github.com/ethereum-optimism/optimism/l2geth@v0.0.0-20230612200230-50b04ade19e3/core/vm/contracts.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "crypto/sha256" 21 "encoding/binary" 22 "errors" 23 "math/big" 24 25 "github.com/ethereum-optimism/optimism/l2geth/common" 26 "github.com/ethereum-optimism/optimism/l2geth/common/math" 27 "github.com/ethereum-optimism/optimism/l2geth/crypto" 28 "github.com/ethereum-optimism/optimism/l2geth/crypto/blake2b" 29 "github.com/ethereum-optimism/optimism/l2geth/crypto/bn256" 30 "github.com/ethereum-optimism/optimism/l2geth/params" 31 32 //lint:ignore SA1019 Needed for precompile 33 "golang.org/x/crypto/ripemd160" 34 ) 35 36 // PrecompiledContract is the basic interface for native Go contracts. The implementation 37 // requires a deterministic gas count based on the input size of the Run method of the 38 // contract. 39 type PrecompiledContract interface { 40 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 41 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 42 } 43 44 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 45 // contracts used in the Frontier and Homestead releases. 46 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 47 common.BytesToAddress([]byte{1}): &ecrecover{}, 48 common.BytesToAddress([]byte{2}): &sha256hash{}, 49 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 50 common.BytesToAddress([]byte{4}): &dataCopy{}, 51 } 52 53 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 54 // contracts used in the Byzantium release. 55 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 56 common.BytesToAddress([]byte{1}): &ecrecover{}, 57 common.BytesToAddress([]byte{2}): &sha256hash{}, 58 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 59 common.BytesToAddress([]byte{4}): &dataCopy{}, 60 common.BytesToAddress([]byte{5}): &bigModExp{}, 61 common.BytesToAddress([]byte{6}): &bn256AddByzantium{}, 62 common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{}, 63 common.BytesToAddress([]byte{8}): &bn256PairingByzantium{}, 64 } 65 66 // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum 67 // contracts used in the Istanbul release. 68 var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{ 69 common.BytesToAddress([]byte{1}): &ecrecover{}, 70 common.BytesToAddress([]byte{2}): &sha256hash{}, 71 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 72 common.BytesToAddress([]byte{4}): &dataCopy{}, 73 common.BytesToAddress([]byte{5}): &bigModExp{}, 74 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 75 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 76 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 77 common.BytesToAddress([]byte{9}): &blake2F{}, 78 } 79 80 // PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum 81 // contracts used in the Berlin release. 82 var PrecompiledContractsBerlin = map[common.Address]PrecompiledContract{ 83 common.BytesToAddress([]byte{1}): &ecrecover{}, 84 common.BytesToAddress([]byte{2}): &sha256hash{}, 85 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 86 common.BytesToAddress([]byte{4}): &dataCopy{}, 87 common.BytesToAddress([]byte{5}): &bigModExp{eip2565: true}, 88 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 89 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 90 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 91 common.BytesToAddress([]byte{9}): &blake2F{}, 92 } 93 94 var ( 95 PrecompiledAddressesBerlin []common.Address 96 PrecompiledAddressesIstanbul []common.Address 97 PrecompiledAddressesByzantium []common.Address 98 PrecompiledAddressesHomestead []common.Address 99 ) 100 101 func init() { 102 for k := range PrecompiledContractsHomestead { 103 PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k) 104 } 105 for k := range PrecompiledContractsByzantium { 106 PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k) 107 } 108 for k := range PrecompiledContractsIstanbul { 109 PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k) 110 } 111 for k := range PrecompiledContractsBerlin { 112 PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k) 113 } 114 } 115 116 func ActivePrecompiles(rules params.Rules) []common.Address { 117 switch { 118 case rules.IsBerlin: 119 return PrecompiledAddressesBerlin 120 case rules.IsIstanbul: 121 return PrecompiledAddressesIstanbul 122 case rules.IsByzantium: 123 return PrecompiledAddressesByzantium 124 default: 125 return PrecompiledAddressesHomestead 126 } 127 } 128 129 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 130 func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { 131 gas := p.RequiredGas(input) 132 if contract.UseGas(gas) { 133 return p.Run(input) 134 } 135 return nil, ErrOutOfGas 136 } 137 138 // ECRECOVER implemented as a native contract. 139 type ecrecover struct{} 140 141 func (c *ecrecover) RequiredGas(input []byte) uint64 { 142 return params.EcrecoverGas 143 } 144 145 func (c *ecrecover) Run(input []byte) ([]byte, error) { 146 const ecRecoverInputLength = 128 147 148 input = common.RightPadBytes(input, ecRecoverInputLength) 149 // "input" is (hash, v, r, s), each 32 bytes 150 // but for ecrecover we want (r, s, v) 151 152 r := new(big.Int).SetBytes(input[64:96]) 153 s := new(big.Int).SetBytes(input[96:128]) 154 v := input[63] - 27 155 156 // tighter sig s values input homestead only apply to tx sigs 157 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 158 return nil, nil 159 } 160 // We must make sure not to modify the 'input', so placing the 'v' along with 161 // the signature needs to be done on a new allocation 162 sig := make([]byte, 65) 163 copy(sig, input[64:128]) 164 sig[64] = v 165 // v needs to be at the end for libsecp256k1 166 pubKey, err := crypto.Ecrecover(input[:32], sig) 167 // make sure the public key is a valid one 168 if err != nil { 169 return nil, nil 170 } 171 172 // the first byte of pubkey is bitcoin heritage 173 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 174 } 175 176 // SHA256 implemented as a native contract. 177 type sha256hash struct{} 178 179 // RequiredGas returns the gas required to execute the pre-compiled contract. 180 // 181 // This method does not require any overflow checking as the input size gas costs 182 // required for anything significant is so high it's impossible to pay for. 183 func (c *sha256hash) RequiredGas(input []byte) uint64 { 184 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 185 } 186 func (c *sha256hash) Run(input []byte) ([]byte, error) { 187 h := sha256.Sum256(input) 188 return h[:], nil 189 } 190 191 // RIPEMD160 implemented as a native contract. 192 type ripemd160hash struct{} 193 194 // RequiredGas returns the gas required to execute the pre-compiled contract. 195 // 196 // This method does not require any overflow checking as the input size gas costs 197 // required for anything significant is so high it's impossible to pay for. 198 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 199 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 200 } 201 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 202 ripemd := ripemd160.New() 203 ripemd.Write(input) 204 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 205 } 206 207 // data copy implemented as a native contract. 208 type dataCopy struct{} 209 210 // RequiredGas returns the gas required to execute the pre-compiled contract. 211 // 212 // This method does not require any overflow checking as the input size gas costs 213 // required for anything significant is so high it's impossible to pay for. 214 func (c *dataCopy) RequiredGas(input []byte) uint64 { 215 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 216 } 217 func (c *dataCopy) Run(in []byte) ([]byte, error) { 218 return in, nil 219 } 220 221 // bigModExp implements a native big integer exponential modular operation. 222 type bigModExp struct { 223 eip2565 bool 224 } 225 226 var ( 227 big1 = big.NewInt(1) 228 big3 = big.NewInt(3) 229 big4 = big.NewInt(4) 230 big7 = big.NewInt(7) 231 big8 = big.NewInt(8) 232 big16 = big.NewInt(16) 233 big20 = big.NewInt(20) 234 big32 = big.NewInt(32) 235 big64 = big.NewInt(64) 236 big96 = big.NewInt(96) 237 big480 = big.NewInt(480) 238 big1024 = big.NewInt(1024) 239 big3072 = big.NewInt(3072) 240 big199680 = big.NewInt(199680) 241 ) 242 243 // modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198 244 // 245 // def mult_complexity(x): 246 // if x <= 64: return x ** 2 247 // elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072 248 // else: return x ** 2 // 16 + 480 * x - 199680 249 // 250 // where is x is max(length_of_MODULUS, length_of_BASE) 251 func modexpMultComplexity(x *big.Int) *big.Int { 252 switch { 253 case x.Cmp(big64) <= 0: 254 x.Mul(x, x) // x ** 2 255 case x.Cmp(big1024) <= 0: 256 // (x ** 2 // 4 ) + ( 96 * x - 3072) 257 x = new(big.Int).Add( 258 new(big.Int).Div(new(big.Int).Mul(x, x), big4), 259 new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072), 260 ) 261 default: 262 // (x ** 2 // 16) + (480 * x - 199680) 263 x = new(big.Int).Add( 264 new(big.Int).Div(new(big.Int).Mul(x, x), big16), 265 new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680), 266 ) 267 } 268 return x 269 } 270 271 // RequiredGas returns the gas required to execute the pre-compiled contract. 272 func (c *bigModExp) RequiredGas(input []byte) uint64 { 273 var ( 274 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 275 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 276 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 277 ) 278 if len(input) > 96 { 279 input = input[96:] 280 } else { 281 input = input[:0] 282 } 283 // Retrieve the head 32 bytes of exp for the adjusted exponent length 284 var expHead *big.Int 285 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 286 expHead = new(big.Int) 287 } else { 288 if expLen.Cmp(big32) > 0 { 289 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 290 } else { 291 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 292 } 293 } 294 // Calculate the adjusted exponent length 295 var msb int 296 if bitlen := expHead.BitLen(); bitlen > 0 { 297 msb = bitlen - 1 298 } 299 adjExpLen := new(big.Int) 300 if expLen.Cmp(big32) > 0 { 301 adjExpLen.Sub(expLen, big32) 302 adjExpLen.Mul(big8, adjExpLen) 303 } 304 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 305 // Calculate the gas cost of the operation 306 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 307 if c.eip2565 { 308 // EIP-2565 has three changes 309 // 1. Different multComplexity (inlined here) 310 // in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565): 311 // 312 // def mult_complexity(x): 313 // ceiling(x/8)^2 314 // 315 //where is x is max(length_of_MODULUS, length_of_BASE) 316 gas = gas.Add(gas, big7) 317 gas = gas.Div(gas, big8) 318 gas.Mul(gas, gas) 319 320 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 321 // 2. Different divisor (`GQUADDIVISOR`) (3) 322 gas.Div(gas, big3) 323 if gas.BitLen() > 64 { 324 return math.MaxUint64 325 } 326 // 3. Minimum price of 200 gas 327 if gas.Uint64() < 200 { 328 return 200 329 } 330 return gas.Uint64() 331 } 332 gas = modexpMultComplexity(gas) 333 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 334 gas.Div(gas, big20) 335 336 if gas.BitLen() > 64 { 337 return math.MaxUint64 338 } 339 return gas.Uint64() 340 } 341 342 func (c *bigModExp) Run(input []byte) ([]byte, error) { 343 var ( 344 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 345 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 346 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 347 ) 348 if len(input) > 96 { 349 input = input[96:] 350 } else { 351 input = input[:0] 352 } 353 // Handle a special case when both the base and mod length is zero 354 if baseLen == 0 && modLen == 0 { 355 return []byte{}, nil 356 } 357 // Retrieve the operands and execute the exponentiation 358 var ( 359 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 360 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 361 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 362 ) 363 if mod.BitLen() == 0 { 364 // Modulo 0 is undefined, return zero 365 return common.LeftPadBytes([]byte{}, int(modLen)), nil 366 } 367 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 368 } 369 370 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 371 // returning it, or an error if the point is invalid. 372 func newCurvePoint(blob []byte) (*bn256.G1, error) { 373 p := new(bn256.G1) 374 if _, err := p.Unmarshal(blob); err != nil { 375 return nil, err 376 } 377 return p, nil 378 } 379 380 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 381 // returning it, or an error if the point is invalid. 382 func newTwistPoint(blob []byte) (*bn256.G2, error) { 383 p := new(bn256.G2) 384 if _, err := p.Unmarshal(blob); err != nil { 385 return nil, err 386 } 387 return p, nil 388 } 389 390 // runBn256Add implements the Bn256Add precompile, referenced by both 391 // Byzantium and Istanbul operations. 392 func runBn256Add(input []byte) ([]byte, error) { 393 x, err := newCurvePoint(getData(input, 0, 64)) 394 if err != nil { 395 return nil, err 396 } 397 y, err := newCurvePoint(getData(input, 64, 64)) 398 if err != nil { 399 return nil, err 400 } 401 res := new(bn256.G1) 402 res.Add(x, y) 403 return res.Marshal(), nil 404 } 405 406 // bn256Add implements a native elliptic curve point addition conforming to 407 // Istanbul consensus rules. 408 type bn256AddIstanbul struct{} 409 410 // RequiredGas returns the gas required to execute the pre-compiled contract. 411 func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 { 412 return params.Bn256AddGasIstanbul 413 } 414 415 func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) { 416 return runBn256Add(input) 417 } 418 419 // bn256AddByzantium implements a native elliptic curve point addition 420 // conforming to Byzantium consensus rules. 421 type bn256AddByzantium struct{} 422 423 // RequiredGas returns the gas required to execute the pre-compiled contract. 424 func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 { 425 return params.Bn256AddGasByzantium 426 } 427 428 func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) { 429 return runBn256Add(input) 430 } 431 432 // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by 433 // both Byzantium and Istanbul operations. 434 func runBn256ScalarMul(input []byte) ([]byte, error) { 435 p, err := newCurvePoint(getData(input, 0, 64)) 436 if err != nil { 437 return nil, err 438 } 439 res := new(bn256.G1) 440 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 441 return res.Marshal(), nil 442 } 443 444 // bn256ScalarMulIstanbul implements a native elliptic curve scalar 445 // multiplication conforming to Istanbul consensus rules. 446 type bn256ScalarMulIstanbul struct{} 447 448 // RequiredGas returns the gas required to execute the pre-compiled contract. 449 func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 { 450 return params.Bn256ScalarMulGasIstanbul 451 } 452 453 func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) { 454 return runBn256ScalarMul(input) 455 } 456 457 // bn256ScalarMulByzantium implements a native elliptic curve scalar 458 // multiplication conforming to Byzantium consensus rules. 459 type bn256ScalarMulByzantium struct{} 460 461 // RequiredGas returns the gas required to execute the pre-compiled contract. 462 func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 { 463 return params.Bn256ScalarMulGasByzantium 464 } 465 466 func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) { 467 return runBn256ScalarMul(input) 468 } 469 470 var ( 471 // true32Byte is returned if the bn256 pairing check succeeds. 472 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 473 474 // false32Byte is returned if the bn256 pairing check fails. 475 false32Byte = make([]byte, 32) 476 477 // errBadPairingInput is returned if the bn256 pairing input is invalid. 478 errBadPairingInput = errors.New("bad elliptic curve pairing size") 479 ) 480 481 // runBn256Pairing implements the Bn256Pairing precompile, referenced by both 482 // Byzantium and Istanbul operations. 483 func runBn256Pairing(input []byte) ([]byte, error) { 484 // Handle some corner cases cheaply 485 if len(input)%192 > 0 { 486 return nil, errBadPairingInput 487 } 488 // Convert the input into a set of coordinates 489 var ( 490 cs []*bn256.G1 491 ts []*bn256.G2 492 ) 493 for i := 0; i < len(input); i += 192 { 494 c, err := newCurvePoint(input[i : i+64]) 495 if err != nil { 496 return nil, err 497 } 498 t, err := newTwistPoint(input[i+64 : i+192]) 499 if err != nil { 500 return nil, err 501 } 502 cs = append(cs, c) 503 ts = append(ts, t) 504 } 505 // Execute the pairing checks and return the results 506 if bn256.PairingCheck(cs, ts) { 507 return true32Byte, nil 508 } 509 return false32Byte, nil 510 } 511 512 // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve 513 // conforming to Istanbul consensus rules. 514 type bn256PairingIstanbul struct{} 515 516 // RequiredGas returns the gas required to execute the pre-compiled contract. 517 func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 { 518 return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul 519 } 520 521 func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) { 522 return runBn256Pairing(input) 523 } 524 525 // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve 526 // conforming to Byzantium consensus rules. 527 type bn256PairingByzantium struct{} 528 529 // RequiredGas returns the gas required to execute the pre-compiled contract. 530 func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 { 531 return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium 532 } 533 534 func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) { 535 return runBn256Pairing(input) 536 } 537 538 type blake2F struct{} 539 540 func (c *blake2F) RequiredGas(input []byte) uint64 { 541 // If the input is malformed, we can't calculate the gas, return 0 and let the 542 // actual call choke and fault. 543 if len(input) != blake2FInputLength { 544 return 0 545 } 546 return uint64(binary.BigEndian.Uint32(input[0:4])) 547 } 548 549 const ( 550 blake2FInputLength = 213 551 blake2FFinalBlockBytes = byte(1) 552 blake2FNonFinalBlockBytes = byte(0) 553 ) 554 555 var ( 556 errBlake2FInvalidInputLength = errors.New("invalid input length") 557 errBlake2FInvalidFinalFlag = errors.New("invalid final flag") 558 ) 559 560 func (c *blake2F) Run(input []byte) ([]byte, error) { 561 // Make sure the input is valid (correct lenth and final flag) 562 if len(input) != blake2FInputLength { 563 return nil, errBlake2FInvalidInputLength 564 } 565 if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes { 566 return nil, errBlake2FInvalidFinalFlag 567 } 568 // Parse the input into the Blake2b call parameters 569 var ( 570 rounds = binary.BigEndian.Uint32(input[0:4]) 571 final = (input[212] == blake2FFinalBlockBytes) 572 573 h [8]uint64 574 m [16]uint64 575 t [2]uint64 576 ) 577 for i := 0; i < 8; i++ { 578 offset := 4 + i*8 579 h[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 580 } 581 for i := 0; i < 16; i++ { 582 offset := 68 + i*8 583 m[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 584 } 585 t[0] = binary.LittleEndian.Uint64(input[196:204]) 586 t[1] = binary.LittleEndian.Uint64(input[204:212]) 587 588 // Execute the compression function, extract and return the result 589 blake2b.F(&h, m, t, final, rounds) 590 591 output := make([]byte, 64) 592 for i := 0; i < 8; i++ { 593 offset := i * 8 594 binary.LittleEndian.PutUint64(output[offset:offset+8], h[i]) 595 } 596 return output, nil 597 }