github.com/epfl-dcsl/gotee@v0.0.0-20200909122901-014b35f5e5e9/test/chan/powser2.go (about)

     1  // run
     2  
     3  // Copyright 2009 The Go Authors. All rights reserved.
     4  // Use of this source code is governed by a BSD-style
     5  // license that can be found in the LICENSE file.
     6  
     7  // Test concurrency primitives: power series.
     8  
     9  // Like powser1.go but uses channels of interfaces.
    10  // Has not been cleaned up as much as powser1.go, to keep
    11  // it distinct and therefore a different test.
    12  
    13  // Power series package
    14  // A power series is a channel, along which flow rational
    15  // coefficients.  A denominator of zero signifies the end.
    16  // Original code in Newsqueak by Doug McIlroy.
    17  // See Squinting at Power Series by Doug McIlroy,
    18  //   http://www.cs.bell-labs.com/who/rsc/thread/squint.pdf
    19  
    20  package main
    21  
    22  import "os"
    23  
    24  type rat struct {
    25  	num, den int64 // numerator, denominator
    26  }
    27  
    28  type item interface {
    29  	pr()
    30  	eq(c item) bool
    31  }
    32  
    33  func (u *rat) pr() {
    34  	if u.den == 1 {
    35  		print(u.num)
    36  	} else {
    37  		print(u.num, "/", u.den)
    38  	}
    39  	print(" ")
    40  }
    41  
    42  func (u *rat) eq(c item) bool {
    43  	c1 := c.(*rat)
    44  	return u.num == c1.num && u.den == c1.den
    45  }
    46  
    47  type dch struct {
    48  	req chan int
    49  	dat chan item
    50  	nam int
    51  }
    52  
    53  type dch2 [2]*dch
    54  
    55  var chnames string
    56  var chnameserial int
    57  var seqno int
    58  
    59  func mkdch() *dch {
    60  	c := chnameserial % len(chnames)
    61  	chnameserial++
    62  	d := new(dch)
    63  	d.req = make(chan int)
    64  	d.dat = make(chan item)
    65  	d.nam = c
    66  	return d
    67  }
    68  
    69  func mkdch2() *dch2 {
    70  	d2 := new(dch2)
    71  	d2[0] = mkdch()
    72  	d2[1] = mkdch()
    73  	return d2
    74  }
    75  
    76  // split reads a single demand channel and replicates its
    77  // output onto two, which may be read at different rates.
    78  // A process is created at first demand for an item and dies
    79  // after the item has been sent to both outputs.
    80  
    81  // When multiple generations of split exist, the newest
    82  // will service requests on one channel, which is
    83  // always renamed to be out[0]; the oldest will service
    84  // requests on the other channel, out[1].  All generations but the
    85  // newest hold queued data that has already been sent to
    86  // out[0].  When data has finally been sent to out[1],
    87  // a signal on the release-wait channel tells the next newer
    88  // generation to begin servicing out[1].
    89  
    90  func dosplit(in *dch, out *dch2, wait chan int) {
    91  	both := false // do not service both channels
    92  
    93  	select {
    94  	case <-out[0].req:
    95  
    96  	case <-wait:
    97  		both = true
    98  		select {
    99  		case <-out[0].req:
   100  
   101  		case <-out[1].req:
   102  			out[0], out[1] = out[1], out[0]
   103  		}
   104  	}
   105  
   106  	seqno++
   107  	in.req <- seqno
   108  	release := make(chan int)
   109  	go dosplit(in, out, release)
   110  	dat := <-in.dat
   111  	out[0].dat <- dat
   112  	if !both {
   113  		<-wait
   114  	}
   115  	<-out[1].req
   116  	out[1].dat <- dat
   117  	release <- 0
   118  }
   119  
   120  func split(in *dch, out *dch2) {
   121  	release := make(chan int)
   122  	go dosplit(in, out, release)
   123  	release <- 0
   124  }
   125  
   126  func put(dat item, out *dch) {
   127  	<-out.req
   128  	out.dat <- dat
   129  }
   130  
   131  func get(in *dch) *rat {
   132  	seqno++
   133  	in.req <- seqno
   134  	return (<-in.dat).(*rat)
   135  }
   136  
   137  // Get one item from each of n demand channels
   138  
   139  func getn(in []*dch) []item {
   140  	n := len(in)
   141  	if n != 2 {
   142  		panic("bad n in getn")
   143  	}
   144  	req := make([]chan int, 2)
   145  	dat := make([]chan item, 2)
   146  	out := make([]item, 2)
   147  	var i int
   148  	var it item
   149  	for i = 0; i < n; i++ {
   150  		req[i] = in[i].req
   151  		dat[i] = nil
   152  	}
   153  	for n = 2 * n; n > 0; n-- {
   154  		seqno++
   155  
   156  		select {
   157  		case req[0] <- seqno:
   158  			dat[0] = in[0].dat
   159  			req[0] = nil
   160  		case req[1] <- seqno:
   161  			dat[1] = in[1].dat
   162  			req[1] = nil
   163  		case it = <-dat[0]:
   164  			out[0] = it
   165  			dat[0] = nil
   166  		case it = <-dat[1]:
   167  			out[1] = it
   168  			dat[1] = nil
   169  		}
   170  	}
   171  	return out
   172  }
   173  
   174  // Get one item from each of 2 demand channels
   175  
   176  func get2(in0 *dch, in1 *dch) []item {
   177  	return getn([]*dch{in0, in1})
   178  }
   179  
   180  func copy(in *dch, out *dch) {
   181  	for {
   182  		<-out.req
   183  		out.dat <- get(in)
   184  	}
   185  }
   186  
   187  func repeat(dat item, out *dch) {
   188  	for {
   189  		put(dat, out)
   190  	}
   191  }
   192  
   193  type PS *dch    // power series
   194  type PS2 *[2]PS // pair of power series
   195  
   196  var Ones PS
   197  var Twos PS
   198  
   199  func mkPS() *dch {
   200  	return mkdch()
   201  }
   202  
   203  func mkPS2() *dch2 {
   204  	return mkdch2()
   205  }
   206  
   207  // Conventions
   208  // Upper-case for power series.
   209  // Lower-case for rationals.
   210  // Input variables: U,V,...
   211  // Output variables: ...,Y,Z
   212  
   213  // Integer gcd; needed for rational arithmetic
   214  
   215  func gcd(u, v int64) int64 {
   216  	if u < 0 {
   217  		return gcd(-u, v)
   218  	}
   219  	if u == 0 {
   220  		return v
   221  	}
   222  	return gcd(v%u, u)
   223  }
   224  
   225  // Make a rational from two ints and from one int
   226  
   227  func i2tor(u, v int64) *rat {
   228  	g := gcd(u, v)
   229  	r := new(rat)
   230  	if v > 0 {
   231  		r.num = u / g
   232  		r.den = v / g
   233  	} else {
   234  		r.num = -u / g
   235  		r.den = -v / g
   236  	}
   237  	return r
   238  }
   239  
   240  func itor(u int64) *rat {
   241  	return i2tor(u, 1)
   242  }
   243  
   244  var zero *rat
   245  var one *rat
   246  
   247  // End mark and end test
   248  
   249  var finis *rat
   250  
   251  func end(u *rat) int64 {
   252  	if u.den == 0 {
   253  		return 1
   254  	}
   255  	return 0
   256  }
   257  
   258  // Operations on rationals
   259  
   260  func add(u, v *rat) *rat {
   261  	g := gcd(u.den, v.den)
   262  	return i2tor(u.num*(v.den/g)+v.num*(u.den/g), u.den*(v.den/g))
   263  }
   264  
   265  func mul(u, v *rat) *rat {
   266  	g1 := gcd(u.num, v.den)
   267  	g2 := gcd(u.den, v.num)
   268  	r := new(rat)
   269  	r.num = (u.num / g1) * (v.num / g2)
   270  	r.den = (u.den / g2) * (v.den / g1)
   271  	return r
   272  }
   273  
   274  func neg(u *rat) *rat {
   275  	return i2tor(-u.num, u.den)
   276  }
   277  
   278  func sub(u, v *rat) *rat {
   279  	return add(u, neg(v))
   280  }
   281  
   282  func inv(u *rat) *rat { // invert a rat
   283  	if u.num == 0 {
   284  		panic("zero divide in inv")
   285  	}
   286  	return i2tor(u.den, u.num)
   287  }
   288  
   289  // print eval in floating point of PS at x=c to n terms
   290  func Evaln(c *rat, U PS, n int) {
   291  	xn := float64(1)
   292  	x := float64(c.num) / float64(c.den)
   293  	val := float64(0)
   294  	for i := 0; i < n; i++ {
   295  		u := get(U)
   296  		if end(u) != 0 {
   297  			break
   298  		}
   299  		val = val + x*float64(u.num)/float64(u.den)
   300  		xn = xn * x
   301  	}
   302  	print(val, "\n")
   303  }
   304  
   305  // Print n terms of a power series
   306  func Printn(U PS, n int) {
   307  	done := false
   308  	for ; !done && n > 0; n-- {
   309  		u := get(U)
   310  		if end(u) != 0 {
   311  			done = true
   312  		} else {
   313  			u.pr()
   314  		}
   315  	}
   316  	print(("\n"))
   317  }
   318  
   319  func Print(U PS) {
   320  	Printn(U, 1000000000)
   321  }
   322  
   323  // Evaluate n terms of power series U at x=c
   324  func eval(c *rat, U PS, n int) *rat {
   325  	if n == 0 {
   326  		return zero
   327  	}
   328  	y := get(U)
   329  	if end(y) != 0 {
   330  		return zero
   331  	}
   332  	return add(y, mul(c, eval(c, U, n-1)))
   333  }
   334  
   335  // Power-series constructors return channels on which power
   336  // series flow.  They start an encapsulated generator that
   337  // puts the terms of the series on the channel.
   338  
   339  // Make a pair of power series identical to a given power series
   340  
   341  func Split(U PS) *dch2 {
   342  	UU := mkdch2()
   343  	go split(U, UU)
   344  	return UU
   345  }
   346  
   347  // Add two power series
   348  func Add(U, V PS) PS {
   349  	Z := mkPS()
   350  	go func(U, V, Z PS) {
   351  		var uv []item
   352  		for {
   353  			<-Z.req
   354  			uv = get2(U, V)
   355  			switch end(uv[0].(*rat)) + 2*end(uv[1].(*rat)) {
   356  			case 0:
   357  				Z.dat <- add(uv[0].(*rat), uv[1].(*rat))
   358  			case 1:
   359  				Z.dat <- uv[1]
   360  				copy(V, Z)
   361  			case 2:
   362  				Z.dat <- uv[0]
   363  				copy(U, Z)
   364  			case 3:
   365  				Z.dat <- finis
   366  			}
   367  		}
   368  	}(U, V, Z)
   369  	return Z
   370  }
   371  
   372  // Multiply a power series by a constant
   373  func Cmul(c *rat, U PS) PS {
   374  	Z := mkPS()
   375  	go func(c *rat, U, Z PS) {
   376  		done := false
   377  		for !done {
   378  			<-Z.req
   379  			u := get(U)
   380  			if end(u) != 0 {
   381  				done = true
   382  			} else {
   383  				Z.dat <- mul(c, u)
   384  			}
   385  		}
   386  		Z.dat <- finis
   387  	}(c, U, Z)
   388  	return Z
   389  }
   390  
   391  // Subtract
   392  
   393  func Sub(U, V PS) PS {
   394  	return Add(U, Cmul(neg(one), V))
   395  }
   396  
   397  // Multiply a power series by the monomial x^n
   398  
   399  func Monmul(U PS, n int) PS {
   400  	Z := mkPS()
   401  	go func(n int, U PS, Z PS) {
   402  		for ; n > 0; n-- {
   403  			put(zero, Z)
   404  		}
   405  		copy(U, Z)
   406  	}(n, U, Z)
   407  	return Z
   408  }
   409  
   410  // Multiply by x
   411  
   412  func Xmul(U PS) PS {
   413  	return Monmul(U, 1)
   414  }
   415  
   416  func Rep(c *rat) PS {
   417  	Z := mkPS()
   418  	go repeat(c, Z)
   419  	return Z
   420  }
   421  
   422  // Monomial c*x^n
   423  
   424  func Mon(c *rat, n int) PS {
   425  	Z := mkPS()
   426  	go func(c *rat, n int, Z PS) {
   427  		if c.num != 0 {
   428  			for ; n > 0; n = n - 1 {
   429  				put(zero, Z)
   430  			}
   431  			put(c, Z)
   432  		}
   433  		put(finis, Z)
   434  	}(c, n, Z)
   435  	return Z
   436  }
   437  
   438  func Shift(c *rat, U PS) PS {
   439  	Z := mkPS()
   440  	go func(c *rat, U, Z PS) {
   441  		put(c, Z)
   442  		copy(U, Z)
   443  	}(c, U, Z)
   444  	return Z
   445  }
   446  
   447  // simple pole at 1: 1/(1-x) = 1 1 1 1 1 ...
   448  
   449  // Convert array of coefficients, constant term first
   450  // to a (finite) power series
   451  
   452  /*
   453  func Poly(a [] *rat) PS{
   454  	Z:=mkPS()
   455  	begin func(a [] *rat, Z PS){
   456  		j:=0
   457  		done:=0
   458  		for j=len(a); !done&&j>0; j=j-1)
   459  			if(a[j-1].num!=0) done=1
   460  		i:=0
   461  		for(; i<j; i=i+1) put(a[i],Z)
   462  		put(finis,Z)
   463  	}()
   464  	return Z
   465  }
   466  */
   467  
   468  // Multiply. The algorithm is
   469  //	let U = u + x*UU
   470  //	let V = v + x*VV
   471  //	then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV
   472  
   473  func Mul(U, V PS) PS {
   474  	Z := mkPS()
   475  	go func(U, V, Z PS) {
   476  		<-Z.req
   477  		uv := get2(U, V)
   478  		if end(uv[0].(*rat)) != 0 || end(uv[1].(*rat)) != 0 {
   479  			Z.dat <- finis
   480  		} else {
   481  			Z.dat <- mul(uv[0].(*rat), uv[1].(*rat))
   482  			UU := Split(U)
   483  			VV := Split(V)
   484  			W := Add(Cmul(uv[0].(*rat), VV[0]), Cmul(uv[1].(*rat), UU[0]))
   485  			<-Z.req
   486  			Z.dat <- get(W)
   487  			copy(Add(W, Mul(UU[1], VV[1])), Z)
   488  		}
   489  	}(U, V, Z)
   490  	return Z
   491  }
   492  
   493  // Differentiate
   494  
   495  func Diff(U PS) PS {
   496  	Z := mkPS()
   497  	go func(U, Z PS) {
   498  		<-Z.req
   499  		u := get(U)
   500  		if end(u) == 0 {
   501  			done := false
   502  			for i := 1; !done; i++ {
   503  				u = get(U)
   504  				if end(u) != 0 {
   505  					done = true
   506  				} else {
   507  					Z.dat <- mul(itor(int64(i)), u)
   508  					<-Z.req
   509  				}
   510  			}
   511  		}
   512  		Z.dat <- finis
   513  	}(U, Z)
   514  	return Z
   515  }
   516  
   517  // Integrate, with const of integration
   518  func Integ(c *rat, U PS) PS {
   519  	Z := mkPS()
   520  	go func(c *rat, U, Z PS) {
   521  		put(c, Z)
   522  		done := false
   523  		for i := 1; !done; i++ {
   524  			<-Z.req
   525  			u := get(U)
   526  			if end(u) != 0 {
   527  				done = true
   528  			}
   529  			Z.dat <- mul(i2tor(1, int64(i)), u)
   530  		}
   531  		Z.dat <- finis
   532  	}(c, U, Z)
   533  	return Z
   534  }
   535  
   536  // Binomial theorem (1+x)^c
   537  
   538  func Binom(c *rat) PS {
   539  	Z := mkPS()
   540  	go func(c *rat, Z PS) {
   541  		n := 1
   542  		t := itor(1)
   543  		for c.num != 0 {
   544  			put(t, Z)
   545  			t = mul(mul(t, c), i2tor(1, int64(n)))
   546  			c = sub(c, one)
   547  			n++
   548  		}
   549  		put(finis, Z)
   550  	}(c, Z)
   551  	return Z
   552  }
   553  
   554  // Reciprocal of a power series
   555  //	let U = u + x*UU
   556  //	let Z = z + x*ZZ
   557  //	(u+x*UU)*(z+x*ZZ) = 1
   558  //	z = 1/u
   559  //	u*ZZ + z*UU +x*UU*ZZ = 0
   560  //	ZZ = -UU*(z+x*ZZ)/u
   561  
   562  func Recip(U PS) PS {
   563  	Z := mkPS()
   564  	go func(U, Z PS) {
   565  		ZZ := mkPS2()
   566  		<-Z.req
   567  		z := inv(get(U))
   568  		Z.dat <- z
   569  		split(Mul(Cmul(neg(z), U), Shift(z, ZZ[0])), ZZ)
   570  		copy(ZZ[1], Z)
   571  	}(U, Z)
   572  	return Z
   573  }
   574  
   575  // Exponential of a power series with constant term 0
   576  // (nonzero constant term would make nonrational coefficients)
   577  // bug: the constant term is simply ignored
   578  //	Z = exp(U)
   579  //	DZ = Z*DU
   580  //	integrate to get Z
   581  
   582  func Exp(U PS) PS {
   583  	ZZ := mkPS2()
   584  	split(Integ(one, Mul(ZZ[0], Diff(U))), ZZ)
   585  	return ZZ[1]
   586  }
   587  
   588  // Substitute V for x in U, where the leading term of V is zero
   589  //	let U = u + x*UU
   590  //	let V = v + x*VV
   591  //	then S(U,V) = u + VV*S(V,UU)
   592  // bug: a nonzero constant term is ignored
   593  
   594  func Subst(U, V PS) PS {
   595  	Z := mkPS()
   596  	go func(U, V, Z PS) {
   597  		VV := Split(V)
   598  		<-Z.req
   599  		u := get(U)
   600  		Z.dat <- u
   601  		if end(u) == 0 {
   602  			if end(get(VV[0])) != 0 {
   603  				put(finis, Z)
   604  			} else {
   605  				copy(Mul(VV[0], Subst(U, VV[1])), Z)
   606  			}
   607  		}
   608  	}(U, V, Z)
   609  	return Z
   610  }
   611  
   612  // Monomial Substition: U(c x^n)
   613  // Each Ui is multiplied by c^i and followed by n-1 zeros
   614  
   615  func MonSubst(U PS, c0 *rat, n int) PS {
   616  	Z := mkPS()
   617  	go func(U, Z PS, c0 *rat, n int) {
   618  		c := one
   619  		for {
   620  			<-Z.req
   621  			u := get(U)
   622  			Z.dat <- mul(u, c)
   623  			c = mul(c, c0)
   624  			if end(u) != 0 {
   625  				Z.dat <- finis
   626  				break
   627  			}
   628  			for i := 1; i < n; i++ {
   629  				<-Z.req
   630  				Z.dat <- zero
   631  			}
   632  		}
   633  	}(U, Z, c0, n)
   634  	return Z
   635  }
   636  
   637  func Init() {
   638  	chnameserial = -1
   639  	seqno = 0
   640  	chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
   641  	zero = itor(0)
   642  	one = itor(1)
   643  	finis = i2tor(1, 0)
   644  	Ones = Rep(one)
   645  	Twos = Rep(itor(2))
   646  }
   647  
   648  func check(U PS, c *rat, count int, str string) {
   649  	for i := 0; i < count; i++ {
   650  		r := get(U)
   651  		if !r.eq(c) {
   652  			print("got: ")
   653  			r.pr()
   654  			print("should get ")
   655  			c.pr()
   656  			print("\n")
   657  			panic(str)
   658  		}
   659  	}
   660  }
   661  
   662  const N = 10
   663  
   664  func checka(U PS, a []*rat, str string) {
   665  	for i := 0; i < N; i++ {
   666  		check(U, a[i], 1, str)
   667  	}
   668  }
   669  
   670  func main() {
   671  	Init()
   672  	if len(os.Args) > 1 { // print
   673  		print("Ones: ")
   674  		Printn(Ones, 10)
   675  		print("Twos: ")
   676  		Printn(Twos, 10)
   677  		print("Add: ")
   678  		Printn(Add(Ones, Twos), 10)
   679  		print("Diff: ")
   680  		Printn(Diff(Ones), 10)
   681  		print("Integ: ")
   682  		Printn(Integ(zero, Ones), 10)
   683  		print("CMul: ")
   684  		Printn(Cmul(neg(one), Ones), 10)
   685  		print("Sub: ")
   686  		Printn(Sub(Ones, Twos), 10)
   687  		print("Mul: ")
   688  		Printn(Mul(Ones, Ones), 10)
   689  		print("Exp: ")
   690  		Printn(Exp(Ones), 15)
   691  		print("MonSubst: ")
   692  		Printn(MonSubst(Ones, neg(one), 2), 10)
   693  		print("ATan: ")
   694  		Printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10)
   695  	} else { // test
   696  		check(Ones, one, 5, "Ones")
   697  		check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones") // 1 1 1 1 1
   698  		check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3
   699  		a := make([]*rat, N)
   700  		d := Diff(Ones)
   701  		for i := 0; i < N; i++ {
   702  			a[i] = itor(int64(i + 1))
   703  		}
   704  		checka(d, a, "Diff") // 1 2 3 4 5
   705  		in := Integ(zero, Ones)
   706  		a[0] = zero // integration constant
   707  		for i := 1; i < N; i++ {
   708  			a[i] = i2tor(1, int64(i))
   709  		}
   710  		checka(in, a, "Integ")                               // 0 1 1/2 1/3 1/4 1/5
   711  		check(Cmul(neg(one), Twos), itor(-2), 10, "CMul")    // -1 -1 -1 -1 -1
   712  		check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos") // -1 -1 -1 -1 -1
   713  		m := Mul(Ones, Ones)
   714  		for i := 0; i < N; i++ {
   715  			a[i] = itor(int64(i + 1))
   716  		}
   717  		checka(m, a, "Mul") // 1 2 3 4 5
   718  		e := Exp(Ones)
   719  		a[0] = itor(1)
   720  		a[1] = itor(1)
   721  		a[2] = i2tor(3, 2)
   722  		a[3] = i2tor(13, 6)
   723  		a[4] = i2tor(73, 24)
   724  		a[5] = i2tor(167, 40)
   725  		a[6] = i2tor(4051, 720)
   726  		a[7] = i2tor(37633, 5040)
   727  		a[8] = i2tor(43817, 4480)
   728  		a[9] = i2tor(4596553, 362880)
   729  		checka(e, a, "Exp") // 1 1 3/2 13/6 73/24
   730  		at := Integ(zero, MonSubst(Ones, neg(one), 2))
   731  		for c, i := 1, 0; i < N; i++ {
   732  			if i%2 == 0 {
   733  				a[i] = zero
   734  			} else {
   735  				a[i] = i2tor(int64(c), int64(i))
   736  				c *= -1
   737  			}
   738  		}
   739  		checka(at, a, "ATan") // 0 -1 0 -1/3 0 -1/5
   740  		/*
   741  			t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)))
   742  			a[0] = zero
   743  			a[1] = itor(1)
   744  			a[2] = zero
   745  			a[3] = i2tor(1,3)
   746  			a[4] = zero
   747  			a[5] = i2tor(2,15)
   748  			a[6] = zero
   749  			a[7] = i2tor(17,315)
   750  			a[8] = zero
   751  			a[9] = i2tor(62,2835)
   752  			checka(t, a, "Tan")  // 0 1 0 1/3 0 2/15
   753  		*/
   754  	}
   755  }