github.com/ethereum/go-ethereum@v1.14.3/ethdb/memorydb/memorydb.go (about)

     1  // Copyright 2018 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package memorydb implements the key-value database layer based on memory maps.
    18  package memorydb
    19  
    20  import (
    21  	"errors"
    22  	"sort"
    23  	"strings"
    24  	"sync"
    25  
    26  	"github.com/ethereum/go-ethereum/common"
    27  	"github.com/ethereum/go-ethereum/ethdb"
    28  )
    29  
    30  var (
    31  	// errMemorydbClosed is returned if a memory database was already closed at the
    32  	// invocation of a data access operation.
    33  	errMemorydbClosed = errors.New("database closed")
    34  
    35  	// errMemorydbNotFound is returned if a key is requested that is not found in
    36  	// the provided memory database.
    37  	errMemorydbNotFound = errors.New("not found")
    38  
    39  	// errSnapshotReleased is returned if callers want to retrieve data from a
    40  	// released snapshot.
    41  	errSnapshotReleased = errors.New("snapshot released")
    42  )
    43  
    44  // Database is an ephemeral key-value store. Apart from basic data storage
    45  // functionality it also supports batch writes and iterating over the keyspace in
    46  // binary-alphabetical order.
    47  type Database struct {
    48  	db   map[string][]byte
    49  	lock sync.RWMutex
    50  }
    51  
    52  // New returns a wrapped map with all the required database interface methods
    53  // implemented.
    54  func New() *Database {
    55  	return &Database{
    56  		db: make(map[string][]byte),
    57  	}
    58  }
    59  
    60  // NewWithCap returns a wrapped map pre-allocated to the provided capacity with
    61  // all the required database interface methods implemented.
    62  func NewWithCap(size int) *Database {
    63  	return &Database{
    64  		db: make(map[string][]byte, size),
    65  	}
    66  }
    67  
    68  // Close deallocates the internal map and ensures any consecutive data access op
    69  // fails with an error.
    70  func (db *Database) Close() error {
    71  	db.lock.Lock()
    72  	defer db.lock.Unlock()
    73  
    74  	db.db = nil
    75  	return nil
    76  }
    77  
    78  // Has retrieves if a key is present in the key-value store.
    79  func (db *Database) Has(key []byte) (bool, error) {
    80  	db.lock.RLock()
    81  	defer db.lock.RUnlock()
    82  
    83  	if db.db == nil {
    84  		return false, errMemorydbClosed
    85  	}
    86  	_, ok := db.db[string(key)]
    87  	return ok, nil
    88  }
    89  
    90  // Get retrieves the given key if it's present in the key-value store.
    91  func (db *Database) Get(key []byte) ([]byte, error) {
    92  	db.lock.RLock()
    93  	defer db.lock.RUnlock()
    94  
    95  	if db.db == nil {
    96  		return nil, errMemorydbClosed
    97  	}
    98  	if entry, ok := db.db[string(key)]; ok {
    99  		return common.CopyBytes(entry), nil
   100  	}
   101  	return nil, errMemorydbNotFound
   102  }
   103  
   104  // Put inserts the given value into the key-value store.
   105  func (db *Database) Put(key []byte, value []byte) error {
   106  	db.lock.Lock()
   107  	defer db.lock.Unlock()
   108  
   109  	if db.db == nil {
   110  		return errMemorydbClosed
   111  	}
   112  	db.db[string(key)] = common.CopyBytes(value)
   113  	return nil
   114  }
   115  
   116  // Delete removes the key from the key-value store.
   117  func (db *Database) Delete(key []byte) error {
   118  	db.lock.Lock()
   119  	defer db.lock.Unlock()
   120  
   121  	if db.db == nil {
   122  		return errMemorydbClosed
   123  	}
   124  	delete(db.db, string(key))
   125  	return nil
   126  }
   127  
   128  // NewBatch creates a write-only key-value store that buffers changes to its host
   129  // database until a final write is called.
   130  func (db *Database) NewBatch() ethdb.Batch {
   131  	return &batch{
   132  		db: db,
   133  	}
   134  }
   135  
   136  // NewBatchWithSize creates a write-only database batch with pre-allocated buffer.
   137  func (db *Database) NewBatchWithSize(size int) ethdb.Batch {
   138  	return &batch{
   139  		db: db,
   140  	}
   141  }
   142  
   143  // NewIterator creates a binary-alphabetical iterator over a subset
   144  // of database content with a particular key prefix, starting at a particular
   145  // initial key (or after, if it does not exist).
   146  func (db *Database) NewIterator(prefix []byte, start []byte) ethdb.Iterator {
   147  	db.lock.RLock()
   148  	defer db.lock.RUnlock()
   149  
   150  	var (
   151  		pr     = string(prefix)
   152  		st     = string(append(prefix, start...))
   153  		keys   = make([]string, 0, len(db.db))
   154  		values = make([][]byte, 0, len(db.db))
   155  	)
   156  	// Collect the keys from the memory database corresponding to the given prefix
   157  	// and start
   158  	for key := range db.db {
   159  		if !strings.HasPrefix(key, pr) {
   160  			continue
   161  		}
   162  		if key >= st {
   163  			keys = append(keys, key)
   164  		}
   165  	}
   166  	// Sort the items and retrieve the associated values
   167  	sort.Strings(keys)
   168  	for _, key := range keys {
   169  		values = append(values, db.db[key])
   170  	}
   171  	return &iterator{
   172  		index:  -1,
   173  		keys:   keys,
   174  		values: values,
   175  	}
   176  }
   177  
   178  // NewSnapshot creates a database snapshot based on the current state.
   179  // The created snapshot will not be affected by all following mutations
   180  // happened on the database.
   181  func (db *Database) NewSnapshot() (ethdb.Snapshot, error) {
   182  	return newSnapshot(db), nil
   183  }
   184  
   185  // Stat returns a particular internal stat of the database.
   186  func (db *Database) Stat(property string) (string, error) {
   187  	return "", errors.New("unknown property")
   188  }
   189  
   190  // Compact is not supported on a memory database, but there's no need either as
   191  // a memory database doesn't waste space anyway.
   192  func (db *Database) Compact(start []byte, limit []byte) error {
   193  	return nil
   194  }
   195  
   196  // Len returns the number of entries currently present in the memory database.
   197  //
   198  // Note, this method is only used for testing (i.e. not public in general) and
   199  // does not have explicit checks for closed-ness to allow simpler testing code.
   200  func (db *Database) Len() int {
   201  	db.lock.RLock()
   202  	defer db.lock.RUnlock()
   203  
   204  	return len(db.db)
   205  }
   206  
   207  // keyvalue is a key-value tuple tagged with a deletion field to allow creating
   208  // memory-database write batches.
   209  type keyvalue struct {
   210  	key    string
   211  	value  []byte
   212  	delete bool
   213  }
   214  
   215  // batch is a write-only memory batch that commits changes to its host
   216  // database when Write is called. A batch cannot be used concurrently.
   217  type batch struct {
   218  	db     *Database
   219  	writes []keyvalue
   220  	size   int
   221  }
   222  
   223  // Put inserts the given value into the batch for later committing.
   224  func (b *batch) Put(key, value []byte) error {
   225  	b.writes = append(b.writes, keyvalue{string(key), common.CopyBytes(value), false})
   226  	b.size += len(key) + len(value)
   227  	return nil
   228  }
   229  
   230  // Delete inserts the a key removal into the batch for later committing.
   231  func (b *batch) Delete(key []byte) error {
   232  	b.writes = append(b.writes, keyvalue{string(key), nil, true})
   233  	b.size += len(key)
   234  	return nil
   235  }
   236  
   237  // ValueSize retrieves the amount of data queued up for writing.
   238  func (b *batch) ValueSize() int {
   239  	return b.size
   240  }
   241  
   242  // Write flushes any accumulated data to the memory database.
   243  func (b *batch) Write() error {
   244  	b.db.lock.Lock()
   245  	defer b.db.lock.Unlock()
   246  
   247  	if b.db.db == nil {
   248  		return errMemorydbClosed
   249  	}
   250  	for _, keyvalue := range b.writes {
   251  		if keyvalue.delete {
   252  			delete(b.db.db, keyvalue.key)
   253  			continue
   254  		}
   255  		b.db.db[keyvalue.key] = keyvalue.value
   256  	}
   257  	return nil
   258  }
   259  
   260  // Reset resets the batch for reuse.
   261  func (b *batch) Reset() {
   262  	b.writes = b.writes[:0]
   263  	b.size = 0
   264  }
   265  
   266  // Replay replays the batch contents.
   267  func (b *batch) Replay(w ethdb.KeyValueWriter) error {
   268  	for _, keyvalue := range b.writes {
   269  		if keyvalue.delete {
   270  			if err := w.Delete([]byte(keyvalue.key)); err != nil {
   271  				return err
   272  			}
   273  			continue
   274  		}
   275  		if err := w.Put([]byte(keyvalue.key), keyvalue.value); err != nil {
   276  			return err
   277  		}
   278  	}
   279  	return nil
   280  }
   281  
   282  // iterator can walk over the (potentially partial) keyspace of a memory key
   283  // value store. Internally it is a deep copy of the entire iterated state,
   284  // sorted by keys.
   285  type iterator struct {
   286  	index  int
   287  	keys   []string
   288  	values [][]byte
   289  }
   290  
   291  // Next moves the iterator to the next key/value pair. It returns whether the
   292  // iterator is exhausted.
   293  func (it *iterator) Next() bool {
   294  	// Short circuit if iterator is already exhausted in the forward direction.
   295  	if it.index >= len(it.keys) {
   296  		return false
   297  	}
   298  	it.index += 1
   299  	return it.index < len(it.keys)
   300  }
   301  
   302  // Error returns any accumulated error. Exhausting all the key/value pairs
   303  // is not considered to be an error. A memory iterator cannot encounter errors.
   304  func (it *iterator) Error() error {
   305  	return nil
   306  }
   307  
   308  // Key returns the key of the current key/value pair, or nil if done. The caller
   309  // should not modify the contents of the returned slice, and its contents may
   310  // change on the next call to Next.
   311  func (it *iterator) Key() []byte {
   312  	// Short circuit if iterator is not in a valid position
   313  	if it.index < 0 || it.index >= len(it.keys) {
   314  		return nil
   315  	}
   316  	return []byte(it.keys[it.index])
   317  }
   318  
   319  // Value returns the value of the current key/value pair, or nil if done. The
   320  // caller should not modify the contents of the returned slice, and its contents
   321  // may change on the next call to Next.
   322  func (it *iterator) Value() []byte {
   323  	// Short circuit if iterator is not in a valid position
   324  	if it.index < 0 || it.index >= len(it.keys) {
   325  		return nil
   326  	}
   327  	return it.values[it.index]
   328  }
   329  
   330  // Release releases associated resources. Release should always succeed and can
   331  // be called multiple times without causing error.
   332  func (it *iterator) Release() {
   333  	it.index, it.keys, it.values = -1, nil, nil
   334  }
   335  
   336  // snapshot wraps a batch of key-value entries deep copied from the in-memory
   337  // database for implementing the Snapshot interface.
   338  type snapshot struct {
   339  	db   map[string][]byte
   340  	lock sync.RWMutex
   341  }
   342  
   343  // newSnapshot initializes the snapshot with the given database instance.
   344  func newSnapshot(db *Database) *snapshot {
   345  	db.lock.RLock()
   346  	defer db.lock.RUnlock()
   347  
   348  	copied := make(map[string][]byte, len(db.db))
   349  	for key, val := range db.db {
   350  		copied[key] = common.CopyBytes(val)
   351  	}
   352  	return &snapshot{db: copied}
   353  }
   354  
   355  // Has retrieves if a key is present in the snapshot backing by a key-value
   356  // data store.
   357  func (snap *snapshot) Has(key []byte) (bool, error) {
   358  	snap.lock.RLock()
   359  	defer snap.lock.RUnlock()
   360  
   361  	if snap.db == nil {
   362  		return false, errSnapshotReleased
   363  	}
   364  	_, ok := snap.db[string(key)]
   365  	return ok, nil
   366  }
   367  
   368  // Get retrieves the given key if it's present in the snapshot backing by
   369  // key-value data store.
   370  func (snap *snapshot) Get(key []byte) ([]byte, error) {
   371  	snap.lock.RLock()
   372  	defer snap.lock.RUnlock()
   373  
   374  	if snap.db == nil {
   375  		return nil, errSnapshotReleased
   376  	}
   377  	if entry, ok := snap.db[string(key)]; ok {
   378  		return common.CopyBytes(entry), nil
   379  	}
   380  	return nil, errMemorydbNotFound
   381  }
   382  
   383  // Release releases associated resources. Release should always succeed and can
   384  // be called multiple times without causing error.
   385  func (snap *snapshot) Release() {
   386  	snap.lock.Lock()
   387  	defer snap.lock.Unlock()
   388  
   389  	snap.db = nil
   390  }