github.com/eth4ne/go-ethereum@v1.9.7/core/blockchain.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package core implements the Ethereum consensus protocol.
    18  package core
    19  
    20  import (
    21  	"errors"
    22  	"fmt"
    23  	"io"
    24  	"math/big"
    25  	mrand "math/rand"
    26  	"sync"
    27  	"sync/atomic"
    28  	"time"
    29  
    30  	"github.com/ethereum/go-ethereum/common"
    31  	"github.com/ethereum/go-ethereum/common/mclock"
    32  	"github.com/ethereum/go-ethereum/common/prque"
    33  	"github.com/ethereum/go-ethereum/consensus"
    34  	"github.com/ethereum/go-ethereum/core/rawdb"
    35  	"github.com/ethereum/go-ethereum/core/state"
    36  	"github.com/ethereum/go-ethereum/core/types"
    37  	"github.com/ethereum/go-ethereum/core/vm"
    38  	"github.com/ethereum/go-ethereum/ethdb"
    39  	"github.com/ethereum/go-ethereum/event"
    40  	"github.com/ethereum/go-ethereum/log"
    41  	"github.com/ethereum/go-ethereum/metrics"
    42  	"github.com/ethereum/go-ethereum/params"
    43  	"github.com/ethereum/go-ethereum/rlp"
    44  	"github.com/ethereum/go-ethereum/trie"
    45  	"github.com/hashicorp/golang-lru"
    46  )
    47  
    48  var (
    49  	headBlockGauge     = metrics.NewRegisteredGauge("chain/head/block", nil)
    50  	headHeaderGauge    = metrics.NewRegisteredGauge("chain/head/header", nil)
    51  	headFastBlockGauge = metrics.NewRegisteredGauge("chain/head/receipt", nil)
    52  
    53  	accountReadTimer   = metrics.NewRegisteredTimer("chain/account/reads", nil)
    54  	accountHashTimer   = metrics.NewRegisteredTimer("chain/account/hashes", nil)
    55  	accountUpdateTimer = metrics.NewRegisteredTimer("chain/account/updates", nil)
    56  	accountCommitTimer = metrics.NewRegisteredTimer("chain/account/commits", nil)
    57  
    58  	storageReadTimer   = metrics.NewRegisteredTimer("chain/storage/reads", nil)
    59  	storageHashTimer   = metrics.NewRegisteredTimer("chain/storage/hashes", nil)
    60  	storageUpdateTimer = metrics.NewRegisteredTimer("chain/storage/updates", nil)
    61  	storageCommitTimer = metrics.NewRegisteredTimer("chain/storage/commits", nil)
    62  
    63  	blockInsertTimer     = metrics.NewRegisteredTimer("chain/inserts", nil)
    64  	blockValidationTimer = metrics.NewRegisteredTimer("chain/validation", nil)
    65  	blockExecutionTimer  = metrics.NewRegisteredTimer("chain/execution", nil)
    66  	blockWriteTimer      = metrics.NewRegisteredTimer("chain/write", nil)
    67  	blockReorgAddMeter   = metrics.NewRegisteredMeter("chain/reorg/drop", nil)
    68  	blockReorgDropMeter  = metrics.NewRegisteredMeter("chain/reorg/add", nil)
    69  
    70  	blockPrefetchExecuteTimer   = metrics.NewRegisteredTimer("chain/prefetch/executes", nil)
    71  	blockPrefetchInterruptMeter = metrics.NewRegisteredMeter("chain/prefetch/interrupts", nil)
    72  
    73  	errInsertionInterrupted = errors.New("insertion is interrupted")
    74  )
    75  
    76  const (
    77  	bodyCacheLimit      = 256
    78  	blockCacheLimit     = 256
    79  	receiptsCacheLimit  = 32
    80  	txLookupCacheLimit  = 1024
    81  	maxFutureBlocks     = 256
    82  	maxTimeFutureBlocks = 30
    83  	badBlockLimit       = 10
    84  	TriesInMemory       = 128
    85  
    86  	// BlockChainVersion ensures that an incompatible database forces a resync from scratch.
    87  	//
    88  	// Changelog:
    89  	//
    90  	// - Version 4
    91  	//   The following incompatible database changes were added:
    92  	//   * the `BlockNumber`, `TxHash`, `TxIndex`, `BlockHash` and `Index` fields of log are deleted
    93  	//   * the `Bloom` field of receipt is deleted
    94  	//   * the `BlockIndex` and `TxIndex` fields of txlookup are deleted
    95  	// - Version 5
    96  	//  The following incompatible database changes were added:
    97  	//    * the `TxHash`, `GasCost`, and `ContractAddress` fields are no longer stored for a receipt
    98  	//    * the `TxHash`, `GasCost`, and `ContractAddress` fields are computed by looking up the
    99  	//      receipts' corresponding block
   100  	// - Version 6
   101  	//  The following incompatible database changes were added:
   102  	//    * Transaction lookup information stores the corresponding block number instead of block hash
   103  	// - Version 7
   104  	//  The following incompatible database changes were added:
   105  	//    * Use freezer as the ancient database to maintain all ancient data
   106  	BlockChainVersion uint64 = 7
   107  )
   108  
   109  // CacheConfig contains the configuration values for the trie caching/pruning
   110  // that's resident in a blockchain.
   111  type CacheConfig struct {
   112  	TrieCleanLimit      int           // Memory allowance (MB) to use for caching trie nodes in memory
   113  	TrieCleanNoPrefetch bool          // Whether to disable heuristic state prefetching for followup blocks
   114  	TrieDirtyLimit      int           // Memory limit (MB) at which to start flushing dirty trie nodes to disk
   115  	TrieDirtyDisabled   bool          // Whether to disable trie write caching and GC altogether (archive node)
   116  	TrieTimeLimit       time.Duration // Time limit after which to flush the current in-memory trie to disk
   117  }
   118  
   119  // BlockChain represents the canonical chain given a database with a genesis
   120  // block. The Blockchain manages chain imports, reverts, chain reorganisations.
   121  //
   122  // Importing blocks in to the block chain happens according to the set of rules
   123  // defined by the two stage Validator. Processing of blocks is done using the
   124  // Processor which processes the included transaction. The validation of the state
   125  // is done in the second part of the Validator. Failing results in aborting of
   126  // the import.
   127  //
   128  // The BlockChain also helps in returning blocks from **any** chain included
   129  // in the database as well as blocks that represents the canonical chain. It's
   130  // important to note that GetBlock can return any block and does not need to be
   131  // included in the canonical one where as GetBlockByNumber always represents the
   132  // canonical chain.
   133  type BlockChain struct {
   134  	chainConfig *params.ChainConfig // Chain & network configuration
   135  	cacheConfig *CacheConfig        // Cache configuration for pruning
   136  
   137  	db     ethdb.Database // Low level persistent database to store final content in
   138  	triegc *prque.Prque   // Priority queue mapping block numbers to tries to gc
   139  	gcproc time.Duration  // Accumulates canonical block processing for trie dumping
   140  
   141  	hc            *HeaderChain
   142  	rmLogsFeed    event.Feed
   143  	chainFeed     event.Feed
   144  	chainSideFeed event.Feed
   145  	chainHeadFeed event.Feed
   146  	logsFeed      event.Feed
   147  	blockProcFeed event.Feed
   148  	scope         event.SubscriptionScope
   149  	genesisBlock  *types.Block
   150  
   151  	chainmu sync.RWMutex // blockchain insertion lock
   152  
   153  	currentBlock     atomic.Value // Current head of the block chain
   154  	currentFastBlock atomic.Value // Current head of the fast-sync chain (may be above the block chain!)
   155  
   156  	stateCache    state.Database // State database to reuse between imports (contains state cache)
   157  	bodyCache     *lru.Cache     // Cache for the most recent block bodies
   158  	bodyRLPCache  *lru.Cache     // Cache for the most recent block bodies in RLP encoded format
   159  	receiptsCache *lru.Cache     // Cache for the most recent receipts per block
   160  	blockCache    *lru.Cache     // Cache for the most recent entire blocks
   161  	txLookupCache *lru.Cache     // Cache for the most recent transaction lookup data.
   162  	futureBlocks  *lru.Cache     // future blocks are blocks added for later processing
   163  
   164  	quit    chan struct{} // blockchain quit channel
   165  	running int32         // running must be called atomically
   166  	// procInterrupt must be atomically called
   167  	procInterrupt int32          // interrupt signaler for block processing
   168  	wg            sync.WaitGroup // chain processing wait group for shutting down
   169  
   170  	engine     consensus.Engine
   171  	validator  Validator  // Block and state validator interface
   172  	prefetcher Prefetcher // Block state prefetcher interface
   173  	processor  Processor  // Block transaction processor interface
   174  	vmConfig   vm.Config
   175  
   176  	badBlocks       *lru.Cache                     // Bad block cache
   177  	shouldPreserve  func(*types.Block) bool        // Function used to determine whether should preserve the given block.
   178  	terminateInsert func(common.Hash, uint64) bool // Testing hook used to terminate ancient receipt chain insertion.
   179  }
   180  
   181  // NewBlockChain returns a fully initialised block chain using information
   182  // available in the database. It initialises the default Ethereum Validator and
   183  // Processor.
   184  func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *params.ChainConfig, engine consensus.Engine, vmConfig vm.Config, shouldPreserve func(block *types.Block) bool) (*BlockChain, error) {
   185  	if cacheConfig == nil {
   186  		cacheConfig = &CacheConfig{
   187  			TrieCleanLimit: 256,
   188  			TrieDirtyLimit: 256,
   189  			TrieTimeLimit:  5 * time.Minute,
   190  		}
   191  	}
   192  	bodyCache, _ := lru.New(bodyCacheLimit)
   193  	bodyRLPCache, _ := lru.New(bodyCacheLimit)
   194  	receiptsCache, _ := lru.New(receiptsCacheLimit)
   195  	blockCache, _ := lru.New(blockCacheLimit)
   196  	txLookupCache, _ := lru.New(txLookupCacheLimit)
   197  	futureBlocks, _ := lru.New(maxFutureBlocks)
   198  	badBlocks, _ := lru.New(badBlockLimit)
   199  
   200  	bc := &BlockChain{
   201  		chainConfig:    chainConfig,
   202  		cacheConfig:    cacheConfig,
   203  		db:             db,
   204  		triegc:         prque.New(nil),
   205  		stateCache:     state.NewDatabaseWithCache(db, cacheConfig.TrieCleanLimit),
   206  		quit:           make(chan struct{}),
   207  		shouldPreserve: shouldPreserve,
   208  		bodyCache:      bodyCache,
   209  		bodyRLPCache:   bodyRLPCache,
   210  		receiptsCache:  receiptsCache,
   211  		blockCache:     blockCache,
   212  		txLookupCache:  txLookupCache,
   213  		futureBlocks:   futureBlocks,
   214  		engine:         engine,
   215  		vmConfig:       vmConfig,
   216  		badBlocks:      badBlocks,
   217  	}
   218  	bc.validator = NewBlockValidator(chainConfig, bc, engine)
   219  	bc.prefetcher = newStatePrefetcher(chainConfig, bc, engine)
   220  	bc.processor = NewStateProcessor(chainConfig, bc, engine)
   221  
   222  	var err error
   223  	bc.hc, err = NewHeaderChain(db, chainConfig, engine, bc.getProcInterrupt)
   224  	if err != nil {
   225  		return nil, err
   226  	}
   227  	bc.genesisBlock = bc.GetBlockByNumber(0)
   228  	if bc.genesisBlock == nil {
   229  		return nil, ErrNoGenesis
   230  	}
   231  
   232  	var nilBlock *types.Block
   233  	bc.currentBlock.Store(nilBlock)
   234  	bc.currentFastBlock.Store(nilBlock)
   235  
   236  	// Initialize the chain with ancient data if it isn't empty.
   237  	if bc.empty() {
   238  		rawdb.InitDatabaseFromFreezer(bc.db)
   239  	}
   240  
   241  	if err := bc.loadLastState(); err != nil {
   242  		return nil, err
   243  	}
   244  	// The first thing the node will do is reconstruct the verification data for
   245  	// the head block (ethash cache or clique voting snapshot). Might as well do
   246  	// it in advance.
   247  	bc.engine.VerifyHeader(bc, bc.CurrentHeader(), true)
   248  
   249  	if frozen, err := bc.db.Ancients(); err == nil && frozen > 0 {
   250  		var (
   251  			needRewind bool
   252  			low        uint64
   253  		)
   254  		// The head full block may be rolled back to a very low height due to
   255  		// blockchain repair. If the head full block is even lower than the ancient
   256  		// chain, truncate the ancient store.
   257  		fullBlock := bc.CurrentBlock()
   258  		if fullBlock != nil && fullBlock != bc.genesisBlock && fullBlock.NumberU64() < frozen-1 {
   259  			needRewind = true
   260  			low = fullBlock.NumberU64()
   261  		}
   262  		// In fast sync, it may happen that ancient data has been written to the
   263  		// ancient store, but the LastFastBlock has not been updated, truncate the
   264  		// extra data here.
   265  		fastBlock := bc.CurrentFastBlock()
   266  		if fastBlock != nil && fastBlock.NumberU64() < frozen-1 {
   267  			needRewind = true
   268  			if fastBlock.NumberU64() < low || low == 0 {
   269  				low = fastBlock.NumberU64()
   270  			}
   271  		}
   272  		if needRewind {
   273  			var hashes []common.Hash
   274  			previous := bc.CurrentHeader().Number.Uint64()
   275  			for i := low + 1; i <= bc.CurrentHeader().Number.Uint64(); i++ {
   276  				hashes = append(hashes, rawdb.ReadCanonicalHash(bc.db, i))
   277  			}
   278  			bc.Rollback(hashes)
   279  			log.Warn("Truncate ancient chain", "from", previous, "to", low)
   280  		}
   281  	}
   282  	// Check the current state of the block hashes and make sure that we do not have any of the bad blocks in our chain
   283  	for hash := range BadHashes {
   284  		if header := bc.GetHeaderByHash(hash); header != nil {
   285  			// get the canonical block corresponding to the offending header's number
   286  			headerByNumber := bc.GetHeaderByNumber(header.Number.Uint64())
   287  			// make sure the headerByNumber (if present) is in our current canonical chain
   288  			if headerByNumber != nil && headerByNumber.Hash() == header.Hash() {
   289  				log.Error("Found bad hash, rewinding chain", "number", header.Number, "hash", header.ParentHash)
   290  				bc.SetHead(header.Number.Uint64() - 1)
   291  				log.Error("Chain rewind was successful, resuming normal operation")
   292  			}
   293  		}
   294  	}
   295  	// Take ownership of this particular state
   296  	go bc.update()
   297  	return bc, nil
   298  }
   299  
   300  func (bc *BlockChain) getProcInterrupt() bool {
   301  	return atomic.LoadInt32(&bc.procInterrupt) == 1
   302  }
   303  
   304  // GetVMConfig returns the block chain VM config.
   305  func (bc *BlockChain) GetVMConfig() *vm.Config {
   306  	return &bc.vmConfig
   307  }
   308  
   309  // empty returns an indicator whether the blockchain is empty.
   310  // Note, it's a special case that we connect a non-empty ancient
   311  // database with an empty node, so that we can plugin the ancient
   312  // into node seamlessly.
   313  func (bc *BlockChain) empty() bool {
   314  	genesis := bc.genesisBlock.Hash()
   315  	for _, hash := range []common.Hash{rawdb.ReadHeadBlockHash(bc.db), rawdb.ReadHeadHeaderHash(bc.db), rawdb.ReadHeadFastBlockHash(bc.db)} {
   316  		if hash != genesis {
   317  			return false
   318  		}
   319  	}
   320  	return true
   321  }
   322  
   323  // loadLastState loads the last known chain state from the database. This method
   324  // assumes that the chain manager mutex is held.
   325  func (bc *BlockChain) loadLastState() error {
   326  	// Restore the last known head block
   327  	head := rawdb.ReadHeadBlockHash(bc.db)
   328  	if head == (common.Hash{}) {
   329  		// Corrupt or empty database, init from scratch
   330  		log.Warn("Empty database, resetting chain")
   331  		return bc.Reset()
   332  	}
   333  	// Make sure the entire head block is available
   334  	currentBlock := bc.GetBlockByHash(head)
   335  	if currentBlock == nil {
   336  		// Corrupt or empty database, init from scratch
   337  		log.Warn("Head block missing, resetting chain", "hash", head)
   338  		return bc.Reset()
   339  	}
   340  	// Make sure the state associated with the block is available
   341  	if _, err := state.New(currentBlock.Root(), bc.stateCache); err != nil {
   342  		// Dangling block without a state associated, init from scratch
   343  		log.Warn("Head state missing, repairing chain", "number", currentBlock.Number(), "hash", currentBlock.Hash())
   344  		if err := bc.repair(&currentBlock); err != nil {
   345  			return err
   346  		}
   347  		rawdb.WriteHeadBlockHash(bc.db, currentBlock.Hash())
   348  	}
   349  	// Everything seems to be fine, set as the head block
   350  	bc.currentBlock.Store(currentBlock)
   351  	headBlockGauge.Update(int64(currentBlock.NumberU64()))
   352  
   353  	// Restore the last known head header
   354  	currentHeader := currentBlock.Header()
   355  	if head := rawdb.ReadHeadHeaderHash(bc.db); head != (common.Hash{}) {
   356  		if header := bc.GetHeaderByHash(head); header != nil {
   357  			currentHeader = header
   358  		}
   359  	}
   360  	bc.hc.SetCurrentHeader(currentHeader)
   361  
   362  	// Restore the last known head fast block
   363  	bc.currentFastBlock.Store(currentBlock)
   364  	headFastBlockGauge.Update(int64(currentBlock.NumberU64()))
   365  
   366  	if head := rawdb.ReadHeadFastBlockHash(bc.db); head != (common.Hash{}) {
   367  		if block := bc.GetBlockByHash(head); block != nil {
   368  			bc.currentFastBlock.Store(block)
   369  			headFastBlockGauge.Update(int64(block.NumberU64()))
   370  		}
   371  	}
   372  	// Issue a status log for the user
   373  	currentFastBlock := bc.CurrentFastBlock()
   374  
   375  	headerTd := bc.GetTd(currentHeader.Hash(), currentHeader.Number.Uint64())
   376  	blockTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64())
   377  	fastTd := bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64())
   378  
   379  	log.Info("Loaded most recent local header", "number", currentHeader.Number, "hash", currentHeader.Hash(), "td", headerTd, "age", common.PrettyAge(time.Unix(int64(currentHeader.Time), 0)))
   380  	log.Info("Loaded most recent local full block", "number", currentBlock.Number(), "hash", currentBlock.Hash(), "td", blockTd, "age", common.PrettyAge(time.Unix(int64(currentBlock.Time()), 0)))
   381  	log.Info("Loaded most recent local fast block", "number", currentFastBlock.Number(), "hash", currentFastBlock.Hash(), "td", fastTd, "age", common.PrettyAge(time.Unix(int64(currentFastBlock.Time()), 0)))
   382  
   383  	return nil
   384  }
   385  
   386  // SetHead rewinds the local chain to a new head. In the case of headers, everything
   387  // above the new head will be deleted and the new one set. In the case of blocks
   388  // though, the head may be further rewound if block bodies are missing (non-archive
   389  // nodes after a fast sync).
   390  func (bc *BlockChain) SetHead(head uint64) error {
   391  	log.Warn("Rewinding blockchain", "target", head)
   392  
   393  	bc.chainmu.Lock()
   394  	defer bc.chainmu.Unlock()
   395  
   396  	updateFn := func(db ethdb.KeyValueWriter, header *types.Header) {
   397  		// Rewind the block chain, ensuring we don't end up with a stateless head block
   398  		if currentBlock := bc.CurrentBlock(); currentBlock != nil && header.Number.Uint64() < currentBlock.NumberU64() {
   399  			newHeadBlock := bc.GetBlock(header.Hash(), header.Number.Uint64())
   400  			if newHeadBlock == nil {
   401  				newHeadBlock = bc.genesisBlock
   402  			} else {
   403  				if _, err := state.New(newHeadBlock.Root(), bc.stateCache); err != nil {
   404  					// Rewound state missing, rolled back to before pivot, reset to genesis
   405  					newHeadBlock = bc.genesisBlock
   406  				}
   407  			}
   408  			rawdb.WriteHeadBlockHash(db, newHeadBlock.Hash())
   409  			bc.currentBlock.Store(newHeadBlock)
   410  			headBlockGauge.Update(int64(newHeadBlock.NumberU64()))
   411  		}
   412  
   413  		// Rewind the fast block in a simpleton way to the target head
   414  		if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock != nil && header.Number.Uint64() < currentFastBlock.NumberU64() {
   415  			newHeadFastBlock := bc.GetBlock(header.Hash(), header.Number.Uint64())
   416  			// If either blocks reached nil, reset to the genesis state
   417  			if newHeadFastBlock == nil {
   418  				newHeadFastBlock = bc.genesisBlock
   419  			}
   420  			rawdb.WriteHeadFastBlockHash(db, newHeadFastBlock.Hash())
   421  			bc.currentFastBlock.Store(newHeadFastBlock)
   422  			headFastBlockGauge.Update(int64(newHeadFastBlock.NumberU64()))
   423  		}
   424  	}
   425  
   426  	// Rewind the header chain, deleting all block bodies until then
   427  	delFn := func(db ethdb.KeyValueWriter, hash common.Hash, num uint64) {
   428  		// Ignore the error here since light client won't hit this path
   429  		frozen, _ := bc.db.Ancients()
   430  		if num+1 <= frozen {
   431  			// Truncate all relative data(header, total difficulty, body, receipt
   432  			// and canonical hash) from ancient store.
   433  			if err := bc.db.TruncateAncients(num + 1); err != nil {
   434  				log.Crit("Failed to truncate ancient data", "number", num, "err", err)
   435  			}
   436  
   437  			// Remove the hash <-> number mapping from the active store.
   438  			rawdb.DeleteHeaderNumber(db, hash)
   439  		} else {
   440  			// Remove relative body and receipts from the active store.
   441  			// The header, total difficulty and canonical hash will be
   442  			// removed in the hc.SetHead function.
   443  			rawdb.DeleteBody(db, hash, num)
   444  			rawdb.DeleteReceipts(db, hash, num)
   445  		}
   446  		// Todo(rjl493456442) txlookup, bloombits, etc
   447  	}
   448  	bc.hc.SetHead(head, updateFn, delFn)
   449  
   450  	// Clear out any stale content from the caches
   451  	bc.bodyCache.Purge()
   452  	bc.bodyRLPCache.Purge()
   453  	bc.receiptsCache.Purge()
   454  	bc.blockCache.Purge()
   455  	bc.txLookupCache.Purge()
   456  	bc.futureBlocks.Purge()
   457  
   458  	return bc.loadLastState()
   459  }
   460  
   461  // FastSyncCommitHead sets the current head block to the one defined by the hash
   462  // irrelevant what the chain contents were prior.
   463  func (bc *BlockChain) FastSyncCommitHead(hash common.Hash) error {
   464  	// Make sure that both the block as well at its state trie exists
   465  	block := bc.GetBlockByHash(hash)
   466  	if block == nil {
   467  		return fmt.Errorf("non existent block [%x…]", hash[:4])
   468  	}
   469  	if _, err := trie.NewSecure(block.Root(), bc.stateCache.TrieDB()); err != nil {
   470  		return err
   471  	}
   472  	// If all checks out, manually set the head block
   473  	bc.chainmu.Lock()
   474  	bc.currentBlock.Store(block)
   475  	headBlockGauge.Update(int64(block.NumberU64()))
   476  	bc.chainmu.Unlock()
   477  
   478  	log.Info("Committed new head block", "number", block.Number(), "hash", hash)
   479  	return nil
   480  }
   481  
   482  // GasLimit returns the gas limit of the current HEAD block.
   483  func (bc *BlockChain) GasLimit() uint64 {
   484  	return bc.CurrentBlock().GasLimit()
   485  }
   486  
   487  // CurrentBlock retrieves the current head block of the canonical chain. The
   488  // block is retrieved from the blockchain's internal cache.
   489  func (bc *BlockChain) CurrentBlock() *types.Block {
   490  	return bc.currentBlock.Load().(*types.Block)
   491  }
   492  
   493  // CurrentFastBlock retrieves the current fast-sync head block of the canonical
   494  // chain. The block is retrieved from the blockchain's internal cache.
   495  func (bc *BlockChain) CurrentFastBlock() *types.Block {
   496  	return bc.currentFastBlock.Load().(*types.Block)
   497  }
   498  
   499  // Validator returns the current validator.
   500  func (bc *BlockChain) Validator() Validator {
   501  	return bc.validator
   502  }
   503  
   504  // Processor returns the current processor.
   505  func (bc *BlockChain) Processor() Processor {
   506  	return bc.processor
   507  }
   508  
   509  // State returns a new mutable state based on the current HEAD block.
   510  func (bc *BlockChain) State() (*state.StateDB, error) {
   511  	return bc.StateAt(bc.CurrentBlock().Root())
   512  }
   513  
   514  // StateAt returns a new mutable state based on a particular point in time.
   515  func (bc *BlockChain) StateAt(root common.Hash) (*state.StateDB, error) {
   516  	return state.New(root, bc.stateCache)
   517  }
   518  
   519  // StateCache returns the caching database underpinning the blockchain instance.
   520  func (bc *BlockChain) StateCache() state.Database {
   521  	return bc.stateCache
   522  }
   523  
   524  // Reset purges the entire blockchain, restoring it to its genesis state.
   525  func (bc *BlockChain) Reset() error {
   526  	return bc.ResetWithGenesisBlock(bc.genesisBlock)
   527  }
   528  
   529  // ResetWithGenesisBlock purges the entire blockchain, restoring it to the
   530  // specified genesis state.
   531  func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) error {
   532  	// Dump the entire block chain and purge the caches
   533  	if err := bc.SetHead(0); err != nil {
   534  		return err
   535  	}
   536  	bc.chainmu.Lock()
   537  	defer bc.chainmu.Unlock()
   538  
   539  	// Prepare the genesis block and reinitialise the chain
   540  	if err := bc.hc.WriteTd(genesis.Hash(), genesis.NumberU64(), genesis.Difficulty()); err != nil {
   541  		log.Crit("Failed to write genesis block TD", "err", err)
   542  	}
   543  	rawdb.WriteBlock(bc.db, genesis)
   544  
   545  	bc.genesisBlock = genesis
   546  	bc.insert(bc.genesisBlock)
   547  	bc.currentBlock.Store(bc.genesisBlock)
   548  	headBlockGauge.Update(int64(bc.genesisBlock.NumberU64()))
   549  
   550  	bc.hc.SetGenesis(bc.genesisBlock.Header())
   551  	bc.hc.SetCurrentHeader(bc.genesisBlock.Header())
   552  	bc.currentFastBlock.Store(bc.genesisBlock)
   553  	headFastBlockGauge.Update(int64(bc.genesisBlock.NumberU64()))
   554  
   555  	return nil
   556  }
   557  
   558  // repair tries to repair the current blockchain by rolling back the current block
   559  // until one with associated state is found. This is needed to fix incomplete db
   560  // writes caused either by crashes/power outages, or simply non-committed tries.
   561  //
   562  // This method only rolls back the current block. The current header and current
   563  // fast block are left intact.
   564  func (bc *BlockChain) repair(head **types.Block) error {
   565  	for {
   566  		// Abort if we've rewound to a head block that does have associated state
   567  		if _, err := state.New((*head).Root(), bc.stateCache); err == nil {
   568  			log.Info("Rewound blockchain to past state", "number", (*head).Number(), "hash", (*head).Hash())
   569  			return nil
   570  		}
   571  		// Otherwise rewind one block and recheck state availability there
   572  		block := bc.GetBlock((*head).ParentHash(), (*head).NumberU64()-1)
   573  		if block == nil {
   574  			return fmt.Errorf("missing block %d [%x]", (*head).NumberU64()-1, (*head).ParentHash())
   575  		}
   576  		*head = block
   577  	}
   578  }
   579  
   580  // Export writes the active chain to the given writer.
   581  func (bc *BlockChain) Export(w io.Writer) error {
   582  	return bc.ExportN(w, uint64(0), bc.CurrentBlock().NumberU64())
   583  }
   584  
   585  // ExportN writes a subset of the active chain to the given writer.
   586  func (bc *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error {
   587  	bc.chainmu.RLock()
   588  	defer bc.chainmu.RUnlock()
   589  
   590  	if first > last {
   591  		return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last)
   592  	}
   593  	log.Info("Exporting batch of blocks", "count", last-first+1)
   594  
   595  	start, reported := time.Now(), time.Now()
   596  	for nr := first; nr <= last; nr++ {
   597  		block := bc.GetBlockByNumber(nr)
   598  		if block == nil {
   599  			return fmt.Errorf("export failed on #%d: not found", nr)
   600  		}
   601  		if err := block.EncodeRLP(w); err != nil {
   602  			return err
   603  		}
   604  		if time.Since(reported) >= statsReportLimit {
   605  			log.Info("Exporting blocks", "exported", block.NumberU64()-first, "elapsed", common.PrettyDuration(time.Since(start)))
   606  			reported = time.Now()
   607  		}
   608  	}
   609  	return nil
   610  }
   611  
   612  // insert injects a new head block into the current block chain. This method
   613  // assumes that the block is indeed a true head. It will also reset the head
   614  // header and the head fast sync block to this very same block if they are older
   615  // or if they are on a different side chain.
   616  //
   617  // Note, this function assumes that the `mu` mutex is held!
   618  func (bc *BlockChain) insert(block *types.Block) {
   619  	// If the block is on a side chain or an unknown one, force other heads onto it too
   620  	updateHeads := rawdb.ReadCanonicalHash(bc.db, block.NumberU64()) != block.Hash()
   621  
   622  	// Add the block to the canonical chain number scheme and mark as the head
   623  	rawdb.WriteCanonicalHash(bc.db, block.Hash(), block.NumberU64())
   624  	rawdb.WriteHeadBlockHash(bc.db, block.Hash())
   625  
   626  	bc.currentBlock.Store(block)
   627  	headBlockGauge.Update(int64(block.NumberU64()))
   628  
   629  	// If the block is better than our head or is on a different chain, force update heads
   630  	if updateHeads {
   631  		bc.hc.SetCurrentHeader(block.Header())
   632  		rawdb.WriteHeadFastBlockHash(bc.db, block.Hash())
   633  
   634  		bc.currentFastBlock.Store(block)
   635  		headFastBlockGauge.Update(int64(block.NumberU64()))
   636  	}
   637  }
   638  
   639  // Genesis retrieves the chain's genesis block.
   640  func (bc *BlockChain) Genesis() *types.Block {
   641  	return bc.genesisBlock
   642  }
   643  
   644  // GetBody retrieves a block body (transactions and uncles) from the database by
   645  // hash, caching it if found.
   646  func (bc *BlockChain) GetBody(hash common.Hash) *types.Body {
   647  	// Short circuit if the body's already in the cache, retrieve otherwise
   648  	if cached, ok := bc.bodyCache.Get(hash); ok {
   649  		body := cached.(*types.Body)
   650  		return body
   651  	}
   652  	number := bc.hc.GetBlockNumber(hash)
   653  	if number == nil {
   654  		return nil
   655  	}
   656  	body := rawdb.ReadBody(bc.db, hash, *number)
   657  	if body == nil {
   658  		return nil
   659  	}
   660  	// Cache the found body for next time and return
   661  	bc.bodyCache.Add(hash, body)
   662  	return body
   663  }
   664  
   665  // GetBodyRLP retrieves a block body in RLP encoding from the database by hash,
   666  // caching it if found.
   667  func (bc *BlockChain) GetBodyRLP(hash common.Hash) rlp.RawValue {
   668  	// Short circuit if the body's already in the cache, retrieve otherwise
   669  	if cached, ok := bc.bodyRLPCache.Get(hash); ok {
   670  		return cached.(rlp.RawValue)
   671  	}
   672  	number := bc.hc.GetBlockNumber(hash)
   673  	if number == nil {
   674  		return nil
   675  	}
   676  	body := rawdb.ReadBodyRLP(bc.db, hash, *number)
   677  	if len(body) == 0 {
   678  		return nil
   679  	}
   680  	// Cache the found body for next time and return
   681  	bc.bodyRLPCache.Add(hash, body)
   682  	return body
   683  }
   684  
   685  // HasBlock checks if a block is fully present in the database or not.
   686  func (bc *BlockChain) HasBlock(hash common.Hash, number uint64) bool {
   687  	if bc.blockCache.Contains(hash) {
   688  		return true
   689  	}
   690  	return rawdb.HasBody(bc.db, hash, number)
   691  }
   692  
   693  // HasFastBlock checks if a fast block is fully present in the database or not.
   694  func (bc *BlockChain) HasFastBlock(hash common.Hash, number uint64) bool {
   695  	if !bc.HasBlock(hash, number) {
   696  		return false
   697  	}
   698  	if bc.receiptsCache.Contains(hash) {
   699  		return true
   700  	}
   701  	return rawdb.HasReceipts(bc.db, hash, number)
   702  }
   703  
   704  // HasState checks if state trie is fully present in the database or not.
   705  func (bc *BlockChain) HasState(hash common.Hash) bool {
   706  	_, err := bc.stateCache.OpenTrie(hash)
   707  	return err == nil
   708  }
   709  
   710  // HasBlockAndState checks if a block and associated state trie is fully present
   711  // in the database or not, caching it if present.
   712  func (bc *BlockChain) HasBlockAndState(hash common.Hash, number uint64) bool {
   713  	// Check first that the block itself is known
   714  	block := bc.GetBlock(hash, number)
   715  	if block == nil {
   716  		return false
   717  	}
   718  	return bc.HasState(block.Root())
   719  }
   720  
   721  // GetBlock retrieves a block from the database by hash and number,
   722  // caching it if found.
   723  func (bc *BlockChain) GetBlock(hash common.Hash, number uint64) *types.Block {
   724  	// Short circuit if the block's already in the cache, retrieve otherwise
   725  	if block, ok := bc.blockCache.Get(hash); ok {
   726  		return block.(*types.Block)
   727  	}
   728  	block := rawdb.ReadBlock(bc.db, hash, number)
   729  	if block == nil {
   730  		return nil
   731  	}
   732  	// Cache the found block for next time and return
   733  	bc.blockCache.Add(block.Hash(), block)
   734  	return block
   735  }
   736  
   737  // GetBlockByHash retrieves a block from the database by hash, caching it if found.
   738  func (bc *BlockChain) GetBlockByHash(hash common.Hash) *types.Block {
   739  	number := bc.hc.GetBlockNumber(hash)
   740  	if number == nil {
   741  		return nil
   742  	}
   743  	return bc.GetBlock(hash, *number)
   744  }
   745  
   746  // GetBlockByNumber retrieves a block from the database by number, caching it
   747  // (associated with its hash) if found.
   748  func (bc *BlockChain) GetBlockByNumber(number uint64) *types.Block {
   749  	hash := rawdb.ReadCanonicalHash(bc.db, number)
   750  	if hash == (common.Hash{}) {
   751  		return nil
   752  	}
   753  	return bc.GetBlock(hash, number)
   754  }
   755  
   756  // GetReceiptsByHash retrieves the receipts for all transactions in a given block.
   757  func (bc *BlockChain) GetReceiptsByHash(hash common.Hash) types.Receipts {
   758  	if receipts, ok := bc.receiptsCache.Get(hash); ok {
   759  		return receipts.(types.Receipts)
   760  	}
   761  	number := rawdb.ReadHeaderNumber(bc.db, hash)
   762  	if number == nil {
   763  		return nil
   764  	}
   765  	receipts := rawdb.ReadReceipts(bc.db, hash, *number, bc.chainConfig)
   766  	if receipts == nil {
   767  		return nil
   768  	}
   769  	bc.receiptsCache.Add(hash, receipts)
   770  	return receipts
   771  }
   772  
   773  // GetBlocksFromHash returns the block corresponding to hash and up to n-1 ancestors.
   774  // [deprecated by eth/62]
   775  func (bc *BlockChain) GetBlocksFromHash(hash common.Hash, n int) (blocks []*types.Block) {
   776  	number := bc.hc.GetBlockNumber(hash)
   777  	if number == nil {
   778  		return nil
   779  	}
   780  	for i := 0; i < n; i++ {
   781  		block := bc.GetBlock(hash, *number)
   782  		if block == nil {
   783  			break
   784  		}
   785  		blocks = append(blocks, block)
   786  		hash = block.ParentHash()
   787  		*number--
   788  	}
   789  	return
   790  }
   791  
   792  // GetUnclesInChain retrieves all the uncles from a given block backwards until
   793  // a specific distance is reached.
   794  func (bc *BlockChain) GetUnclesInChain(block *types.Block, length int) []*types.Header {
   795  	uncles := []*types.Header{}
   796  	for i := 0; block != nil && i < length; i++ {
   797  		uncles = append(uncles, block.Uncles()...)
   798  		block = bc.GetBlock(block.ParentHash(), block.NumberU64()-1)
   799  	}
   800  	return uncles
   801  }
   802  
   803  // TrieNode retrieves a blob of data associated with a trie node (or code hash)
   804  // either from ephemeral in-memory cache, or from persistent storage.
   805  func (bc *BlockChain) TrieNode(hash common.Hash) ([]byte, error) {
   806  	return bc.stateCache.TrieDB().Node(hash)
   807  }
   808  
   809  // Stop stops the blockchain service. If any imports are currently in progress
   810  // it will abort them using the procInterrupt.
   811  func (bc *BlockChain) Stop() {
   812  	if !atomic.CompareAndSwapInt32(&bc.running, 0, 1) {
   813  		return
   814  	}
   815  	// Unsubscribe all subscriptions registered from blockchain
   816  	bc.scope.Close()
   817  	close(bc.quit)
   818  	atomic.StoreInt32(&bc.procInterrupt, 1)
   819  
   820  	bc.wg.Wait()
   821  
   822  	// Ensure the state of a recent block is also stored to disk before exiting.
   823  	// We're writing three different states to catch different restart scenarios:
   824  	//  - HEAD:     So we don't need to reprocess any blocks in the general case
   825  	//  - HEAD-1:   So we don't do large reorgs if our HEAD becomes an uncle
   826  	//  - HEAD-127: So we have a hard limit on the number of blocks reexecuted
   827  	if !bc.cacheConfig.TrieDirtyDisabled {
   828  		triedb := bc.stateCache.TrieDB()
   829  
   830  		for _, offset := range []uint64{0, 1, TriesInMemory - 1} {
   831  			if number := bc.CurrentBlock().NumberU64(); number > offset {
   832  				recent := bc.GetBlockByNumber(number - offset)
   833  
   834  				log.Info("Writing cached state to disk", "block", recent.Number(), "hash", recent.Hash(), "root", recent.Root())
   835  				if err := triedb.Commit(recent.Root(), true); err != nil {
   836  					log.Error("Failed to commit recent state trie", "err", err)
   837  				}
   838  			}
   839  		}
   840  		for !bc.triegc.Empty() {
   841  			triedb.Dereference(bc.triegc.PopItem().(common.Hash))
   842  		}
   843  		if size, _ := triedb.Size(); size != 0 {
   844  			log.Error("Dangling trie nodes after full cleanup")
   845  		}
   846  	}
   847  	log.Info("Blockchain manager stopped")
   848  }
   849  
   850  func (bc *BlockChain) procFutureBlocks() {
   851  	blocks := make([]*types.Block, 0, bc.futureBlocks.Len())
   852  	for _, hash := range bc.futureBlocks.Keys() {
   853  		if block, exist := bc.futureBlocks.Peek(hash); exist {
   854  			blocks = append(blocks, block.(*types.Block))
   855  		}
   856  	}
   857  	if len(blocks) > 0 {
   858  		types.BlockBy(types.Number).Sort(blocks)
   859  
   860  		// Insert one by one as chain insertion needs contiguous ancestry between blocks
   861  		for i := range blocks {
   862  			bc.InsertChain(blocks[i : i+1])
   863  		}
   864  	}
   865  }
   866  
   867  // WriteStatus status of write
   868  type WriteStatus byte
   869  
   870  const (
   871  	NonStatTy WriteStatus = iota
   872  	CanonStatTy
   873  	SideStatTy
   874  )
   875  
   876  // Rollback is designed to remove a chain of links from the database that aren't
   877  // certain enough to be valid.
   878  func (bc *BlockChain) Rollback(chain []common.Hash) {
   879  	bc.chainmu.Lock()
   880  	defer bc.chainmu.Unlock()
   881  
   882  	for i := len(chain) - 1; i >= 0; i-- {
   883  		hash := chain[i]
   884  
   885  		currentHeader := bc.hc.CurrentHeader()
   886  		if currentHeader.Hash() == hash {
   887  			bc.hc.SetCurrentHeader(bc.GetHeader(currentHeader.ParentHash, currentHeader.Number.Uint64()-1))
   888  		}
   889  		if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock.Hash() == hash {
   890  			newFastBlock := bc.GetBlock(currentFastBlock.ParentHash(), currentFastBlock.NumberU64()-1)
   891  			rawdb.WriteHeadFastBlockHash(bc.db, newFastBlock.Hash())
   892  			bc.currentFastBlock.Store(newFastBlock)
   893  			headFastBlockGauge.Update(int64(newFastBlock.NumberU64()))
   894  		}
   895  		if currentBlock := bc.CurrentBlock(); currentBlock.Hash() == hash {
   896  			newBlock := bc.GetBlock(currentBlock.ParentHash(), currentBlock.NumberU64()-1)
   897  			rawdb.WriteHeadBlockHash(bc.db, newBlock.Hash())
   898  			bc.currentBlock.Store(newBlock)
   899  			headBlockGauge.Update(int64(newBlock.NumberU64()))
   900  		}
   901  	}
   902  	// Truncate ancient data which exceeds the current header.
   903  	//
   904  	// Notably, it can happen that system crashes without truncating the ancient data
   905  	// but the head indicator has been updated in the active store. Regarding this issue,
   906  	// system will self recovery by truncating the extra data during the setup phase.
   907  	if err := bc.truncateAncient(bc.hc.CurrentHeader().Number.Uint64()); err != nil {
   908  		log.Crit("Truncate ancient store failed", "err", err)
   909  	}
   910  }
   911  
   912  // truncateAncient rewinds the blockchain to the specified header and deletes all
   913  // data in the ancient store that exceeds the specified header.
   914  func (bc *BlockChain) truncateAncient(head uint64) error {
   915  	frozen, err := bc.db.Ancients()
   916  	if err != nil {
   917  		return err
   918  	}
   919  	// Short circuit if there is no data to truncate in ancient store.
   920  	if frozen <= head+1 {
   921  		return nil
   922  	}
   923  	// Truncate all the data in the freezer beyond the specified head
   924  	if err := bc.db.TruncateAncients(head + 1); err != nil {
   925  		return err
   926  	}
   927  	// Clear out any stale content from the caches
   928  	bc.hc.headerCache.Purge()
   929  	bc.hc.tdCache.Purge()
   930  	bc.hc.numberCache.Purge()
   931  
   932  	// Clear out any stale content from the caches
   933  	bc.bodyCache.Purge()
   934  	bc.bodyRLPCache.Purge()
   935  	bc.receiptsCache.Purge()
   936  	bc.blockCache.Purge()
   937  	bc.txLookupCache.Purge()
   938  	bc.futureBlocks.Purge()
   939  
   940  	log.Info("Rewind ancient data", "number", head)
   941  	return nil
   942  }
   943  
   944  // numberHash is just a container for a number and a hash, to represent a block
   945  type numberHash struct {
   946  	number uint64
   947  	hash   common.Hash
   948  }
   949  
   950  // InsertReceiptChain attempts to complete an already existing header chain with
   951  // transaction and receipt data.
   952  func (bc *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts, ancientLimit uint64) (int, error) {
   953  	// We don't require the chainMu here since we want to maximize the
   954  	// concurrency of header insertion and receipt insertion.
   955  	bc.wg.Add(1)
   956  	defer bc.wg.Done()
   957  
   958  	var (
   959  		ancientBlocks, liveBlocks     types.Blocks
   960  		ancientReceipts, liveReceipts []types.Receipts
   961  	)
   962  	// Do a sanity check that the provided chain is actually ordered and linked
   963  	for i := 0; i < len(blockChain); i++ {
   964  		if i != 0 {
   965  			if blockChain[i].NumberU64() != blockChain[i-1].NumberU64()+1 || blockChain[i].ParentHash() != blockChain[i-1].Hash() {
   966  				log.Error("Non contiguous receipt insert", "number", blockChain[i].Number(), "hash", blockChain[i].Hash(), "parent", blockChain[i].ParentHash(),
   967  					"prevnumber", blockChain[i-1].Number(), "prevhash", blockChain[i-1].Hash())
   968  				return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, blockChain[i-1].NumberU64(),
   969  					blockChain[i-1].Hash().Bytes()[:4], i, blockChain[i].NumberU64(), blockChain[i].Hash().Bytes()[:4], blockChain[i].ParentHash().Bytes()[:4])
   970  			}
   971  		}
   972  		if blockChain[i].NumberU64() <= ancientLimit {
   973  			ancientBlocks, ancientReceipts = append(ancientBlocks, blockChain[i]), append(ancientReceipts, receiptChain[i])
   974  		} else {
   975  			liveBlocks, liveReceipts = append(liveBlocks, blockChain[i]), append(liveReceipts, receiptChain[i])
   976  		}
   977  	}
   978  
   979  	var (
   980  		stats = struct{ processed, ignored int32 }{}
   981  		start = time.Now()
   982  		size  = 0
   983  	)
   984  	// updateHead updates the head fast sync block if the inserted blocks are better
   985  	// and returns a indicator whether the inserted blocks are canonical.
   986  	updateHead := func(head *types.Block) bool {
   987  		bc.chainmu.Lock()
   988  
   989  		// Rewind may have occurred, skip in that case.
   990  		if bc.CurrentHeader().Number.Cmp(head.Number()) >= 0 {
   991  			currentFastBlock, td := bc.CurrentFastBlock(), bc.GetTd(head.Hash(), head.NumberU64())
   992  			if bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64()).Cmp(td) < 0 {
   993  				rawdb.WriteHeadFastBlockHash(bc.db, head.Hash())
   994  				bc.currentFastBlock.Store(head)
   995  				headFastBlockGauge.Update(int64(head.NumberU64()))
   996  				bc.chainmu.Unlock()
   997  				return true
   998  			}
   999  		}
  1000  		bc.chainmu.Unlock()
  1001  		return false
  1002  	}
  1003  	// writeAncient writes blockchain and corresponding receipt chain into ancient store.
  1004  	//
  1005  	// this function only accepts canonical chain data. All side chain will be reverted
  1006  	// eventually.
  1007  	writeAncient := func(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) {
  1008  		var (
  1009  			previous = bc.CurrentFastBlock()
  1010  			batch    = bc.db.NewBatch()
  1011  		)
  1012  		// If any error occurs before updating the head or we are inserting a side chain,
  1013  		// all the data written this time wll be rolled back.
  1014  		defer func() {
  1015  			if previous != nil {
  1016  				if err := bc.truncateAncient(previous.NumberU64()); err != nil {
  1017  					log.Crit("Truncate ancient store failed", "err", err)
  1018  				}
  1019  			}
  1020  		}()
  1021  		var deleted []*numberHash
  1022  		for i, block := range blockChain {
  1023  			// Short circuit insertion if shutting down or processing failed
  1024  			if atomic.LoadInt32(&bc.procInterrupt) == 1 {
  1025  				return 0, errInsertionInterrupted
  1026  			}
  1027  			// Short circuit insertion if it is required(used in testing only)
  1028  			if bc.terminateInsert != nil && bc.terminateInsert(block.Hash(), block.NumberU64()) {
  1029  				return i, errors.New("insertion is terminated for testing purpose")
  1030  			}
  1031  			// Short circuit if the owner header is unknown
  1032  			if !bc.HasHeader(block.Hash(), block.NumberU64()) {
  1033  				return i, fmt.Errorf("containing header #%d [%x…] unknown", block.Number(), block.Hash().Bytes()[:4])
  1034  			}
  1035  			var (
  1036  				start  = time.Now()
  1037  				logged = time.Now()
  1038  				count  int
  1039  			)
  1040  			// Migrate all ancient blocks. This can happen if someone upgrades from Geth
  1041  			// 1.8.x to 1.9.x mid-fast-sync. Perhaps we can get rid of this path in the
  1042  			// long term.
  1043  			for {
  1044  				// We can ignore the error here since light client won't hit this code path.
  1045  				frozen, _ := bc.db.Ancients()
  1046  				if frozen >= block.NumberU64() {
  1047  					break
  1048  				}
  1049  				h := rawdb.ReadCanonicalHash(bc.db, frozen)
  1050  				b := rawdb.ReadBlock(bc.db, h, frozen)
  1051  				size += rawdb.WriteAncientBlock(bc.db, b, rawdb.ReadReceipts(bc.db, h, frozen, bc.chainConfig), rawdb.ReadTd(bc.db, h, frozen))
  1052  				count += 1
  1053  
  1054  				// Always keep genesis block in active database.
  1055  				if b.NumberU64() != 0 {
  1056  					deleted = append(deleted, &numberHash{b.NumberU64(), b.Hash()})
  1057  				}
  1058  				if time.Since(logged) > 8*time.Second {
  1059  					log.Info("Migrating ancient blocks", "count", count, "elapsed", common.PrettyDuration(time.Since(start)))
  1060  					logged = time.Now()
  1061  				}
  1062  				// Don't collect too much in-memory, write it out every 100K blocks
  1063  				if len(deleted) > 100000 {
  1064  
  1065  					// Sync the ancient store explicitly to ensure all data has been flushed to disk.
  1066  					if err := bc.db.Sync(); err != nil {
  1067  						return 0, err
  1068  					}
  1069  					// Wipe out canonical block data.
  1070  					for _, nh := range deleted {
  1071  						rawdb.DeleteBlockWithoutNumber(batch, nh.hash, nh.number)
  1072  						rawdb.DeleteCanonicalHash(batch, nh.number)
  1073  					}
  1074  					if err := batch.Write(); err != nil {
  1075  						return 0, err
  1076  					}
  1077  					batch.Reset()
  1078  					// Wipe out side chain too.
  1079  					for _, nh := range deleted {
  1080  						for _, hash := range rawdb.ReadAllHashes(bc.db, nh.number) {
  1081  							rawdb.DeleteBlock(batch, hash, nh.number)
  1082  						}
  1083  					}
  1084  					if err := batch.Write(); err != nil {
  1085  						return 0, err
  1086  					}
  1087  					batch.Reset()
  1088  					deleted = deleted[0:]
  1089  				}
  1090  			}
  1091  			if count > 0 {
  1092  				log.Info("Migrated ancient blocks", "count", count, "elapsed", common.PrettyDuration(time.Since(start)))
  1093  			}
  1094  			// Flush data into ancient database.
  1095  			size += rawdb.WriteAncientBlock(bc.db, block, receiptChain[i], bc.GetTd(block.Hash(), block.NumberU64()))
  1096  			rawdb.WriteTxLookupEntries(batch, block)
  1097  
  1098  			stats.processed++
  1099  		}
  1100  		// Flush all tx-lookup index data.
  1101  		size += batch.ValueSize()
  1102  		if err := batch.Write(); err != nil {
  1103  			return 0, err
  1104  		}
  1105  		batch.Reset()
  1106  
  1107  		// Sync the ancient store explicitly to ensure all data has been flushed to disk.
  1108  		if err := bc.db.Sync(); err != nil {
  1109  			return 0, err
  1110  		}
  1111  		if !updateHead(blockChain[len(blockChain)-1]) {
  1112  			return 0, errors.New("side blocks can't be accepted as the ancient chain data")
  1113  		}
  1114  		previous = nil // disable rollback explicitly
  1115  
  1116  		// Wipe out canonical block data.
  1117  		for _, nh := range deleted {
  1118  			rawdb.DeleteBlockWithoutNumber(batch, nh.hash, nh.number)
  1119  			rawdb.DeleteCanonicalHash(batch, nh.number)
  1120  		}
  1121  		for _, block := range blockChain {
  1122  			// Always keep genesis block in active database.
  1123  			if block.NumberU64() != 0 {
  1124  				rawdb.DeleteBlockWithoutNumber(batch, block.Hash(), block.NumberU64())
  1125  				rawdb.DeleteCanonicalHash(batch, block.NumberU64())
  1126  			}
  1127  		}
  1128  		if err := batch.Write(); err != nil {
  1129  			return 0, err
  1130  		}
  1131  		batch.Reset()
  1132  
  1133  		// Wipe out side chain too.
  1134  		for _, nh := range deleted {
  1135  			for _, hash := range rawdb.ReadAllHashes(bc.db, nh.number) {
  1136  				rawdb.DeleteBlock(batch, hash, nh.number)
  1137  			}
  1138  		}
  1139  		for _, block := range blockChain {
  1140  			// Always keep genesis block in active database.
  1141  			if block.NumberU64() != 0 {
  1142  				for _, hash := range rawdb.ReadAllHashes(bc.db, block.NumberU64()) {
  1143  					rawdb.DeleteBlock(batch, hash, block.NumberU64())
  1144  				}
  1145  			}
  1146  		}
  1147  		if err := batch.Write(); err != nil {
  1148  			return 0, err
  1149  		}
  1150  		return 0, nil
  1151  	}
  1152  	// writeLive writes blockchain and corresponding receipt chain into active store.
  1153  	writeLive := func(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) {
  1154  		batch := bc.db.NewBatch()
  1155  		for i, block := range blockChain {
  1156  			// Short circuit insertion if shutting down or processing failed
  1157  			if atomic.LoadInt32(&bc.procInterrupt) == 1 {
  1158  				return 0, errInsertionInterrupted
  1159  			}
  1160  			// Short circuit if the owner header is unknown
  1161  			if !bc.HasHeader(block.Hash(), block.NumberU64()) {
  1162  				return i, fmt.Errorf("containing header #%d [%x…] unknown", block.Number(), block.Hash().Bytes()[:4])
  1163  			}
  1164  			if bc.HasBlock(block.Hash(), block.NumberU64()) {
  1165  				stats.ignored++
  1166  				continue
  1167  			}
  1168  			// Write all the data out into the database
  1169  			rawdb.WriteBody(batch, block.Hash(), block.NumberU64(), block.Body())
  1170  			rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receiptChain[i])
  1171  			rawdb.WriteTxLookupEntries(batch, block)
  1172  
  1173  			stats.processed++
  1174  			if batch.ValueSize() >= ethdb.IdealBatchSize {
  1175  				if err := batch.Write(); err != nil {
  1176  					return 0, err
  1177  				}
  1178  				size += batch.ValueSize()
  1179  				batch.Reset()
  1180  			}
  1181  		}
  1182  		if batch.ValueSize() > 0 {
  1183  			size += batch.ValueSize()
  1184  			if err := batch.Write(); err != nil {
  1185  				return 0, err
  1186  			}
  1187  		}
  1188  		updateHead(blockChain[len(blockChain)-1])
  1189  		return 0, nil
  1190  	}
  1191  	// Write downloaded chain data and corresponding receipt chain data.
  1192  	if len(ancientBlocks) > 0 {
  1193  		if n, err := writeAncient(ancientBlocks, ancientReceipts); err != nil {
  1194  			if err == errInsertionInterrupted {
  1195  				return 0, nil
  1196  			}
  1197  			return n, err
  1198  		}
  1199  	}
  1200  	if len(liveBlocks) > 0 {
  1201  		if n, err := writeLive(liveBlocks, liveReceipts); err != nil {
  1202  			if err == errInsertionInterrupted {
  1203  				return 0, nil
  1204  			}
  1205  			return n, err
  1206  		}
  1207  	}
  1208  
  1209  	head := blockChain[len(blockChain)-1]
  1210  	context := []interface{}{
  1211  		"count", stats.processed, "elapsed", common.PrettyDuration(time.Since(start)),
  1212  		"number", head.Number(), "hash", head.Hash(), "age", common.PrettyAge(time.Unix(int64(head.Time()), 0)),
  1213  		"size", common.StorageSize(size),
  1214  	}
  1215  	if stats.ignored > 0 {
  1216  		context = append(context, []interface{}{"ignored", stats.ignored}...)
  1217  	}
  1218  	log.Info("Imported new block receipts", context...)
  1219  
  1220  	return 0, nil
  1221  }
  1222  
  1223  var lastWrite uint64
  1224  
  1225  // writeBlockWithoutState writes only the block and its metadata to the database,
  1226  // but does not write any state. This is used to construct competing side forks
  1227  // up to the point where they exceed the canonical total difficulty.
  1228  func (bc *BlockChain) writeBlockWithoutState(block *types.Block, td *big.Int) (err error) {
  1229  	bc.wg.Add(1)
  1230  	defer bc.wg.Done()
  1231  
  1232  	if err := bc.hc.WriteTd(block.Hash(), block.NumberU64(), td); err != nil {
  1233  		return err
  1234  	}
  1235  	rawdb.WriteBlock(bc.db, block)
  1236  
  1237  	return nil
  1238  }
  1239  
  1240  // writeKnownBlock updates the head block flag with a known block
  1241  // and introduces chain reorg if necessary.
  1242  func (bc *BlockChain) writeKnownBlock(block *types.Block) error {
  1243  	bc.wg.Add(1)
  1244  	defer bc.wg.Done()
  1245  
  1246  	current := bc.CurrentBlock()
  1247  	if block.ParentHash() != current.Hash() {
  1248  		if err := bc.reorg(current, block); err != nil {
  1249  			return err
  1250  		}
  1251  	}
  1252  	// Write the positional metadata for transaction/receipt lookups.
  1253  	// Preimages here is empty, ignore it.
  1254  	rawdb.WriteTxLookupEntries(bc.db, block)
  1255  
  1256  	bc.insert(block)
  1257  	return nil
  1258  }
  1259  
  1260  // WriteBlockWithState writes the block and all associated state to the database.
  1261  func (bc *BlockChain) WriteBlockWithState(block *types.Block, receipts []*types.Receipt, state *state.StateDB) (status WriteStatus, err error) {
  1262  	bc.chainmu.Lock()
  1263  	defer bc.chainmu.Unlock()
  1264  
  1265  	return bc.writeBlockWithState(block, receipts, state)
  1266  }
  1267  
  1268  // writeBlockWithState writes the block and all associated state to the database,
  1269  // but is expects the chain mutex to be held.
  1270  func (bc *BlockChain) writeBlockWithState(block *types.Block, receipts []*types.Receipt, state *state.StateDB) (status WriteStatus, err error) {
  1271  	bc.wg.Add(1)
  1272  	defer bc.wg.Done()
  1273  
  1274  	// Calculate the total difficulty of the block
  1275  	ptd := bc.GetTd(block.ParentHash(), block.NumberU64()-1)
  1276  	if ptd == nil {
  1277  		return NonStatTy, consensus.ErrUnknownAncestor
  1278  	}
  1279  	// Make sure no inconsistent state is leaked during insertion
  1280  	currentBlock := bc.CurrentBlock()
  1281  	localTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64())
  1282  	externTd := new(big.Int).Add(block.Difficulty(), ptd)
  1283  
  1284  	// Irrelevant of the canonical status, write the block itself to the database
  1285  	if err := bc.hc.WriteTd(block.Hash(), block.NumberU64(), externTd); err != nil {
  1286  		return NonStatTy, err
  1287  	}
  1288  	rawdb.WriteBlock(bc.db, block)
  1289  
  1290  	root, err := state.Commit(bc.chainConfig.IsEIP158(block.Number()))
  1291  	if err != nil {
  1292  		return NonStatTy, err
  1293  	}
  1294  	triedb := bc.stateCache.TrieDB()
  1295  
  1296  	// If we're running an archive node, always flush
  1297  	if bc.cacheConfig.TrieDirtyDisabled {
  1298  		if err := triedb.Commit(root, false); err != nil {
  1299  			return NonStatTy, err
  1300  		}
  1301  	} else {
  1302  		// Full but not archive node, do proper garbage collection
  1303  		triedb.Reference(root, common.Hash{}) // metadata reference to keep trie alive
  1304  		bc.triegc.Push(root, -int64(block.NumberU64()))
  1305  
  1306  		if current := block.NumberU64(); current > TriesInMemory {
  1307  			// If we exceeded our memory allowance, flush matured singleton nodes to disk
  1308  			var (
  1309  				nodes, imgs = triedb.Size()
  1310  				limit       = common.StorageSize(bc.cacheConfig.TrieDirtyLimit) * 1024 * 1024
  1311  			)
  1312  			if nodes > limit || imgs > 4*1024*1024 {
  1313  				triedb.Cap(limit - ethdb.IdealBatchSize)
  1314  			}
  1315  			// Find the next state trie we need to commit
  1316  			chosen := current - TriesInMemory
  1317  
  1318  			// If we exceeded out time allowance, flush an entire trie to disk
  1319  			if bc.gcproc > bc.cacheConfig.TrieTimeLimit {
  1320  				// If the header is missing (canonical chain behind), we're reorging a low
  1321  				// diff sidechain. Suspend committing until this operation is completed.
  1322  				header := bc.GetHeaderByNumber(chosen)
  1323  				if header == nil {
  1324  					log.Warn("Reorg in progress, trie commit postponed", "number", chosen)
  1325  				} else {
  1326  					// If we're exceeding limits but haven't reached a large enough memory gap,
  1327  					// warn the user that the system is becoming unstable.
  1328  					if chosen < lastWrite+TriesInMemory && bc.gcproc >= 2*bc.cacheConfig.TrieTimeLimit {
  1329  						log.Info("State in memory for too long, committing", "time", bc.gcproc, "allowance", bc.cacheConfig.TrieTimeLimit, "optimum", float64(chosen-lastWrite)/TriesInMemory)
  1330  					}
  1331  					// Flush an entire trie and restart the counters
  1332  					triedb.Commit(header.Root, true)
  1333  					lastWrite = chosen
  1334  					bc.gcproc = 0
  1335  				}
  1336  			}
  1337  			// Garbage collect anything below our required write retention
  1338  			for !bc.triegc.Empty() {
  1339  				root, number := bc.triegc.Pop()
  1340  				if uint64(-number) > chosen {
  1341  					bc.triegc.Push(root, number)
  1342  					break
  1343  				}
  1344  				triedb.Dereference(root.(common.Hash))
  1345  			}
  1346  		}
  1347  	}
  1348  
  1349  	// Write other block data using a batch.
  1350  	batch := bc.db.NewBatch()
  1351  	rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receipts)
  1352  
  1353  	// If the total difficulty is higher than our known, add it to the canonical chain
  1354  	// Second clause in the if statement reduces the vulnerability to selfish mining.
  1355  	// Please refer to http://www.cs.cornell.edu/~ie53/publications/btcProcFC.pdf
  1356  	reorg := externTd.Cmp(localTd) > 0
  1357  	currentBlock = bc.CurrentBlock()
  1358  	if !reorg && externTd.Cmp(localTd) == 0 {
  1359  		// Split same-difficulty blocks by number, then preferentially select
  1360  		// the block generated by the local miner as the canonical block.
  1361  		if block.NumberU64() < currentBlock.NumberU64() {
  1362  			reorg = true
  1363  		} else if block.NumberU64() == currentBlock.NumberU64() {
  1364  			var currentPreserve, blockPreserve bool
  1365  			if bc.shouldPreserve != nil {
  1366  				currentPreserve, blockPreserve = bc.shouldPreserve(currentBlock), bc.shouldPreserve(block)
  1367  			}
  1368  			reorg = !currentPreserve && (blockPreserve || mrand.Float64() < 0.5)
  1369  		}
  1370  	}
  1371  	if reorg {
  1372  		// Reorganise the chain if the parent is not the head block
  1373  		if block.ParentHash() != currentBlock.Hash() {
  1374  			if err := bc.reorg(currentBlock, block); err != nil {
  1375  				return NonStatTy, err
  1376  			}
  1377  		}
  1378  		// Write the positional metadata for transaction/receipt lookups and preimages
  1379  		rawdb.WriteTxLookupEntries(batch, block)
  1380  		rawdb.WritePreimages(batch, state.Preimages())
  1381  
  1382  		status = CanonStatTy
  1383  	} else {
  1384  		status = SideStatTy
  1385  	}
  1386  	if err := batch.Write(); err != nil {
  1387  		return NonStatTy, err
  1388  	}
  1389  
  1390  	// Set new head.
  1391  	if status == CanonStatTy {
  1392  		bc.insert(block)
  1393  	}
  1394  	bc.futureBlocks.Remove(block.Hash())
  1395  	return status, nil
  1396  }
  1397  
  1398  // addFutureBlock checks if the block is within the max allowed window to get
  1399  // accepted for future processing, and returns an error if the block is too far
  1400  // ahead and was not added.
  1401  func (bc *BlockChain) addFutureBlock(block *types.Block) error {
  1402  	max := uint64(time.Now().Unix() + maxTimeFutureBlocks)
  1403  	if block.Time() > max {
  1404  		return fmt.Errorf("future block timestamp %v > allowed %v", block.Time(), max)
  1405  	}
  1406  	bc.futureBlocks.Add(block.Hash(), block)
  1407  	return nil
  1408  }
  1409  
  1410  // InsertChain attempts to insert the given batch of blocks in to the canonical
  1411  // chain or, otherwise, create a fork. If an error is returned it will return
  1412  // the index number of the failing block as well an error describing what went
  1413  // wrong.
  1414  //
  1415  // After insertion is done, all accumulated events will be fired.
  1416  func (bc *BlockChain) InsertChain(chain types.Blocks) (int, error) {
  1417  	// Sanity check that we have something meaningful to import
  1418  	if len(chain) == 0 {
  1419  		return 0, nil
  1420  	}
  1421  
  1422  	bc.blockProcFeed.Send(true)
  1423  	defer bc.blockProcFeed.Send(false)
  1424  
  1425  	// Remove already known canon-blocks
  1426  	var (
  1427  		block, prev *types.Block
  1428  	)
  1429  	// Do a sanity check that the provided chain is actually ordered and linked
  1430  	for i := 1; i < len(chain); i++ {
  1431  		block = chain[i]
  1432  		prev = chain[i-1]
  1433  		if block.NumberU64() != prev.NumberU64()+1 || block.ParentHash() != prev.Hash() {
  1434  			// Chain broke ancestry, log a message (programming error) and skip insertion
  1435  			log.Error("Non contiguous block insert", "number", block.Number(), "hash", block.Hash(),
  1436  				"parent", block.ParentHash(), "prevnumber", prev.Number(), "prevhash", prev.Hash())
  1437  
  1438  			return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, prev.NumberU64(),
  1439  				prev.Hash().Bytes()[:4], i, block.NumberU64(), block.Hash().Bytes()[:4], block.ParentHash().Bytes()[:4])
  1440  		}
  1441  	}
  1442  	// Pre-checks passed, start the full block imports
  1443  	bc.wg.Add(1)
  1444  	bc.chainmu.Lock()
  1445  	n, events, logs, err := bc.insertChain(chain, true)
  1446  	bc.chainmu.Unlock()
  1447  	bc.wg.Done()
  1448  
  1449  	bc.PostChainEvents(events, logs)
  1450  	return n, err
  1451  }
  1452  
  1453  // insertChain is the internal implementation of InsertChain, which assumes that
  1454  // 1) chains are contiguous, and 2) The chain mutex is held.
  1455  //
  1456  // This method is split out so that import batches that require re-injecting
  1457  // historical blocks can do so without releasing the lock, which could lead to
  1458  // racey behaviour. If a sidechain import is in progress, and the historic state
  1459  // is imported, but then new canon-head is added before the actual sidechain
  1460  // completes, then the historic state could be pruned again
  1461  func (bc *BlockChain) insertChain(chain types.Blocks, verifySeals bool) (int, []interface{}, []*types.Log, error) {
  1462  	// If the chain is terminating, don't even bother starting up
  1463  	if atomic.LoadInt32(&bc.procInterrupt) == 1 {
  1464  		return 0, nil, nil, nil
  1465  	}
  1466  	// Start a parallel signature recovery (signer will fluke on fork transition, minimal perf loss)
  1467  	senderCacher.recoverFromBlocks(types.MakeSigner(bc.chainConfig, chain[0].Number()), chain)
  1468  
  1469  	// A queued approach to delivering events. This is generally
  1470  	// faster than direct delivery and requires much less mutex
  1471  	// acquiring.
  1472  	var (
  1473  		stats         = insertStats{startTime: mclock.Now()}
  1474  		events        = make([]interface{}, 0, len(chain))
  1475  		lastCanon     *types.Block
  1476  		coalescedLogs []*types.Log
  1477  	)
  1478  	// Start the parallel header verifier
  1479  	headers := make([]*types.Header, len(chain))
  1480  	seals := make([]bool, len(chain))
  1481  
  1482  	for i, block := range chain {
  1483  		headers[i] = block.Header()
  1484  		seals[i] = verifySeals
  1485  	}
  1486  	abort, results := bc.engine.VerifyHeaders(bc, headers, seals)
  1487  	defer close(abort)
  1488  
  1489  	// Peek the error for the first block to decide the directing import logic
  1490  	it := newInsertIterator(chain, results, bc.validator)
  1491  
  1492  	block, err := it.next()
  1493  
  1494  	// Left-trim all the known blocks
  1495  	if err == ErrKnownBlock {
  1496  		// First block (and state) is known
  1497  		//   1. We did a roll-back, and should now do a re-import
  1498  		//   2. The block is stored as a sidechain, and is lying about it's stateroot, and passes a stateroot
  1499  		// 	    from the canonical chain, which has not been verified.
  1500  		// Skip all known blocks that are behind us
  1501  		var (
  1502  			current  = bc.CurrentBlock()
  1503  			localTd  = bc.GetTd(current.Hash(), current.NumberU64())
  1504  			externTd = bc.GetTd(block.ParentHash(), block.NumberU64()-1) // The first block can't be nil
  1505  		)
  1506  		for block != nil && err == ErrKnownBlock {
  1507  			externTd = new(big.Int).Add(externTd, block.Difficulty())
  1508  			if localTd.Cmp(externTd) < 0 {
  1509  				break
  1510  			}
  1511  			log.Debug("Ignoring already known block", "number", block.Number(), "hash", block.Hash())
  1512  			stats.ignored++
  1513  
  1514  			block, err = it.next()
  1515  		}
  1516  		// The remaining blocks are still known blocks, the only scenario here is:
  1517  		// During the fast sync, the pivot point is already submitted but rollback
  1518  		// happens. Then node resets the head full block to a lower height via `rollback`
  1519  		// and leaves a few known blocks in the database.
  1520  		//
  1521  		// When node runs a fast sync again, it can re-import a batch of known blocks via
  1522  		// `insertChain` while a part of them have higher total difficulty than current
  1523  		// head full block(new pivot point).
  1524  		for block != nil && err == ErrKnownBlock {
  1525  			log.Debug("Writing previously known block", "number", block.Number(), "hash", block.Hash())
  1526  			if err := bc.writeKnownBlock(block); err != nil {
  1527  				return it.index, nil, nil, err
  1528  			}
  1529  			lastCanon = block
  1530  
  1531  			block, err = it.next()
  1532  		}
  1533  		// Falls through to the block import
  1534  	}
  1535  	switch {
  1536  	// First block is pruned, insert as sidechain and reorg only if TD grows enough
  1537  	case err == consensus.ErrPrunedAncestor:
  1538  		log.Debug("Pruned ancestor, inserting as sidechain", "number", block.Number(), "hash", block.Hash())
  1539  		return bc.insertSideChain(block, it)
  1540  
  1541  	// First block is future, shove it (and all children) to the future queue (unknown ancestor)
  1542  	case err == consensus.ErrFutureBlock || (err == consensus.ErrUnknownAncestor && bc.futureBlocks.Contains(it.first().ParentHash())):
  1543  		for block != nil && (it.index == 0 || err == consensus.ErrUnknownAncestor) {
  1544  			log.Debug("Future block, postponing import", "number", block.Number(), "hash", block.Hash())
  1545  			if err := bc.addFutureBlock(block); err != nil {
  1546  				return it.index, events, coalescedLogs, err
  1547  			}
  1548  			block, err = it.next()
  1549  		}
  1550  		stats.queued += it.processed()
  1551  		stats.ignored += it.remaining()
  1552  
  1553  		// If there are any still remaining, mark as ignored
  1554  		return it.index, events, coalescedLogs, err
  1555  
  1556  	// Some other error occurred, abort
  1557  	case err != nil:
  1558  		bc.futureBlocks.Remove(block.Hash())
  1559  		stats.ignored += len(it.chain)
  1560  		bc.reportBlock(block, nil, err)
  1561  		return it.index, events, coalescedLogs, err
  1562  	}
  1563  	// No validation errors for the first block (or chain prefix skipped)
  1564  	for ; block != nil && err == nil || err == ErrKnownBlock; block, err = it.next() {
  1565  		// If the chain is terminating, stop processing blocks
  1566  		if atomic.LoadInt32(&bc.procInterrupt) == 1 {
  1567  			log.Debug("Premature abort during blocks processing")
  1568  			break
  1569  		}
  1570  		// If the header is a banned one, straight out abort
  1571  		if BadHashes[block.Hash()] {
  1572  			bc.reportBlock(block, nil, ErrBlacklistedHash)
  1573  			return it.index, events, coalescedLogs, ErrBlacklistedHash
  1574  		}
  1575  		// If the block is known (in the middle of the chain), it's a special case for
  1576  		// Clique blocks where they can share state among each other, so importing an
  1577  		// older block might complete the state of the subsequent one. In this case,
  1578  		// just skip the block (we already validated it once fully (and crashed), since
  1579  		// its header and body was already in the database).
  1580  		if err == ErrKnownBlock {
  1581  			logger := log.Debug
  1582  			if bc.chainConfig.Clique == nil {
  1583  				logger = log.Warn
  1584  			}
  1585  			logger("Inserted known block", "number", block.Number(), "hash", block.Hash(),
  1586  				"uncles", len(block.Uncles()), "txs", len(block.Transactions()), "gas", block.GasUsed(),
  1587  				"root", block.Root())
  1588  
  1589  			if err := bc.writeKnownBlock(block); err != nil {
  1590  				return it.index, nil, nil, err
  1591  			}
  1592  			stats.processed++
  1593  
  1594  			// We can assume that logs are empty here, since the only way for consecutive
  1595  			// Clique blocks to have the same state is if there are no transactions.
  1596  			events = append(events, ChainEvent{block, block.Hash(), nil})
  1597  			lastCanon = block
  1598  
  1599  			continue
  1600  		}
  1601  		// Retrieve the parent block and it's state to execute on top
  1602  		start := time.Now()
  1603  
  1604  		parent := it.previous()
  1605  		if parent == nil {
  1606  			parent = bc.GetHeader(block.ParentHash(), block.NumberU64()-1)
  1607  		}
  1608  		statedb, err := state.New(parent.Root, bc.stateCache)
  1609  		if err != nil {
  1610  			return it.index, events, coalescedLogs, err
  1611  		}
  1612  		// If we have a followup block, run that against the current state to pre-cache
  1613  		// transactions and probabilistically some of the account/storage trie nodes.
  1614  		var followupInterrupt uint32
  1615  
  1616  		if !bc.cacheConfig.TrieCleanNoPrefetch {
  1617  			if followup, err := it.peek(); followup != nil && err == nil {
  1618  				go func(start time.Time) {
  1619  					throwaway, _ := state.New(parent.Root, bc.stateCache)
  1620  					bc.prefetcher.Prefetch(followup, throwaway, bc.vmConfig, &followupInterrupt)
  1621  
  1622  					blockPrefetchExecuteTimer.Update(time.Since(start))
  1623  					if atomic.LoadUint32(&followupInterrupt) == 1 {
  1624  						blockPrefetchInterruptMeter.Mark(1)
  1625  					}
  1626  				}(time.Now())
  1627  			}
  1628  		}
  1629  		// Process block using the parent state as reference point
  1630  		substart := time.Now()
  1631  		receipts, logs, usedGas, err := bc.processor.Process(block, statedb, bc.vmConfig)
  1632  		if err != nil {
  1633  			bc.reportBlock(block, receipts, err)
  1634  			atomic.StoreUint32(&followupInterrupt, 1)
  1635  			return it.index, events, coalescedLogs, err
  1636  		}
  1637  		// Update the metrics touched during block processing
  1638  		accountReadTimer.Update(statedb.AccountReads)     // Account reads are complete, we can mark them
  1639  		storageReadTimer.Update(statedb.StorageReads)     // Storage reads are complete, we can mark them
  1640  		accountUpdateTimer.Update(statedb.AccountUpdates) // Account updates are complete, we can mark them
  1641  		storageUpdateTimer.Update(statedb.StorageUpdates) // Storage updates are complete, we can mark them
  1642  
  1643  		triehash := statedb.AccountHashes + statedb.StorageHashes // Save to not double count in validation
  1644  		trieproc := statedb.AccountReads + statedb.AccountUpdates
  1645  		trieproc += statedb.StorageReads + statedb.StorageUpdates
  1646  
  1647  		blockExecutionTimer.Update(time.Since(substart) - trieproc - triehash)
  1648  
  1649  		// Validate the state using the default validator
  1650  		substart = time.Now()
  1651  		if err := bc.validator.ValidateState(block, statedb, receipts, usedGas); err != nil {
  1652  			bc.reportBlock(block, receipts, err)
  1653  			atomic.StoreUint32(&followupInterrupt, 1)
  1654  			return it.index, events, coalescedLogs, err
  1655  		}
  1656  		proctime := time.Since(start)
  1657  
  1658  		// Update the metrics touched during block validation
  1659  		accountHashTimer.Update(statedb.AccountHashes) // Account hashes are complete, we can mark them
  1660  		storageHashTimer.Update(statedb.StorageHashes) // Storage hashes are complete, we can mark them
  1661  
  1662  		blockValidationTimer.Update(time.Since(substart) - (statedb.AccountHashes + statedb.StorageHashes - triehash))
  1663  
  1664  		// Write the block to the chain and get the status.
  1665  		substart = time.Now()
  1666  		status, err := bc.writeBlockWithState(block, receipts, statedb)
  1667  		if err != nil {
  1668  			atomic.StoreUint32(&followupInterrupt, 1)
  1669  			return it.index, events, coalescedLogs, err
  1670  		}
  1671  		atomic.StoreUint32(&followupInterrupt, 1)
  1672  
  1673  		// Update the metrics touched during block commit
  1674  		accountCommitTimer.Update(statedb.AccountCommits) // Account commits are complete, we can mark them
  1675  		storageCommitTimer.Update(statedb.StorageCommits) // Storage commits are complete, we can mark them
  1676  
  1677  		blockWriteTimer.Update(time.Since(substart) - statedb.AccountCommits - statedb.StorageCommits)
  1678  		blockInsertTimer.UpdateSince(start)
  1679  
  1680  		switch status {
  1681  		case CanonStatTy:
  1682  			log.Debug("Inserted new block", "number", block.Number(), "hash", block.Hash(),
  1683  				"uncles", len(block.Uncles()), "txs", len(block.Transactions()), "gas", block.GasUsed(),
  1684  				"elapsed", common.PrettyDuration(time.Since(start)),
  1685  				"root", block.Root())
  1686  
  1687  			coalescedLogs = append(coalescedLogs, logs...)
  1688  			events = append(events, ChainEvent{block, block.Hash(), logs})
  1689  			lastCanon = block
  1690  
  1691  			// Only count canonical blocks for GC processing time
  1692  			bc.gcproc += proctime
  1693  
  1694  		case SideStatTy:
  1695  			log.Debug("Inserted forked block", "number", block.Number(), "hash", block.Hash(),
  1696  				"diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)),
  1697  				"txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()),
  1698  				"root", block.Root())
  1699  			events = append(events, ChainSideEvent{block})
  1700  
  1701  		default:
  1702  			// This in theory is impossible, but lets be nice to our future selves and leave
  1703  			// a log, instead of trying to track down blocks imports that don't emit logs.
  1704  			log.Warn("Inserted block with unknown status", "number", block.Number(), "hash", block.Hash(),
  1705  				"diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)),
  1706  				"txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()),
  1707  				"root", block.Root())
  1708  		}
  1709  		stats.processed++
  1710  		stats.usedGas += usedGas
  1711  
  1712  		dirty, _ := bc.stateCache.TrieDB().Size()
  1713  		stats.report(chain, it.index, dirty)
  1714  	}
  1715  	// Any blocks remaining here? The only ones we care about are the future ones
  1716  	if block != nil && err == consensus.ErrFutureBlock {
  1717  		if err := bc.addFutureBlock(block); err != nil {
  1718  			return it.index, events, coalescedLogs, err
  1719  		}
  1720  		block, err = it.next()
  1721  
  1722  		for ; block != nil && err == consensus.ErrUnknownAncestor; block, err = it.next() {
  1723  			if err := bc.addFutureBlock(block); err != nil {
  1724  				return it.index, events, coalescedLogs, err
  1725  			}
  1726  			stats.queued++
  1727  		}
  1728  	}
  1729  	stats.ignored += it.remaining()
  1730  
  1731  	// Append a single chain head event if we've progressed the chain
  1732  	if lastCanon != nil && bc.CurrentBlock().Hash() == lastCanon.Hash() {
  1733  		events = append(events, ChainHeadEvent{lastCanon})
  1734  	}
  1735  	return it.index, events, coalescedLogs, err
  1736  }
  1737  
  1738  // insertSideChain is called when an import batch hits upon a pruned ancestor
  1739  // error, which happens when a sidechain with a sufficiently old fork-block is
  1740  // found.
  1741  //
  1742  // The method writes all (header-and-body-valid) blocks to disk, then tries to
  1743  // switch over to the new chain if the TD exceeded the current chain.
  1744  func (bc *BlockChain) insertSideChain(block *types.Block, it *insertIterator) (int, []interface{}, []*types.Log, error) {
  1745  	var (
  1746  		externTd *big.Int
  1747  		current  = bc.CurrentBlock()
  1748  	)
  1749  	// The first sidechain block error is already verified to be ErrPrunedAncestor.
  1750  	// Since we don't import them here, we expect ErrUnknownAncestor for the remaining
  1751  	// ones. Any other errors means that the block is invalid, and should not be written
  1752  	// to disk.
  1753  	err := consensus.ErrPrunedAncestor
  1754  	for ; block != nil && (err == consensus.ErrPrunedAncestor); block, err = it.next() {
  1755  		// Check the canonical state root for that number
  1756  		if number := block.NumberU64(); current.NumberU64() >= number {
  1757  			canonical := bc.GetBlockByNumber(number)
  1758  			if canonical != nil && canonical.Hash() == block.Hash() {
  1759  				// Not a sidechain block, this is a re-import of a canon block which has it's state pruned
  1760  
  1761  				// Collect the TD of the block. Since we know it's a canon one,
  1762  				// we can get it directly, and not (like further below) use
  1763  				// the parent and then add the block on top
  1764  				externTd = bc.GetTd(block.Hash(), block.NumberU64())
  1765  				continue
  1766  			}
  1767  			if canonical != nil && canonical.Root() == block.Root() {
  1768  				// This is most likely a shadow-state attack. When a fork is imported into the
  1769  				// database, and it eventually reaches a block height which is not pruned, we
  1770  				// just found that the state already exist! This means that the sidechain block
  1771  				// refers to a state which already exists in our canon chain.
  1772  				//
  1773  				// If left unchecked, we would now proceed importing the blocks, without actually
  1774  				// having verified the state of the previous blocks.
  1775  				log.Warn("Sidechain ghost-state attack detected", "number", block.NumberU64(), "sideroot", block.Root(), "canonroot", canonical.Root())
  1776  
  1777  				// If someone legitimately side-mines blocks, they would still be imported as usual. However,
  1778  				// we cannot risk writing unverified blocks to disk when they obviously target the pruning
  1779  				// mechanism.
  1780  				return it.index, nil, nil, errors.New("sidechain ghost-state attack")
  1781  			}
  1782  		}
  1783  		if externTd == nil {
  1784  			externTd = bc.GetTd(block.ParentHash(), block.NumberU64()-1)
  1785  		}
  1786  		externTd = new(big.Int).Add(externTd, block.Difficulty())
  1787  
  1788  		if !bc.HasBlock(block.Hash(), block.NumberU64()) {
  1789  			start := time.Now()
  1790  			if err := bc.writeBlockWithoutState(block, externTd); err != nil {
  1791  				return it.index, nil, nil, err
  1792  			}
  1793  			log.Debug("Injected sidechain block", "number", block.Number(), "hash", block.Hash(),
  1794  				"diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)),
  1795  				"txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()),
  1796  				"root", block.Root())
  1797  		}
  1798  	}
  1799  	// At this point, we've written all sidechain blocks to database. Loop ended
  1800  	// either on some other error or all were processed. If there was some other
  1801  	// error, we can ignore the rest of those blocks.
  1802  	//
  1803  	// If the externTd was larger than our local TD, we now need to reimport the previous
  1804  	// blocks to regenerate the required state
  1805  	localTd := bc.GetTd(current.Hash(), current.NumberU64())
  1806  	if localTd.Cmp(externTd) > 0 {
  1807  		log.Info("Sidechain written to disk", "start", it.first().NumberU64(), "end", it.previous().Number, "sidetd", externTd, "localtd", localTd)
  1808  		return it.index, nil, nil, err
  1809  	}
  1810  	// Gather all the sidechain hashes (full blocks may be memory heavy)
  1811  	var (
  1812  		hashes  []common.Hash
  1813  		numbers []uint64
  1814  	)
  1815  	parent := it.previous()
  1816  	for parent != nil && !bc.HasState(parent.Root) {
  1817  		hashes = append(hashes, parent.Hash())
  1818  		numbers = append(numbers, parent.Number.Uint64())
  1819  
  1820  		parent = bc.GetHeader(parent.ParentHash, parent.Number.Uint64()-1)
  1821  	}
  1822  	if parent == nil {
  1823  		return it.index, nil, nil, errors.New("missing parent")
  1824  	}
  1825  	// Import all the pruned blocks to make the state available
  1826  	var (
  1827  		blocks []*types.Block
  1828  		memory common.StorageSize
  1829  	)
  1830  	for i := len(hashes) - 1; i >= 0; i-- {
  1831  		// Append the next block to our batch
  1832  		block := bc.GetBlock(hashes[i], numbers[i])
  1833  
  1834  		blocks = append(blocks, block)
  1835  		memory += block.Size()
  1836  
  1837  		// If memory use grew too large, import and continue. Sadly we need to discard
  1838  		// all raised events and logs from notifications since we're too heavy on the
  1839  		// memory here.
  1840  		if len(blocks) >= 2048 || memory > 64*1024*1024 {
  1841  			log.Info("Importing heavy sidechain segment", "blocks", len(blocks), "start", blocks[0].NumberU64(), "end", block.NumberU64())
  1842  			if _, _, _, err := bc.insertChain(blocks, false); err != nil {
  1843  				return 0, nil, nil, err
  1844  			}
  1845  			blocks, memory = blocks[:0], 0
  1846  
  1847  			// If the chain is terminating, stop processing blocks
  1848  			if atomic.LoadInt32(&bc.procInterrupt) == 1 {
  1849  				log.Debug("Premature abort during blocks processing")
  1850  				return 0, nil, nil, nil
  1851  			}
  1852  		}
  1853  	}
  1854  	if len(blocks) > 0 {
  1855  		log.Info("Importing sidechain segment", "start", blocks[0].NumberU64(), "end", blocks[len(blocks)-1].NumberU64())
  1856  		return bc.insertChain(blocks, false)
  1857  	}
  1858  	return 0, nil, nil, nil
  1859  }
  1860  
  1861  // reorg takes two blocks, an old chain and a new chain and will reconstruct the
  1862  // blocks and inserts them to be part of the new canonical chain and accumulates
  1863  // potential missing transactions and post an event about them.
  1864  func (bc *BlockChain) reorg(oldBlock, newBlock *types.Block) error {
  1865  	var (
  1866  		newChain    types.Blocks
  1867  		oldChain    types.Blocks
  1868  		commonBlock *types.Block
  1869  
  1870  		deletedTxs types.Transactions
  1871  		addedTxs   types.Transactions
  1872  
  1873  		deletedLogs []*types.Log
  1874  		rebirthLogs []*types.Log
  1875  
  1876  		// collectLogs collects the logs that were generated during the
  1877  		// processing of the block that corresponds with the given hash.
  1878  		// These logs are later announced as deleted or reborn
  1879  		collectLogs = func(hash common.Hash, removed bool) {
  1880  			number := bc.hc.GetBlockNumber(hash)
  1881  			if number == nil {
  1882  				return
  1883  			}
  1884  			receipts := rawdb.ReadReceipts(bc.db, hash, *number, bc.chainConfig)
  1885  			for _, receipt := range receipts {
  1886  				for _, log := range receipt.Logs {
  1887  					l := *log
  1888  					if removed {
  1889  						l.Removed = true
  1890  						deletedLogs = append(deletedLogs, &l)
  1891  					} else {
  1892  						rebirthLogs = append(rebirthLogs, &l)
  1893  					}
  1894  				}
  1895  			}
  1896  		}
  1897  	)
  1898  	// Reduce the longer chain to the same number as the shorter one
  1899  	if oldBlock.NumberU64() > newBlock.NumberU64() {
  1900  		// Old chain is longer, gather all transactions and logs as deleted ones
  1901  		for ; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1) {
  1902  			oldChain = append(oldChain, oldBlock)
  1903  			deletedTxs = append(deletedTxs, oldBlock.Transactions()...)
  1904  			collectLogs(oldBlock.Hash(), true)
  1905  		}
  1906  	} else {
  1907  		// New chain is longer, stash all blocks away for subsequent insertion
  1908  		for ; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) {
  1909  			newChain = append(newChain, newBlock)
  1910  		}
  1911  	}
  1912  	if oldBlock == nil {
  1913  		return fmt.Errorf("invalid old chain")
  1914  	}
  1915  	if newBlock == nil {
  1916  		return fmt.Errorf("invalid new chain")
  1917  	}
  1918  	// Both sides of the reorg are at the same number, reduce both until the common
  1919  	// ancestor is found
  1920  	for {
  1921  		// If the common ancestor was found, bail out
  1922  		if oldBlock.Hash() == newBlock.Hash() {
  1923  			commonBlock = oldBlock
  1924  			break
  1925  		}
  1926  		// Remove an old block as well as stash away a new block
  1927  		oldChain = append(oldChain, oldBlock)
  1928  		deletedTxs = append(deletedTxs, oldBlock.Transactions()...)
  1929  		collectLogs(oldBlock.Hash(), true)
  1930  
  1931  		newChain = append(newChain, newBlock)
  1932  
  1933  		// Step back with both chains
  1934  		oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1)
  1935  		if oldBlock == nil {
  1936  			return fmt.Errorf("invalid old chain")
  1937  		}
  1938  		newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1)
  1939  		if newBlock == nil {
  1940  			return fmt.Errorf("invalid new chain")
  1941  		}
  1942  	}
  1943  	// Ensure the user sees large reorgs
  1944  	if len(oldChain) > 0 && len(newChain) > 0 {
  1945  		logFn := log.Info
  1946  		msg := "Chain reorg detected"
  1947  		if len(oldChain) > 63 {
  1948  			msg = "Large chain reorg detected"
  1949  			logFn = log.Warn
  1950  		}
  1951  		logFn(msg, "number", commonBlock.Number(), "hash", commonBlock.Hash(),
  1952  			"drop", len(oldChain), "dropfrom", oldChain[0].Hash(), "add", len(newChain), "addfrom", newChain[0].Hash())
  1953  		blockReorgAddMeter.Mark(int64(len(newChain)))
  1954  		blockReorgDropMeter.Mark(int64(len(oldChain)))
  1955  	} else {
  1956  		log.Error("Impossible reorg, please file an issue", "oldnum", oldBlock.Number(), "oldhash", oldBlock.Hash(), "newnum", newBlock.Number(), "newhash", newBlock.Hash())
  1957  	}
  1958  	// Insert the new chain(except the head block(reverse order)),
  1959  	// taking care of the proper incremental order.
  1960  	for i := len(newChain) - 1; i >= 1; i-- {
  1961  		// Insert the block in the canonical way, re-writing history
  1962  		bc.insert(newChain[i])
  1963  
  1964  		// Collect reborn logs due to chain reorg
  1965  		collectLogs(newChain[i].Hash(), false)
  1966  
  1967  		// Write lookup entries for hash based transaction/receipt searches
  1968  		rawdb.WriteTxLookupEntries(bc.db, newChain[i])
  1969  		addedTxs = append(addedTxs, newChain[i].Transactions()...)
  1970  	}
  1971  	// When transactions get deleted from the database, the receipts that were
  1972  	// created in the fork must also be deleted
  1973  	batch := bc.db.NewBatch()
  1974  	for _, tx := range types.TxDifference(deletedTxs, addedTxs) {
  1975  		rawdb.DeleteTxLookupEntry(batch, tx.Hash())
  1976  	}
  1977  	// Delete any canonical number assignments above the new head
  1978  	number := bc.CurrentBlock().NumberU64()
  1979  	for i := number + 1; ; i++ {
  1980  		hash := rawdb.ReadCanonicalHash(bc.db, i)
  1981  		if hash == (common.Hash{}) {
  1982  			break
  1983  		}
  1984  		rawdb.DeleteCanonicalHash(batch, i)
  1985  	}
  1986  	batch.Write()
  1987  	// If any logs need to be fired, do it now. In theory we could avoid creating
  1988  	// this goroutine if there are no events to fire, but realistcally that only
  1989  	// ever happens if we're reorging empty blocks, which will only happen on idle
  1990  	// networks where performance is not an issue either way.
  1991  	//
  1992  	// TODO(karalabe): Can we get rid of the goroutine somehow to guarantee correct
  1993  	// event ordering?
  1994  	go func() {
  1995  		if len(deletedLogs) > 0 {
  1996  			bc.rmLogsFeed.Send(RemovedLogsEvent{deletedLogs})
  1997  		}
  1998  		if len(rebirthLogs) > 0 {
  1999  			bc.logsFeed.Send(rebirthLogs)
  2000  		}
  2001  		if len(oldChain) > 0 {
  2002  			for _, block := range oldChain {
  2003  				bc.chainSideFeed.Send(ChainSideEvent{Block: block})
  2004  			}
  2005  		}
  2006  	}()
  2007  	return nil
  2008  }
  2009  
  2010  // PostChainEvents iterates over the events generated by a chain insertion and
  2011  // posts them into the event feed.
  2012  // TODO: Should not expose PostChainEvents. The chain events should be posted in WriteBlock.
  2013  func (bc *BlockChain) PostChainEvents(events []interface{}, logs []*types.Log) {
  2014  	// post event logs for further processing
  2015  	if logs != nil {
  2016  		bc.logsFeed.Send(logs)
  2017  	}
  2018  	for _, event := range events {
  2019  		switch ev := event.(type) {
  2020  		case ChainEvent:
  2021  			bc.chainFeed.Send(ev)
  2022  
  2023  		case ChainHeadEvent:
  2024  			bc.chainHeadFeed.Send(ev)
  2025  
  2026  		case ChainSideEvent:
  2027  			bc.chainSideFeed.Send(ev)
  2028  		}
  2029  	}
  2030  }
  2031  
  2032  func (bc *BlockChain) update() {
  2033  	futureTimer := time.NewTicker(5 * time.Second)
  2034  	defer futureTimer.Stop()
  2035  	for {
  2036  		select {
  2037  		case <-futureTimer.C:
  2038  			bc.procFutureBlocks()
  2039  		case <-bc.quit:
  2040  			return
  2041  		}
  2042  	}
  2043  }
  2044  
  2045  // BadBlocks returns a list of the last 'bad blocks' that the client has seen on the network
  2046  func (bc *BlockChain) BadBlocks() []*types.Block {
  2047  	blocks := make([]*types.Block, 0, bc.badBlocks.Len())
  2048  	for _, hash := range bc.badBlocks.Keys() {
  2049  		if blk, exist := bc.badBlocks.Peek(hash); exist {
  2050  			block := blk.(*types.Block)
  2051  			blocks = append(blocks, block)
  2052  		}
  2053  	}
  2054  	return blocks
  2055  }
  2056  
  2057  // addBadBlock adds a bad block to the bad-block LRU cache
  2058  func (bc *BlockChain) addBadBlock(block *types.Block) {
  2059  	bc.badBlocks.Add(block.Hash(), block)
  2060  }
  2061  
  2062  // reportBlock logs a bad block error.
  2063  func (bc *BlockChain) reportBlock(block *types.Block, receipts types.Receipts, err error) {
  2064  	bc.addBadBlock(block)
  2065  
  2066  	var receiptString string
  2067  	for i, receipt := range receipts {
  2068  		receiptString += fmt.Sprintf("\t %d: cumulative: %v gas: %v contract: %v status: %v tx: %v logs: %v bloom: %x state: %x\n",
  2069  			i, receipt.CumulativeGasUsed, receipt.GasUsed, receipt.ContractAddress.Hex(),
  2070  			receipt.Status, receipt.TxHash.Hex(), receipt.Logs, receipt.Bloom, receipt.PostState)
  2071  	}
  2072  	log.Error(fmt.Sprintf(`
  2073  ########## BAD BLOCK #########
  2074  Chain config: %v
  2075  
  2076  Number: %v
  2077  Hash: 0x%x
  2078  %v
  2079  
  2080  Error: %v
  2081  ##############################
  2082  `, bc.chainConfig, block.Number(), block.Hash(), receiptString, err))
  2083  }
  2084  
  2085  // InsertHeaderChain attempts to insert the given header chain in to the local
  2086  // chain, possibly creating a reorg. If an error is returned, it will return the
  2087  // index number of the failing header as well an error describing what went wrong.
  2088  //
  2089  // The verify parameter can be used to fine tune whether nonce verification
  2090  // should be done or not. The reason behind the optional check is because some
  2091  // of the header retrieval mechanisms already need to verify nonces, as well as
  2092  // because nonces can be verified sparsely, not needing to check each.
  2093  func (bc *BlockChain) InsertHeaderChain(chain []*types.Header, checkFreq int) (int, error) {
  2094  	start := time.Now()
  2095  	if i, err := bc.hc.ValidateHeaderChain(chain, checkFreq); err != nil {
  2096  		return i, err
  2097  	}
  2098  
  2099  	// Make sure only one thread manipulates the chain at once
  2100  	bc.chainmu.Lock()
  2101  	defer bc.chainmu.Unlock()
  2102  
  2103  	bc.wg.Add(1)
  2104  	defer bc.wg.Done()
  2105  
  2106  	whFunc := func(header *types.Header) error {
  2107  		_, err := bc.hc.WriteHeader(header)
  2108  		return err
  2109  	}
  2110  	return bc.hc.InsertHeaderChain(chain, whFunc, start)
  2111  }
  2112  
  2113  // CurrentHeader retrieves the current head header of the canonical chain. The
  2114  // header is retrieved from the HeaderChain's internal cache.
  2115  func (bc *BlockChain) CurrentHeader() *types.Header {
  2116  	return bc.hc.CurrentHeader()
  2117  }
  2118  
  2119  // GetTd retrieves a block's total difficulty in the canonical chain from the
  2120  // database by hash and number, caching it if found.
  2121  func (bc *BlockChain) GetTd(hash common.Hash, number uint64) *big.Int {
  2122  	return bc.hc.GetTd(hash, number)
  2123  }
  2124  
  2125  // GetTdByHash retrieves a block's total difficulty in the canonical chain from the
  2126  // database by hash, caching it if found.
  2127  func (bc *BlockChain) GetTdByHash(hash common.Hash) *big.Int {
  2128  	return bc.hc.GetTdByHash(hash)
  2129  }
  2130  
  2131  // GetHeader retrieves a block header from the database by hash and number,
  2132  // caching it if found.
  2133  func (bc *BlockChain) GetHeader(hash common.Hash, number uint64) *types.Header {
  2134  	return bc.hc.GetHeader(hash, number)
  2135  }
  2136  
  2137  // GetHeaderByHash retrieves a block header from the database by hash, caching it if
  2138  // found.
  2139  func (bc *BlockChain) GetHeaderByHash(hash common.Hash) *types.Header {
  2140  	return bc.hc.GetHeaderByHash(hash)
  2141  }
  2142  
  2143  // HasHeader checks if a block header is present in the database or not, caching
  2144  // it if present.
  2145  func (bc *BlockChain) HasHeader(hash common.Hash, number uint64) bool {
  2146  	return bc.hc.HasHeader(hash, number)
  2147  }
  2148  
  2149  // GetCanonicalHash returns the canonical hash for a given block number
  2150  func (bc *BlockChain) GetCanonicalHash(number uint64) common.Hash {
  2151  	return bc.hc.GetCanonicalHash(number)
  2152  }
  2153  
  2154  // GetBlockHashesFromHash retrieves a number of block hashes starting at a given
  2155  // hash, fetching towards the genesis block.
  2156  func (bc *BlockChain) GetBlockHashesFromHash(hash common.Hash, max uint64) []common.Hash {
  2157  	return bc.hc.GetBlockHashesFromHash(hash, max)
  2158  }
  2159  
  2160  // GetAncestor retrieves the Nth ancestor of a given block. It assumes that either the given block or
  2161  // a close ancestor of it is canonical. maxNonCanonical points to a downwards counter limiting the
  2162  // number of blocks to be individually checked before we reach the canonical chain.
  2163  //
  2164  // Note: ancestor == 0 returns the same block, 1 returns its parent and so on.
  2165  func (bc *BlockChain) GetAncestor(hash common.Hash, number, ancestor uint64, maxNonCanonical *uint64) (common.Hash, uint64) {
  2166  	return bc.hc.GetAncestor(hash, number, ancestor, maxNonCanonical)
  2167  }
  2168  
  2169  // GetHeaderByNumber retrieves a block header from the database by number,
  2170  // caching it (associated with its hash) if found.
  2171  func (bc *BlockChain) GetHeaderByNumber(number uint64) *types.Header {
  2172  	return bc.hc.GetHeaderByNumber(number)
  2173  }
  2174  
  2175  // GetTransactionLookup retrieves the lookup associate with the given transaction
  2176  // hash from the cache or database.
  2177  func (bc *BlockChain) GetTransactionLookup(hash common.Hash) *rawdb.LegacyTxLookupEntry {
  2178  	// Short circuit if the txlookup already in the cache, retrieve otherwise
  2179  	if lookup, exist := bc.txLookupCache.Get(hash); exist {
  2180  		return lookup.(*rawdb.LegacyTxLookupEntry)
  2181  	}
  2182  	tx, blockHash, blockNumber, txIndex := rawdb.ReadTransaction(bc.db, hash)
  2183  	if tx == nil {
  2184  		return nil
  2185  	}
  2186  	lookup := &rawdb.LegacyTxLookupEntry{BlockHash: blockHash, BlockIndex: blockNumber, Index: txIndex}
  2187  	bc.txLookupCache.Add(hash, lookup)
  2188  	return lookup
  2189  }
  2190  
  2191  // Config retrieves the chain's fork configuration.
  2192  func (bc *BlockChain) Config() *params.ChainConfig { return bc.chainConfig }
  2193  
  2194  // Engine retrieves the blockchain's consensus engine.
  2195  func (bc *BlockChain) Engine() consensus.Engine { return bc.engine }
  2196  
  2197  // SubscribeRemovedLogsEvent registers a subscription of RemovedLogsEvent.
  2198  func (bc *BlockChain) SubscribeRemovedLogsEvent(ch chan<- RemovedLogsEvent) event.Subscription {
  2199  	return bc.scope.Track(bc.rmLogsFeed.Subscribe(ch))
  2200  }
  2201  
  2202  // SubscribeChainEvent registers a subscription of ChainEvent.
  2203  func (bc *BlockChain) SubscribeChainEvent(ch chan<- ChainEvent) event.Subscription {
  2204  	return bc.scope.Track(bc.chainFeed.Subscribe(ch))
  2205  }
  2206  
  2207  // SubscribeChainHeadEvent registers a subscription of ChainHeadEvent.
  2208  func (bc *BlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription {
  2209  	return bc.scope.Track(bc.chainHeadFeed.Subscribe(ch))
  2210  }
  2211  
  2212  // SubscribeChainSideEvent registers a subscription of ChainSideEvent.
  2213  func (bc *BlockChain) SubscribeChainSideEvent(ch chan<- ChainSideEvent) event.Subscription {
  2214  	return bc.scope.Track(bc.chainSideFeed.Subscribe(ch))
  2215  }
  2216  
  2217  // SubscribeLogsEvent registers a subscription of []*types.Log.
  2218  func (bc *BlockChain) SubscribeLogsEvent(ch chan<- []*types.Log) event.Subscription {
  2219  	return bc.scope.Track(bc.logsFeed.Subscribe(ch))
  2220  }
  2221  
  2222  // SubscribeBlockProcessingEvent registers a subscription of bool where true means
  2223  // block processing has started while false means it has stopped.
  2224  func (bc *BlockChain) SubscribeBlockProcessingEvent(ch chan<- bool) event.Subscription {
  2225  	return bc.scope.Track(bc.blockProcFeed.Subscribe(ch))
  2226  }