !r.eq(c) { 638 print("got: ") 639 r.pr() 640 print("should get ") 641 c.pr() 642 print("\n") 643 panic(str) 644 } 645 } 646 } 647 648 const N = 10 649 650 func checka(U PS, a []rat, str string) { 651 for i := 0; i < N; i++ { 652 check(U, a[i], 1, str) 653 } 654 } 655 656 func main() { 657 Init() 658 if len(os.Args) > 1 { // print 659 print("Ones: ") 660 printn(Ones, 10) 661 print("Twos: ") 662 printn(Twos, 10) 663 print("Add: ") 664 printn(Add(Ones, Twos), 10) 665 print("Diff: ") 666 printn(Diff(Ones), 10) 667 print("Integ: ") 668 printn(Integ(zero, Ones), 10) 669 print("CMul: ") 670 printn(Cmul(neg(one), Ones), 10) 671 print("Sub: ") 672 printn(Sub(Ones, Twos), 10) 673 print("Mul: ") 674 printn(Mul(Ones, Ones), 10) 675 print("Exp: ") 676 printn(Exp(Ones), 15) 677 print("MonSubst: ") 678 printn(MonSubst(Ones, neg(one), 2), 10) 679 print("ATan: ") 680 printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10) 681 } else { // test 682 check(Ones, one, 5, "Ones") 683 check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones") // 1 1 1 1 1 684 check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3 685 a := make([]rat, N) 686 d := Diff(Ones) 687 for i := 0; i < N; i++ { 688 a[i] = itor(int64(i + 1)) 689 } 690 checka(d, a, "Diff") // 1 2 3 4 5 691 in := Integ(zero, Ones) 692 a[0] = zero // integration constant 693 for i := 1; i < N; i++ { 694 a[i] = i2tor(1, int64(i)) 695 } 696 checka(in, a, "Integ") // 0 1 1/2 1/3 1/4 1/5 697 check(Cmul(neg(one), Twos), itor(-2), 10, "CMul") // -1 -1 -1 -1 -1 698 check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos") // -1 -1 -1 -1 -1 699 m := Mul(Ones, Ones) 700 for i := 0; i < N; i++ { 701 a[i] = itor(int64(i + 1)) 702 } 703 checka(m, a, "Mul") // 1 2 3 4 5 704 e := Exp(Ones) 705 a[0] = itor(1) 706 a[1] = itor(1) 707 a[2] = i2tor(3, 2) 708 a[3] = i2tor(13, 6) 709 a[4] = i2tor(73, 24) 710 a[5] = i2tor(167, 40) 711 a[6] = i2tor(4051, 720) 712 a[7] = i2tor(37633, 5040) 713 a[8] = i2tor(43817, 4480) 714 a[9] = i2tor(4596553, 362880) 715 checka(e, a, "Exp") // 1 1 3/2 13/6 73/24 716 at := Integ(zero, MonSubst(Ones, neg(one), 2)) 717 for c, i := 1, 0; i < N; i++ { 718 if i%2 == 0 { 719 a[i] = zero 720 } else { 721 a[i] = i2tor(int64(c), int64(i)) 722 c *= -1 723 } 724 } 725 checka(at, a, "ATan") // 0 -1 0 -1/3 0 -1/5 726 /* 727 t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2))) 728 a[0] = zero 729 a[1] = itor(1) 730 a[2] = zero 731 a[3] = i2tor(1,3) 732 a[4] = zero 733 a[5] = i2tor(2,15) 734 a[6] = zero 735 a[7] = i2tor(17,315) 736 a[8] = zero 737 a[9] = i2tor(62,2835) 738 checka(t, a, "Tan") // 0 1 0 1/3 0 2/15 739 */ 740 } 741 }