github.com/ethereum/go-ethereum@v1.14.3/core/bloombits/matcher.go (about)

     1  // Copyright 2017 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package bloombits
    18  
    19  import (
    20  	"bytes"
    21  	"context"
    22  	"errors"
    23  	"math"
    24  	"sort"
    25  	"sync"
    26  	"sync/atomic"
    27  	"time"
    28  
    29  	"github.com/ethereum/go-ethereum/common/bitutil"
    30  	"github.com/ethereum/go-ethereum/crypto"
    31  )
    32  
    33  // bloomIndexes represents the bit indexes inside the bloom filter that belong
    34  // to some key.
    35  type bloomIndexes [3]uint
    36  
    37  // calcBloomIndexes returns the bloom filter bit indexes belonging to the given key.
    38  func calcBloomIndexes(b []byte) bloomIndexes {
    39  	b = crypto.Keccak256(b)
    40  
    41  	var idxs bloomIndexes
    42  	for i := 0; i < len(idxs); i++ {
    43  		idxs[i] = (uint(b[2*i])<<8)&2047 + uint(b[2*i+1])
    44  	}
    45  	return idxs
    46  }
    47  
    48  // partialMatches with a non-nil vector represents a section in which some sub-
    49  // matchers have already found potential matches. Subsequent sub-matchers will
    50  // binary AND their matches with this vector. If vector is nil, it represents a
    51  // section to be processed by the first sub-matcher.
    52  type partialMatches struct {
    53  	section uint64
    54  	bitset  []byte
    55  }
    56  
    57  // Retrieval represents a request for retrieval task assignments for a given
    58  // bit with the given number of fetch elements, or a response for such a request.
    59  // It can also have the actual results set to be used as a delivery data struct.
    60  //
    61  // The context and error fields are used by the light client to terminate matching
    62  // early if an error is encountered on some path of the pipeline.
    63  type Retrieval struct {
    64  	Bit      uint
    65  	Sections []uint64
    66  	Bitsets  [][]byte
    67  
    68  	Context context.Context
    69  	Error   error
    70  }
    71  
    72  // Matcher is a pipelined system of schedulers and logic matchers which perform
    73  // binary AND/OR operations on the bit-streams, creating a stream of potential
    74  // blocks to inspect for data content.
    75  type Matcher struct {
    76  	sectionSize uint64 // Size of the data batches to filter on
    77  
    78  	filters    [][]bloomIndexes    // Filter the system is matching for
    79  	schedulers map[uint]*scheduler // Retrieval schedulers for loading bloom bits
    80  
    81  	retrievers chan chan uint       // Retriever processes waiting for bit allocations
    82  	counters   chan chan uint       // Retriever processes waiting for task count reports
    83  	retrievals chan chan *Retrieval // Retriever processes waiting for task allocations
    84  	deliveries chan *Retrieval      // Retriever processes waiting for task response deliveries
    85  
    86  	running atomic.Bool // Atomic flag whether a session is live or not
    87  }
    88  
    89  // NewMatcher creates a new pipeline for retrieving bloom bit streams and doing
    90  // address and topic filtering on them. Setting a filter component to `nil` is
    91  // allowed and will result in that filter rule being skipped (OR 0x11...1).
    92  func NewMatcher(sectionSize uint64, filters [][][]byte) *Matcher {
    93  	// Create the matcher instance
    94  	m := &Matcher{
    95  		sectionSize: sectionSize,
    96  		schedulers:  make(map[uint]*scheduler),
    97  		retrievers:  make(chan chan uint),
    98  		counters:    make(chan chan uint),
    99  		retrievals:  make(chan chan *Retrieval),
   100  		deliveries:  make(chan *Retrieval),
   101  	}
   102  	// Calculate the bloom bit indexes for the groups we're interested in
   103  	m.filters = nil
   104  
   105  	for _, filter := range filters {
   106  		// Gather the bit indexes of the filter rule, special casing the nil filter
   107  		if len(filter) == 0 {
   108  			continue
   109  		}
   110  		bloomBits := make([]bloomIndexes, len(filter))
   111  		for i, clause := range filter {
   112  			if clause == nil {
   113  				bloomBits = nil
   114  				break
   115  			}
   116  			bloomBits[i] = calcBloomIndexes(clause)
   117  		}
   118  		// Accumulate the filter rules if no nil rule was within
   119  		if bloomBits != nil {
   120  			m.filters = append(m.filters, bloomBits)
   121  		}
   122  	}
   123  	// For every bit, create a scheduler to load/download the bit vectors
   124  	for _, bloomIndexLists := range m.filters {
   125  		for _, bloomIndexList := range bloomIndexLists {
   126  			for _, bloomIndex := range bloomIndexList {
   127  				m.addScheduler(bloomIndex)
   128  			}
   129  		}
   130  	}
   131  	return m
   132  }
   133  
   134  // addScheduler adds a bit stream retrieval scheduler for the given bit index if
   135  // it has not existed before. If the bit is already selected for filtering, the
   136  // existing scheduler can be used.
   137  func (m *Matcher) addScheduler(idx uint) {
   138  	if _, ok := m.schedulers[idx]; ok {
   139  		return
   140  	}
   141  	m.schedulers[idx] = newScheduler(idx)
   142  }
   143  
   144  // Start starts the matching process and returns a stream of bloom matches in
   145  // a given range of blocks. If there are no more matches in the range, the result
   146  // channel is closed.
   147  func (m *Matcher) Start(ctx context.Context, begin, end uint64, results chan uint64) (*MatcherSession, error) {
   148  	// Make sure we're not creating concurrent sessions
   149  	if m.running.Swap(true) {
   150  		return nil, errors.New("matcher already running")
   151  	}
   152  	defer m.running.Store(false)
   153  
   154  	// Initiate a new matching round
   155  	session := &MatcherSession{
   156  		matcher: m,
   157  		quit:    make(chan struct{}),
   158  		ctx:     ctx,
   159  	}
   160  	for _, scheduler := range m.schedulers {
   161  		scheduler.reset()
   162  	}
   163  	sink := m.run(begin, end, cap(results), session)
   164  
   165  	// Read the output from the result sink and deliver to the user
   166  	session.pend.Add(1)
   167  	go func() {
   168  		defer session.pend.Done()
   169  		defer close(results)
   170  
   171  		for {
   172  			select {
   173  			case <-session.quit:
   174  				return
   175  
   176  			case res, ok := <-sink:
   177  				// New match result found
   178  				if !ok {
   179  					return
   180  				}
   181  				// Calculate the first and last blocks of the section
   182  				sectionStart := res.section * m.sectionSize
   183  
   184  				first := sectionStart
   185  				if begin > first {
   186  					first = begin
   187  				}
   188  				last := sectionStart + m.sectionSize - 1
   189  				if end < last {
   190  					last = end
   191  				}
   192  				// Iterate over all the blocks in the section and return the matching ones
   193  				for i := first; i <= last; i++ {
   194  					// Skip the entire byte if no matches are found inside (and we're processing an entire byte!)
   195  					next := res.bitset[(i-sectionStart)/8]
   196  					if next == 0 {
   197  						if i%8 == 0 {
   198  							i += 7
   199  						}
   200  						continue
   201  					}
   202  					// Some bit it set, do the actual submatching
   203  					if bit := 7 - i%8; next&(1<<bit) != 0 {
   204  						select {
   205  						case <-session.quit:
   206  							return
   207  						case results <- i:
   208  						}
   209  					}
   210  				}
   211  			}
   212  		}
   213  	}()
   214  	return session, nil
   215  }
   216  
   217  // run creates a daisy-chain of sub-matchers, one for the address set and one
   218  // for each topic set, each sub-matcher receiving a section only if the previous
   219  // ones have all found a potential match in one of the blocks of the section,
   220  // then binary AND-ing its own matches and forwarding the result to the next one.
   221  //
   222  // The method starts feeding the section indexes into the first sub-matcher on a
   223  // new goroutine and returns a sink channel receiving the results.
   224  func (m *Matcher) run(begin, end uint64, buffer int, session *MatcherSession) chan *partialMatches {
   225  	// Create the source channel and feed section indexes into
   226  	source := make(chan *partialMatches, buffer)
   227  
   228  	session.pend.Add(1)
   229  	go func() {
   230  		defer session.pend.Done()
   231  		defer close(source)
   232  
   233  		for i := begin / m.sectionSize; i <= end/m.sectionSize; i++ {
   234  			select {
   235  			case <-session.quit:
   236  				return
   237  			case source <- &partialMatches{i, bytes.Repeat([]byte{0xff}, int(m.sectionSize/8))}:
   238  			}
   239  		}
   240  	}()
   241  	// Assemble the daisy-chained filtering pipeline
   242  	next := source
   243  	dist := make(chan *request, buffer)
   244  
   245  	for _, bloom := range m.filters {
   246  		next = m.subMatch(next, dist, bloom, session)
   247  	}
   248  	// Start the request distribution
   249  	session.pend.Add(1)
   250  	go m.distributor(dist, session)
   251  
   252  	return next
   253  }
   254  
   255  // subMatch creates a sub-matcher that filters for a set of addresses or topics, binary OR-s those matches, then
   256  // binary AND-s the result to the daisy-chain input (source) and forwards it to the daisy-chain output.
   257  // The matches of each address/topic are calculated by fetching the given sections of the three bloom bit indexes belonging to
   258  // that address/topic, and binary AND-ing those vectors together.
   259  func (m *Matcher) subMatch(source chan *partialMatches, dist chan *request, bloom []bloomIndexes, session *MatcherSession) chan *partialMatches {
   260  	// Start the concurrent schedulers for each bit required by the bloom filter
   261  	sectionSources := make([][3]chan uint64, len(bloom))
   262  	sectionSinks := make([][3]chan []byte, len(bloom))
   263  	for i, bits := range bloom {
   264  		for j, bit := range bits {
   265  			sectionSources[i][j] = make(chan uint64, cap(source))
   266  			sectionSinks[i][j] = make(chan []byte, cap(source))
   267  
   268  			m.schedulers[bit].run(sectionSources[i][j], dist, sectionSinks[i][j], session.quit, &session.pend)
   269  		}
   270  	}
   271  
   272  	process := make(chan *partialMatches, cap(source)) // entries from source are forwarded here after fetches have been initiated
   273  	results := make(chan *partialMatches, cap(source))
   274  
   275  	session.pend.Add(2)
   276  	go func() {
   277  		// Tear down the goroutine and terminate all source channels
   278  		defer session.pend.Done()
   279  		defer close(process)
   280  
   281  		defer func() {
   282  			for _, bloomSources := range sectionSources {
   283  				for _, bitSource := range bloomSources {
   284  					close(bitSource)
   285  				}
   286  			}
   287  		}()
   288  		// Read sections from the source channel and multiplex into all bit-schedulers
   289  		for {
   290  			select {
   291  			case <-session.quit:
   292  				return
   293  
   294  			case subres, ok := <-source:
   295  				// New subresult from previous link
   296  				if !ok {
   297  					return
   298  				}
   299  				// Multiplex the section index to all bit-schedulers
   300  				for _, bloomSources := range sectionSources {
   301  					for _, bitSource := range bloomSources {
   302  						select {
   303  						case <-session.quit:
   304  							return
   305  						case bitSource <- subres.section:
   306  						}
   307  					}
   308  				}
   309  				// Notify the processor that this section will become available
   310  				select {
   311  				case <-session.quit:
   312  					return
   313  				case process <- subres:
   314  				}
   315  			}
   316  		}
   317  	}()
   318  
   319  	go func() {
   320  		// Tear down the goroutine and terminate the final sink channel
   321  		defer session.pend.Done()
   322  		defer close(results)
   323  
   324  		// Read the source notifications and collect the delivered results
   325  		for {
   326  			select {
   327  			case <-session.quit:
   328  				return
   329  
   330  			case subres, ok := <-process:
   331  				// Notified of a section being retrieved
   332  				if !ok {
   333  					return
   334  				}
   335  				// Gather all the sub-results and merge them together
   336  				var orVector []byte
   337  				for _, bloomSinks := range sectionSinks {
   338  					var andVector []byte
   339  					for _, bitSink := range bloomSinks {
   340  						var data []byte
   341  						select {
   342  						case <-session.quit:
   343  							return
   344  						case data = <-bitSink:
   345  						}
   346  						if andVector == nil {
   347  							andVector = make([]byte, int(m.sectionSize/8))
   348  							copy(andVector, data)
   349  						} else {
   350  							bitutil.ANDBytes(andVector, andVector, data)
   351  						}
   352  					}
   353  					if orVector == nil {
   354  						orVector = andVector
   355  					} else {
   356  						bitutil.ORBytes(orVector, orVector, andVector)
   357  					}
   358  				}
   359  
   360  				if orVector == nil {
   361  					orVector = make([]byte, int(m.sectionSize/8))
   362  				}
   363  				if subres.bitset != nil {
   364  					bitutil.ANDBytes(orVector, orVector, subres.bitset)
   365  				}
   366  				if bitutil.TestBytes(orVector) {
   367  					select {
   368  					case <-session.quit:
   369  						return
   370  					case results <- &partialMatches{subres.section, orVector}:
   371  					}
   372  				}
   373  			}
   374  		}
   375  	}()
   376  	return results
   377  }
   378  
   379  // distributor receives requests from the schedulers and queues them into a set
   380  // of pending requests, which are assigned to retrievers wanting to fulfil them.
   381  func (m *Matcher) distributor(dist chan *request, session *MatcherSession) {
   382  	defer session.pend.Done()
   383  
   384  	var (
   385  		requests   = make(map[uint][]uint64) // Per-bit list of section requests, ordered by section number
   386  		unallocs   = make(map[uint]struct{}) // Bits with pending requests but not allocated to any retriever
   387  		retrievers chan chan uint            // Waiting retrievers (toggled to nil if unallocs is empty)
   388  		allocs     int                       // Number of active allocations to handle graceful shutdown requests
   389  		shutdown   = session.quit            // Shutdown request channel, will gracefully wait for pending requests
   390  	)
   391  
   392  	// assign is a helper method to try to assign a pending bit an actively
   393  	// listening servicer, or schedule it up for later when one arrives.
   394  	assign := func(bit uint) {
   395  		select {
   396  		case fetcher := <-m.retrievers:
   397  			allocs++
   398  			fetcher <- bit
   399  		default:
   400  			// No retrievers active, start listening for new ones
   401  			retrievers = m.retrievers
   402  			unallocs[bit] = struct{}{}
   403  		}
   404  	}
   405  
   406  	for {
   407  		select {
   408  		case <-shutdown:
   409  			// Shutdown requested. No more retrievers can be allocated,
   410  			// but we still need to wait until all pending requests have returned.
   411  			shutdown = nil
   412  			if allocs == 0 {
   413  				return
   414  			}
   415  
   416  		case req := <-dist:
   417  			// New retrieval request arrived to be distributed to some fetcher process
   418  			queue := requests[req.bit]
   419  			index := sort.Search(len(queue), func(i int) bool { return queue[i] >= req.section })
   420  			requests[req.bit] = append(queue[:index], append([]uint64{req.section}, queue[index:]...)...)
   421  
   422  			// If it's a new bit and we have waiting fetchers, allocate to them
   423  			if len(queue) == 0 {
   424  				assign(req.bit)
   425  			}
   426  
   427  		case fetcher := <-retrievers:
   428  			// New retriever arrived, find the lowest section-ed bit to assign
   429  			bit, best := uint(0), uint64(math.MaxUint64)
   430  			for idx := range unallocs {
   431  				if requests[idx][0] < best {
   432  					bit, best = idx, requests[idx][0]
   433  				}
   434  			}
   435  			// Stop tracking this bit (and alloc notifications if no more work is available)
   436  			delete(unallocs, bit)
   437  			if len(unallocs) == 0 {
   438  				retrievers = nil
   439  			}
   440  			allocs++
   441  			fetcher <- bit
   442  
   443  		case fetcher := <-m.counters:
   444  			// New task count request arrives, return number of items
   445  			fetcher <- uint(len(requests[<-fetcher]))
   446  
   447  		case fetcher := <-m.retrievals:
   448  			// New fetcher waiting for tasks to retrieve, assign
   449  			task := <-fetcher
   450  			if want := len(task.Sections); want >= len(requests[task.Bit]) {
   451  				task.Sections = requests[task.Bit]
   452  				delete(requests, task.Bit)
   453  			} else {
   454  				task.Sections = append(task.Sections[:0], requests[task.Bit][:want]...)
   455  				requests[task.Bit] = append(requests[task.Bit][:0], requests[task.Bit][want:]...)
   456  			}
   457  			fetcher <- task
   458  
   459  			// If anything was left unallocated, try to assign to someone else
   460  			if len(requests[task.Bit]) > 0 {
   461  				assign(task.Bit)
   462  			}
   463  
   464  		case result := <-m.deliveries:
   465  			// New retrieval task response from fetcher, split out missing sections and
   466  			// deliver complete ones
   467  			var (
   468  				sections = make([]uint64, 0, len(result.Sections))
   469  				bitsets  = make([][]byte, 0, len(result.Bitsets))
   470  				missing  = make([]uint64, 0, len(result.Sections))
   471  			)
   472  			for i, bitset := range result.Bitsets {
   473  				if len(bitset) == 0 {
   474  					missing = append(missing, result.Sections[i])
   475  					continue
   476  				}
   477  				sections = append(sections, result.Sections[i])
   478  				bitsets = append(bitsets, bitset)
   479  			}
   480  			m.schedulers[result.Bit].deliver(sections, bitsets)
   481  			allocs--
   482  
   483  			// Reschedule missing sections and allocate bit if newly available
   484  			if len(missing) > 0 {
   485  				queue := requests[result.Bit]
   486  				for _, section := range missing {
   487  					index := sort.Search(len(queue), func(i int) bool { return queue[i] >= section })
   488  					queue = append(queue[:index], append([]uint64{section}, queue[index:]...)...)
   489  				}
   490  				requests[result.Bit] = queue
   491  
   492  				if len(queue) == len(missing) {
   493  					assign(result.Bit)
   494  				}
   495  			}
   496  
   497  			// End the session when all pending deliveries have arrived.
   498  			if shutdown == nil && allocs == 0 {
   499  				return
   500  			}
   501  		}
   502  	}
   503  }
   504  
   505  // MatcherSession is returned by a started matcher to be used as a terminator
   506  // for the actively running matching operation.
   507  type MatcherSession struct {
   508  	matcher *Matcher
   509  
   510  	closer sync.Once     // Sync object to ensure we only ever close once
   511  	quit   chan struct{} // Quit channel to request pipeline termination
   512  
   513  	ctx     context.Context // Context used by the light client to abort filtering
   514  	err     error           // Global error to track retrieval failures deep in the chain
   515  	errLock sync.Mutex
   516  
   517  	pend sync.WaitGroup
   518  }
   519  
   520  // Close stops the matching process and waits for all subprocesses to terminate
   521  // before returning. The timeout may be used for graceful shutdown, allowing the
   522  // currently running retrievals to complete before this time.
   523  func (s *MatcherSession) Close() {
   524  	s.closer.Do(func() {
   525  		// Signal termination and wait for all goroutines to tear down
   526  		close(s.quit)
   527  		s.pend.Wait()
   528  	})
   529  }
   530  
   531  // Error returns any failure encountered during the matching session.
   532  func (s *MatcherSession) Error() error {
   533  	s.errLock.Lock()
   534  	defer s.errLock.Unlock()
   535  
   536  	return s.err
   537  }
   538  
   539  // allocateRetrieval assigns a bloom bit index to a client process that can either
   540  // immediately request and fetch the section contents assigned to this bit or wait
   541  // a little while for more sections to be requested.
   542  func (s *MatcherSession) allocateRetrieval() (uint, bool) {
   543  	fetcher := make(chan uint)
   544  
   545  	select {
   546  	case <-s.quit:
   547  		return 0, false
   548  	case s.matcher.retrievers <- fetcher:
   549  		bit, ok := <-fetcher
   550  		return bit, ok
   551  	}
   552  }
   553  
   554  // pendingSections returns the number of pending section retrievals belonging to
   555  // the given bloom bit index.
   556  func (s *MatcherSession) pendingSections(bit uint) int {
   557  	fetcher := make(chan uint)
   558  
   559  	select {
   560  	case <-s.quit:
   561  		return 0
   562  	case s.matcher.counters <- fetcher:
   563  		fetcher <- bit
   564  		return int(<-fetcher)
   565  	}
   566  }
   567  
   568  // allocateSections assigns all or part of an already allocated bit-task queue
   569  // to the requesting process.
   570  func (s *MatcherSession) allocateSections(bit uint, count int) []uint64 {
   571  	fetcher := make(chan *Retrieval)
   572  
   573  	select {
   574  	case <-s.quit:
   575  		return nil
   576  	case s.matcher.retrievals <- fetcher:
   577  		task := &Retrieval{
   578  			Bit:      bit,
   579  			Sections: make([]uint64, count),
   580  		}
   581  		fetcher <- task
   582  		return (<-fetcher).Sections
   583  	}
   584  }
   585  
   586  // deliverSections delivers a batch of section bit-vectors for a specific bloom
   587  // bit index to be injected into the processing pipeline.
   588  func (s *MatcherSession) deliverSections(bit uint, sections []uint64, bitsets [][]byte) {
   589  	s.matcher.deliveries <- &Retrieval{Bit: bit, Sections: sections, Bitsets: bitsets}
   590  }
   591  
   592  // Multiplex polls the matcher session for retrieval tasks and multiplexes it into
   593  // the requested retrieval queue to be serviced together with other sessions.
   594  //
   595  // This method will block for the lifetime of the session. Even after termination
   596  // of the session, any request in-flight need to be responded to! Empty responses
   597  // are fine though in that case.
   598  func (s *MatcherSession) Multiplex(batch int, wait time.Duration, mux chan chan *Retrieval) {
   599  	waitTimer := time.NewTimer(wait)
   600  	defer waitTimer.Stop()
   601  
   602  	for {
   603  		// Allocate a new bloom bit index to retrieve data for, stopping when done
   604  		bit, ok := s.allocateRetrieval()
   605  		if !ok {
   606  			return
   607  		}
   608  		// Bit allocated, throttle a bit if we're below our batch limit
   609  		if s.pendingSections(bit) < batch {
   610  			waitTimer.Reset(wait)
   611  			select {
   612  			case <-s.quit:
   613  				// Session terminating, we can't meaningfully service, abort
   614  				s.allocateSections(bit, 0)
   615  				s.deliverSections(bit, []uint64{}, [][]byte{})
   616  				return
   617  
   618  			case <-waitTimer.C:
   619  				// Throttling up, fetch whatever is available
   620  			}
   621  		}
   622  		// Allocate as much as we can handle and request servicing
   623  		sections := s.allocateSections(bit, batch)
   624  		request := make(chan *Retrieval)
   625  
   626  		select {
   627  		case <-s.quit:
   628  			// Session terminating, we can't meaningfully service, abort
   629  			s.deliverSections(bit, sections, make([][]byte, len(sections)))
   630  			return
   631  
   632  		case mux <- request:
   633  			// Retrieval accepted, something must arrive before we're aborting
   634  			request <- &Retrieval{Bit: bit, Sections: sections, Context: s.ctx}
   635  
   636  			result := <-request
   637  
   638  			// Deliver a result before s.Close() to avoid a deadlock
   639  			s.deliverSections(result.Bit, result.Sections, result.Bitsets)
   640  
   641  			if result.Error != nil {
   642  				s.errLock.Lock()
   643  				s.err = result.Error
   644  				s.errLock.Unlock()
   645  				s.Close()
   646  			}
   647  		}
   648  	}
   649  }