github.com/ethereum/go-ethereum@v1.14.4-0.20240516095835-473ee8fc07a3/core/vm/contracts.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package vm
    18  
    19  import (
    20  	"crypto/sha256"
    21  	"encoding/binary"
    22  	"errors"
    23  	"fmt"
    24  	"math/big"
    25  
    26  	"github.com/consensys/gnark-crypto/ecc"
    27  	bls12381 "github.com/consensys/gnark-crypto/ecc/bls12-381"
    28  	"github.com/consensys/gnark-crypto/ecc/bls12-381/fp"
    29  	"github.com/consensys/gnark-crypto/ecc/bls12-381/fr"
    30  	"github.com/ethereum/go-ethereum/common"
    31  	"github.com/ethereum/go-ethereum/common/math"
    32  	"github.com/ethereum/go-ethereum/core/tracing"
    33  	"github.com/ethereum/go-ethereum/crypto"
    34  	"github.com/ethereum/go-ethereum/crypto/blake2b"
    35  	"github.com/ethereum/go-ethereum/crypto/bn256"
    36  	"github.com/ethereum/go-ethereum/crypto/kzg4844"
    37  	"github.com/ethereum/go-ethereum/params"
    38  	"golang.org/x/crypto/ripemd160"
    39  )
    40  
    41  // PrecompiledContract is the basic interface for native Go contracts. The implementation
    42  // requires a deterministic gas count based on the input size of the Run method of the
    43  // contract.
    44  type PrecompiledContract interface {
    45  	RequiredGas(input []byte) uint64  // RequiredPrice calculates the contract gas use
    46  	Run(input []byte) ([]byte, error) // Run runs the precompiled contract
    47  }
    48  
    49  // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
    50  // contracts used in the Frontier and Homestead releases.
    51  var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
    52  	common.BytesToAddress([]byte{0x1}): &ecrecover{},
    53  	common.BytesToAddress([]byte{0x2}): &sha256hash{},
    54  	common.BytesToAddress([]byte{0x3}): &ripemd160hash{},
    55  	common.BytesToAddress([]byte{0x4}): &dataCopy{},
    56  }
    57  
    58  // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
    59  // contracts used in the Byzantium release.
    60  var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
    61  	common.BytesToAddress([]byte{0x1}): &ecrecover{},
    62  	common.BytesToAddress([]byte{0x2}): &sha256hash{},
    63  	common.BytesToAddress([]byte{0x3}): &ripemd160hash{},
    64  	common.BytesToAddress([]byte{0x4}): &dataCopy{},
    65  	common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: false},
    66  	common.BytesToAddress([]byte{0x6}): &bn256AddByzantium{},
    67  	common.BytesToAddress([]byte{0x7}): &bn256ScalarMulByzantium{},
    68  	common.BytesToAddress([]byte{0x8}): &bn256PairingByzantium{},
    69  }
    70  
    71  // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum
    72  // contracts used in the Istanbul release.
    73  var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{
    74  	common.BytesToAddress([]byte{0x1}): &ecrecover{},
    75  	common.BytesToAddress([]byte{0x2}): &sha256hash{},
    76  	common.BytesToAddress([]byte{0x3}): &ripemd160hash{},
    77  	common.BytesToAddress([]byte{0x4}): &dataCopy{},
    78  	common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: false},
    79  	common.BytesToAddress([]byte{0x6}): &bn256AddIstanbul{},
    80  	common.BytesToAddress([]byte{0x7}): &bn256ScalarMulIstanbul{},
    81  	common.BytesToAddress([]byte{0x8}): &bn256PairingIstanbul{},
    82  	common.BytesToAddress([]byte{0x9}): &blake2F{},
    83  }
    84  
    85  // PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum
    86  // contracts used in the Berlin release.
    87  var PrecompiledContractsBerlin = map[common.Address]PrecompiledContract{
    88  	common.BytesToAddress([]byte{0x1}): &ecrecover{},
    89  	common.BytesToAddress([]byte{0x2}): &sha256hash{},
    90  	common.BytesToAddress([]byte{0x3}): &ripemd160hash{},
    91  	common.BytesToAddress([]byte{0x4}): &dataCopy{},
    92  	common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: true},
    93  	common.BytesToAddress([]byte{0x6}): &bn256AddIstanbul{},
    94  	common.BytesToAddress([]byte{0x7}): &bn256ScalarMulIstanbul{},
    95  	common.BytesToAddress([]byte{0x8}): &bn256PairingIstanbul{},
    96  	common.BytesToAddress([]byte{0x9}): &blake2F{},
    97  }
    98  
    99  // PrecompiledContractsCancun contains the default set of pre-compiled Ethereum
   100  // contracts used in the Cancun release.
   101  var PrecompiledContractsCancun = map[common.Address]PrecompiledContract{
   102  	common.BytesToAddress([]byte{0x1}): &ecrecover{},
   103  	common.BytesToAddress([]byte{0x2}): &sha256hash{},
   104  	common.BytesToAddress([]byte{0x3}): &ripemd160hash{},
   105  	common.BytesToAddress([]byte{0x4}): &dataCopy{},
   106  	common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: true},
   107  	common.BytesToAddress([]byte{0x6}): &bn256AddIstanbul{},
   108  	common.BytesToAddress([]byte{0x7}): &bn256ScalarMulIstanbul{},
   109  	common.BytesToAddress([]byte{0x8}): &bn256PairingIstanbul{},
   110  	common.BytesToAddress([]byte{0x9}): &blake2F{},
   111  	common.BytesToAddress([]byte{0xa}): &kzgPointEvaluation{},
   112  }
   113  
   114  // PrecompiledContractsPrague contains the set of pre-compiled Ethereum
   115  // contracts used in the Prague release.
   116  var PrecompiledContractsPrague = map[common.Address]PrecompiledContract{
   117  	common.BytesToAddress([]byte{0x01}): &ecrecover{},
   118  	common.BytesToAddress([]byte{0x02}): &sha256hash{},
   119  	common.BytesToAddress([]byte{0x03}): &ripemd160hash{},
   120  	common.BytesToAddress([]byte{0x04}): &dataCopy{},
   121  	common.BytesToAddress([]byte{0x05}): &bigModExp{eip2565: true},
   122  	common.BytesToAddress([]byte{0x06}): &bn256AddIstanbul{},
   123  	common.BytesToAddress([]byte{0x07}): &bn256ScalarMulIstanbul{},
   124  	common.BytesToAddress([]byte{0x08}): &bn256PairingIstanbul{},
   125  	common.BytesToAddress([]byte{0x09}): &blake2F{},
   126  	common.BytesToAddress([]byte{0x0a}): &kzgPointEvaluation{},
   127  	common.BytesToAddress([]byte{0x0b}): &bls12381G1Add{},
   128  	common.BytesToAddress([]byte{0x0c}): &bls12381G1Mul{},
   129  	common.BytesToAddress([]byte{0x0d}): &bls12381G1MultiExp{},
   130  	common.BytesToAddress([]byte{0x0e}): &bls12381G2Add{},
   131  	common.BytesToAddress([]byte{0x0f}): &bls12381G2Mul{},
   132  	common.BytesToAddress([]byte{0x10}): &bls12381G2MultiExp{},
   133  	common.BytesToAddress([]byte{0x11}): &bls12381Pairing{},
   134  	common.BytesToAddress([]byte{0x12}): &bls12381MapG1{},
   135  	common.BytesToAddress([]byte{0x13}): &bls12381MapG2{},
   136  }
   137  
   138  var PrecompiledContractsBLS = PrecompiledContractsPrague
   139  
   140  var PrecompiledContractsVerkle = PrecompiledContractsPrague
   141  
   142  var (
   143  	PrecompiledAddressesPrague    []common.Address
   144  	PrecompiledAddressesCancun    []common.Address
   145  	PrecompiledAddressesBerlin    []common.Address
   146  	PrecompiledAddressesIstanbul  []common.Address
   147  	PrecompiledAddressesByzantium []common.Address
   148  	PrecompiledAddressesHomestead []common.Address
   149  )
   150  
   151  func init() {
   152  	for k := range PrecompiledContractsHomestead {
   153  		PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k)
   154  	}
   155  	for k := range PrecompiledContractsByzantium {
   156  		PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k)
   157  	}
   158  	for k := range PrecompiledContractsIstanbul {
   159  		PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k)
   160  	}
   161  	for k := range PrecompiledContractsBerlin {
   162  		PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k)
   163  	}
   164  	for k := range PrecompiledContractsCancun {
   165  		PrecompiledAddressesCancun = append(PrecompiledAddressesCancun, k)
   166  	}
   167  	for k := range PrecompiledContractsPrague {
   168  		PrecompiledAddressesPrague = append(PrecompiledAddressesPrague, k)
   169  	}
   170  }
   171  
   172  // ActivePrecompiles returns the precompiles enabled with the current configuration.
   173  func ActivePrecompiles(rules params.Rules) []common.Address {
   174  	switch {
   175  	case rules.IsPrague:
   176  		return PrecompiledAddressesPrague
   177  	case rules.IsCancun:
   178  		return PrecompiledAddressesCancun
   179  	case rules.IsBerlin:
   180  		return PrecompiledAddressesBerlin
   181  	case rules.IsIstanbul:
   182  		return PrecompiledAddressesIstanbul
   183  	case rules.IsByzantium:
   184  		return PrecompiledAddressesByzantium
   185  	default:
   186  		return PrecompiledAddressesHomestead
   187  	}
   188  }
   189  
   190  // RunPrecompiledContract runs and evaluates the output of a precompiled contract.
   191  // It returns
   192  // - the returned bytes,
   193  // - the _remaining_ gas,
   194  // - any error that occurred
   195  func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64, logger *tracing.Hooks) (ret []byte, remainingGas uint64, err error) {
   196  	gasCost := p.RequiredGas(input)
   197  	if suppliedGas < gasCost {
   198  		return nil, 0, ErrOutOfGas
   199  	}
   200  	if logger != nil && logger.OnGasChange != nil {
   201  		logger.OnGasChange(suppliedGas, suppliedGas-gasCost, tracing.GasChangeCallPrecompiledContract)
   202  	}
   203  	suppliedGas -= gasCost
   204  	output, err := p.Run(input)
   205  	return output, suppliedGas, err
   206  }
   207  
   208  // ecrecover implemented as a native contract.
   209  type ecrecover struct{}
   210  
   211  func (c *ecrecover) RequiredGas(input []byte) uint64 {
   212  	return params.EcrecoverGas
   213  }
   214  
   215  func (c *ecrecover) Run(input []byte) ([]byte, error) {
   216  	const ecRecoverInputLength = 128
   217  
   218  	input = common.RightPadBytes(input, ecRecoverInputLength)
   219  	// "input" is (hash, v, r, s), each 32 bytes
   220  	// but for ecrecover we want (r, s, v)
   221  
   222  	r := new(big.Int).SetBytes(input[64:96])
   223  	s := new(big.Int).SetBytes(input[96:128])
   224  	v := input[63] - 27
   225  
   226  	// tighter sig s values input homestead only apply to tx sigs
   227  	if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
   228  		return nil, nil
   229  	}
   230  	// We must make sure not to modify the 'input', so placing the 'v' along with
   231  	// the signature needs to be done on a new allocation
   232  	sig := make([]byte, 65)
   233  	copy(sig, input[64:128])
   234  	sig[64] = v
   235  	// v needs to be at the end for libsecp256k1
   236  	pubKey, err := crypto.Ecrecover(input[:32], sig)
   237  	// make sure the public key is a valid one
   238  	if err != nil {
   239  		return nil, nil
   240  	}
   241  
   242  	// the first byte of pubkey is bitcoin heritage
   243  	return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
   244  }
   245  
   246  // SHA256 implemented as a native contract.
   247  type sha256hash struct{}
   248  
   249  // RequiredGas returns the gas required to execute the pre-compiled contract.
   250  //
   251  // This method does not require any overflow checking as the input size gas costs
   252  // required for anything significant is so high it's impossible to pay for.
   253  func (c *sha256hash) RequiredGas(input []byte) uint64 {
   254  	return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
   255  }
   256  func (c *sha256hash) Run(input []byte) ([]byte, error) {
   257  	h := sha256.Sum256(input)
   258  	return h[:], nil
   259  }
   260  
   261  // RIPEMD160 implemented as a native contract.
   262  type ripemd160hash struct{}
   263  
   264  // RequiredGas returns the gas required to execute the pre-compiled contract.
   265  //
   266  // This method does not require any overflow checking as the input size gas costs
   267  // required for anything significant is so high it's impossible to pay for.
   268  func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
   269  	return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
   270  }
   271  func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
   272  	ripemd := ripemd160.New()
   273  	ripemd.Write(input)
   274  	return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
   275  }
   276  
   277  // data copy implemented as a native contract.
   278  type dataCopy struct{}
   279  
   280  // RequiredGas returns the gas required to execute the pre-compiled contract.
   281  //
   282  // This method does not require any overflow checking as the input size gas costs
   283  // required for anything significant is so high it's impossible to pay for.
   284  func (c *dataCopy) RequiredGas(input []byte) uint64 {
   285  	return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
   286  }
   287  func (c *dataCopy) Run(in []byte) ([]byte, error) {
   288  	return common.CopyBytes(in), nil
   289  }
   290  
   291  // bigModExp implements a native big integer exponential modular operation.
   292  type bigModExp struct {
   293  	eip2565 bool
   294  }
   295  
   296  var (
   297  	big1      = big.NewInt(1)
   298  	big3      = big.NewInt(3)
   299  	big4      = big.NewInt(4)
   300  	big7      = big.NewInt(7)
   301  	big8      = big.NewInt(8)
   302  	big16     = big.NewInt(16)
   303  	big20     = big.NewInt(20)
   304  	big32     = big.NewInt(32)
   305  	big64     = big.NewInt(64)
   306  	big96     = big.NewInt(96)
   307  	big480    = big.NewInt(480)
   308  	big1024   = big.NewInt(1024)
   309  	big3072   = big.NewInt(3072)
   310  	big199680 = big.NewInt(199680)
   311  )
   312  
   313  // modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198
   314  //
   315  //	def mult_complexity(x):
   316  //		if x <= 64: return x ** 2
   317  //		elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072
   318  //		else: return x ** 2 // 16 + 480 * x - 199680
   319  //
   320  // where is x is max(length_of_MODULUS, length_of_BASE)
   321  func modexpMultComplexity(x *big.Int) *big.Int {
   322  	switch {
   323  	case x.Cmp(big64) <= 0:
   324  		x.Mul(x, x) // x ** 2
   325  	case x.Cmp(big1024) <= 0:
   326  		// (x ** 2 // 4 ) + ( 96 * x - 3072)
   327  		x = new(big.Int).Add(
   328  			new(big.Int).Div(new(big.Int).Mul(x, x), big4),
   329  			new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072),
   330  		)
   331  	default:
   332  		// (x ** 2 // 16) + (480 * x - 199680)
   333  		x = new(big.Int).Add(
   334  			new(big.Int).Div(new(big.Int).Mul(x, x), big16),
   335  			new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680),
   336  		)
   337  	}
   338  	return x
   339  }
   340  
   341  // RequiredGas returns the gas required to execute the pre-compiled contract.
   342  func (c *bigModExp) RequiredGas(input []byte) uint64 {
   343  	var (
   344  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
   345  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32))
   346  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32))
   347  	)
   348  	if len(input) > 96 {
   349  		input = input[96:]
   350  	} else {
   351  		input = input[:0]
   352  	}
   353  	// Retrieve the head 32 bytes of exp for the adjusted exponent length
   354  	var expHead *big.Int
   355  	if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
   356  		expHead = new(big.Int)
   357  	} else {
   358  		if expLen.Cmp(big32) > 0 {
   359  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
   360  		} else {
   361  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
   362  		}
   363  	}
   364  	// Calculate the adjusted exponent length
   365  	var msb int
   366  	if bitlen := expHead.BitLen(); bitlen > 0 {
   367  		msb = bitlen - 1
   368  	}
   369  	adjExpLen := new(big.Int)
   370  	if expLen.Cmp(big32) > 0 {
   371  		adjExpLen.Sub(expLen, big32)
   372  		adjExpLen.Mul(big8, adjExpLen)
   373  	}
   374  	adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
   375  	// Calculate the gas cost of the operation
   376  	gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
   377  	if c.eip2565 {
   378  		// EIP-2565 has three changes
   379  		// 1. Different multComplexity (inlined here)
   380  		// in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565):
   381  		//
   382  		// def mult_complexity(x):
   383  		//    ceiling(x/8)^2
   384  		//
   385  		//where is x is max(length_of_MODULUS, length_of_BASE)
   386  		gas = gas.Add(gas, big7)
   387  		gas = gas.Div(gas, big8)
   388  		gas.Mul(gas, gas)
   389  
   390  		gas.Mul(gas, math.BigMax(adjExpLen, big1))
   391  		// 2. Different divisor (`GQUADDIVISOR`) (3)
   392  		gas.Div(gas, big3)
   393  		if gas.BitLen() > 64 {
   394  			return math.MaxUint64
   395  		}
   396  		// 3. Minimum price of 200 gas
   397  		if gas.Uint64() < 200 {
   398  			return 200
   399  		}
   400  		return gas.Uint64()
   401  	}
   402  	gas = modexpMultComplexity(gas)
   403  	gas.Mul(gas, math.BigMax(adjExpLen, big1))
   404  	gas.Div(gas, big20)
   405  
   406  	if gas.BitLen() > 64 {
   407  		return math.MaxUint64
   408  	}
   409  	return gas.Uint64()
   410  }
   411  
   412  func (c *bigModExp) Run(input []byte) ([]byte, error) {
   413  	var (
   414  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
   415  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
   416  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
   417  	)
   418  	if len(input) > 96 {
   419  		input = input[96:]
   420  	} else {
   421  		input = input[:0]
   422  	}
   423  	// Handle a special case when both the base and mod length is zero
   424  	if baseLen == 0 && modLen == 0 {
   425  		return []byte{}, nil
   426  	}
   427  	// Retrieve the operands and execute the exponentiation
   428  	var (
   429  		base = new(big.Int).SetBytes(getData(input, 0, baseLen))
   430  		exp  = new(big.Int).SetBytes(getData(input, baseLen, expLen))
   431  		mod  = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
   432  		v    []byte
   433  	)
   434  	switch {
   435  	case mod.BitLen() == 0:
   436  		// Modulo 0 is undefined, return zero
   437  		return common.LeftPadBytes([]byte{}, int(modLen)), nil
   438  	case base.BitLen() == 1: // a bit length of 1 means it's 1 (or -1).
   439  		//If base == 1, then we can just return base % mod (if mod >= 1, which it is)
   440  		v = base.Mod(base, mod).Bytes()
   441  	default:
   442  		v = base.Exp(base, exp, mod).Bytes()
   443  	}
   444  	return common.LeftPadBytes(v, int(modLen)), nil
   445  }
   446  
   447  // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
   448  // returning it, or an error if the point is invalid.
   449  func newCurvePoint(blob []byte) (*bn256.G1, error) {
   450  	p := new(bn256.G1)
   451  	if _, err := p.Unmarshal(blob); err != nil {
   452  		return nil, err
   453  	}
   454  	return p, nil
   455  }
   456  
   457  // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
   458  // returning it, or an error if the point is invalid.
   459  func newTwistPoint(blob []byte) (*bn256.G2, error) {
   460  	p := new(bn256.G2)
   461  	if _, err := p.Unmarshal(blob); err != nil {
   462  		return nil, err
   463  	}
   464  	return p, nil
   465  }
   466  
   467  // runBn256Add implements the Bn256Add precompile, referenced by both
   468  // Byzantium and Istanbul operations.
   469  func runBn256Add(input []byte) ([]byte, error) {
   470  	x, err := newCurvePoint(getData(input, 0, 64))
   471  	if err != nil {
   472  		return nil, err
   473  	}
   474  	y, err := newCurvePoint(getData(input, 64, 64))
   475  	if err != nil {
   476  		return nil, err
   477  	}
   478  	res := new(bn256.G1)
   479  	res.Add(x, y)
   480  	return res.Marshal(), nil
   481  }
   482  
   483  // bn256AddIstanbul implements a native elliptic curve point addition conforming to
   484  // Istanbul consensus rules.
   485  type bn256AddIstanbul struct{}
   486  
   487  // RequiredGas returns the gas required to execute the pre-compiled contract.
   488  func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 {
   489  	return params.Bn256AddGasIstanbul
   490  }
   491  
   492  func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) {
   493  	return runBn256Add(input)
   494  }
   495  
   496  // bn256AddByzantium implements a native elliptic curve point addition
   497  // conforming to Byzantium consensus rules.
   498  type bn256AddByzantium struct{}
   499  
   500  // RequiredGas returns the gas required to execute the pre-compiled contract.
   501  func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 {
   502  	return params.Bn256AddGasByzantium
   503  }
   504  
   505  func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) {
   506  	return runBn256Add(input)
   507  }
   508  
   509  // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by
   510  // both Byzantium and Istanbul operations.
   511  func runBn256ScalarMul(input []byte) ([]byte, error) {
   512  	p, err := newCurvePoint(getData(input, 0, 64))
   513  	if err != nil {
   514  		return nil, err
   515  	}
   516  	res := new(bn256.G1)
   517  	res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
   518  	return res.Marshal(), nil
   519  }
   520  
   521  // bn256ScalarMulIstanbul implements a native elliptic curve scalar
   522  // multiplication conforming to Istanbul consensus rules.
   523  type bn256ScalarMulIstanbul struct{}
   524  
   525  // RequiredGas returns the gas required to execute the pre-compiled contract.
   526  func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 {
   527  	return params.Bn256ScalarMulGasIstanbul
   528  }
   529  
   530  func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) {
   531  	return runBn256ScalarMul(input)
   532  }
   533  
   534  // bn256ScalarMulByzantium implements a native elliptic curve scalar
   535  // multiplication conforming to Byzantium consensus rules.
   536  type bn256ScalarMulByzantium struct{}
   537  
   538  // RequiredGas returns the gas required to execute the pre-compiled contract.
   539  func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 {
   540  	return params.Bn256ScalarMulGasByzantium
   541  }
   542  
   543  func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) {
   544  	return runBn256ScalarMul(input)
   545  }
   546  
   547  var (
   548  	// true32Byte is returned if the bn256 pairing check succeeds.
   549  	true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
   550  
   551  	// false32Byte is returned if the bn256 pairing check fails.
   552  	false32Byte = make([]byte, 32)
   553  
   554  	// errBadPairingInput is returned if the bn256 pairing input is invalid.
   555  	errBadPairingInput = errors.New("bad elliptic curve pairing size")
   556  )
   557  
   558  // runBn256Pairing implements the Bn256Pairing precompile, referenced by both
   559  // Byzantium and Istanbul operations.
   560  func runBn256Pairing(input []byte) ([]byte, error) {
   561  	// Handle some corner cases cheaply
   562  	if len(input)%192 > 0 {
   563  		return nil, errBadPairingInput
   564  	}
   565  	// Convert the input into a set of coordinates
   566  	var (
   567  		cs []*bn256.G1
   568  		ts []*bn256.G2
   569  	)
   570  	for i := 0; i < len(input); i += 192 {
   571  		c, err := newCurvePoint(input[i : i+64])
   572  		if err != nil {
   573  			return nil, err
   574  		}
   575  		t, err := newTwistPoint(input[i+64 : i+192])
   576  		if err != nil {
   577  			return nil, err
   578  		}
   579  		cs = append(cs, c)
   580  		ts = append(ts, t)
   581  	}
   582  	// Execute the pairing checks and return the results
   583  	if bn256.PairingCheck(cs, ts) {
   584  		return true32Byte, nil
   585  	}
   586  	return false32Byte, nil
   587  }
   588  
   589  // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve
   590  // conforming to Istanbul consensus rules.
   591  type bn256PairingIstanbul struct{}
   592  
   593  // RequiredGas returns the gas required to execute the pre-compiled contract.
   594  func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 {
   595  	return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul
   596  }
   597  
   598  func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) {
   599  	return runBn256Pairing(input)
   600  }
   601  
   602  // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve
   603  // conforming to Byzantium consensus rules.
   604  type bn256PairingByzantium struct{}
   605  
   606  // RequiredGas returns the gas required to execute the pre-compiled contract.
   607  func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 {
   608  	return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium
   609  }
   610  
   611  func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) {
   612  	return runBn256Pairing(input)
   613  }
   614  
   615  type blake2F struct{}
   616  
   617  func (c *blake2F) RequiredGas(input []byte) uint64 {
   618  	// If the input is malformed, we can't calculate the gas, return 0 and let the
   619  	// actual call choke and fault.
   620  	if len(input) != blake2FInputLength {
   621  		return 0
   622  	}
   623  	return uint64(binary.BigEndian.Uint32(input[0:4]))
   624  }
   625  
   626  const (
   627  	blake2FInputLength        = 213
   628  	blake2FFinalBlockBytes    = byte(1)
   629  	blake2FNonFinalBlockBytes = byte(0)
   630  )
   631  
   632  var (
   633  	errBlake2FInvalidInputLength = errors.New("invalid input length")
   634  	errBlake2FInvalidFinalFlag   = errors.New("invalid final flag")
   635  )
   636  
   637  func (c *blake2F) Run(input []byte) ([]byte, error) {
   638  	// Make sure the input is valid (correct length and final flag)
   639  	if len(input) != blake2FInputLength {
   640  		return nil, errBlake2FInvalidInputLength
   641  	}
   642  	if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
   643  		return nil, errBlake2FInvalidFinalFlag
   644  	}
   645  	// Parse the input into the Blake2b call parameters
   646  	var (
   647  		rounds = binary.BigEndian.Uint32(input[0:4])
   648  		final  = input[212] == blake2FFinalBlockBytes
   649  
   650  		h [8]uint64
   651  		m [16]uint64
   652  		t [2]uint64
   653  	)
   654  	for i := 0; i < 8; i++ {
   655  		offset := 4 + i*8
   656  		h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   657  	}
   658  	for i := 0; i < 16; i++ {
   659  		offset := 68 + i*8
   660  		m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   661  	}
   662  	t[0] = binary.LittleEndian.Uint64(input[196:204])
   663  	t[1] = binary.LittleEndian.Uint64(input[204:212])
   664  
   665  	// Execute the compression function, extract and return the result
   666  	blake2b.F(&h, m, t, final, rounds)
   667  
   668  	output := make([]byte, 64)
   669  	for i := 0; i < 8; i++ {
   670  		offset := i * 8
   671  		binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
   672  	}
   673  	return output, nil
   674  }
   675  
   676  var (
   677  	errBLS12381InvalidInputLength          = errors.New("invalid input length")
   678  	errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes")
   679  	errBLS12381G1PointSubgroup             = errors.New("g1 point is not on correct subgroup")
   680  	errBLS12381G2PointSubgroup             = errors.New("g2 point is not on correct subgroup")
   681  )
   682  
   683  // bls12381G1Add implements EIP-2537 G1Add precompile.
   684  type bls12381G1Add struct{}
   685  
   686  // RequiredGas returns the gas required to execute the pre-compiled contract.
   687  func (c *bls12381G1Add) RequiredGas(input []byte) uint64 {
   688  	return params.Bls12381G1AddGas
   689  }
   690  
   691  func (c *bls12381G1Add) Run(input []byte) ([]byte, error) {
   692  	// Implements EIP-2537 G1Add precompile.
   693  	// > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each).
   694  	// > Output is an encoding of addition operation result - single G1 point (`128` bytes).
   695  	if len(input) != 256 {
   696  		return nil, errBLS12381InvalidInputLength
   697  	}
   698  	var err error
   699  	var p0, p1 *bls12381.G1Affine
   700  
   701  	// Decode G1 point p_0
   702  	if p0, err = decodePointG1(input[:128]); err != nil {
   703  		return nil, err
   704  	}
   705  	// Decode G1 point p_1
   706  	if p1, err = decodePointG1(input[128:]); err != nil {
   707  		return nil, err
   708  	}
   709  
   710  	// No need to check the subgroup here, as specified by EIP-2537
   711  
   712  	// Compute r = p_0 + p_1
   713  	p0.Add(p0, p1)
   714  
   715  	// Encode the G1 point result into 128 bytes
   716  	return encodePointG1(p0), nil
   717  }
   718  
   719  // bls12381G1Mul implements EIP-2537 G1Mul precompile.
   720  type bls12381G1Mul struct{}
   721  
   722  // RequiredGas returns the gas required to execute the pre-compiled contract.
   723  func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 {
   724  	return params.Bls12381G1MulGas
   725  }
   726  
   727  func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) {
   728  	// Implements EIP-2537 G1Mul precompile.
   729  	// > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
   730  	// > Output is an encoding of multiplication operation result - single G1 point (`128` bytes).
   731  	if len(input) != 160 {
   732  		return nil, errBLS12381InvalidInputLength
   733  	}
   734  	var err error
   735  	var p0 *bls12381.G1Affine
   736  
   737  	// Decode G1 point
   738  	if p0, err = decodePointG1(input[:128]); err != nil {
   739  		return nil, err
   740  	}
   741  	// 'point is on curve' check already done,
   742  	// Here we need to apply subgroup checks.
   743  	if !p0.IsInSubGroup() {
   744  		return nil, errBLS12381G1PointSubgroup
   745  	}
   746  	// Decode scalar value
   747  	e := new(big.Int).SetBytes(input[128:])
   748  
   749  	// Compute r = e * p_0
   750  	r := new(bls12381.G1Affine)
   751  	r.ScalarMultiplication(p0, e)
   752  
   753  	// Encode the G1 point into 128 bytes
   754  	return encodePointG1(r), nil
   755  }
   756  
   757  // bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile.
   758  type bls12381G1MultiExp struct{}
   759  
   760  // RequiredGas returns the gas required to execute the pre-compiled contract.
   761  func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 {
   762  	// Calculate G1 point, scalar value pair length
   763  	k := len(input) / 160
   764  	if k == 0 {
   765  		// Return 0 gas for small input length
   766  		return 0
   767  	}
   768  	// Lookup discount value for G1 point, scalar value pair length
   769  	var discount uint64
   770  	if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
   771  		discount = params.Bls12381MultiExpDiscountTable[k-1]
   772  	} else {
   773  		discount = params.Bls12381MultiExpDiscountTable[dLen-1]
   774  	}
   775  	// Calculate gas and return the result
   776  	return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000
   777  }
   778  
   779  func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) {
   780  	// Implements EIP-2537 G1MultiExp precompile.
   781  	// G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
   782  	// Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes).
   783  	k := len(input) / 160
   784  	if len(input) == 0 || len(input)%160 != 0 {
   785  		return nil, errBLS12381InvalidInputLength
   786  	}
   787  	points := make([]bls12381.G1Affine, k)
   788  	scalars := make([]fr.Element, k)
   789  
   790  	// Decode point scalar pairs
   791  	for i := 0; i < k; i++ {
   792  		off := 160 * i
   793  		t0, t1, t2 := off, off+128, off+160
   794  		// Decode G1 point
   795  		p, err := decodePointG1(input[t0:t1])
   796  		if err != nil {
   797  			return nil, err
   798  		}
   799  		// 'point is on curve' check already done,
   800  		// Here we need to apply subgroup checks.
   801  		if !p.IsInSubGroup() {
   802  			return nil, errBLS12381G1PointSubgroup
   803  		}
   804  		points[i] = *p
   805  		// Decode scalar value
   806  		scalars[i] = *new(fr.Element).SetBytes(input[t1:t2])
   807  	}
   808  
   809  	// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
   810  	r := new(bls12381.G1Affine)
   811  	r.MultiExp(points, scalars, ecc.MultiExpConfig{})
   812  
   813  	// Encode the G1 point to 128 bytes
   814  	return encodePointG1(r), nil
   815  }
   816  
   817  // bls12381G2Add implements EIP-2537 G2Add precompile.
   818  type bls12381G2Add struct{}
   819  
   820  // RequiredGas returns the gas required to execute the pre-compiled contract.
   821  func (c *bls12381G2Add) RequiredGas(input []byte) uint64 {
   822  	return params.Bls12381G2AddGas
   823  }
   824  
   825  func (c *bls12381G2Add) Run(input []byte) ([]byte, error) {
   826  	// Implements EIP-2537 G2Add precompile.
   827  	// > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each).
   828  	// > Output is an encoding of addition operation result - single G2 point (`256` bytes).
   829  	if len(input) != 512 {
   830  		return nil, errBLS12381InvalidInputLength
   831  	}
   832  	var err error
   833  	var p0, p1 *bls12381.G2Affine
   834  
   835  	// Decode G2 point p_0
   836  	if p0, err = decodePointG2(input[:256]); err != nil {
   837  		return nil, err
   838  	}
   839  	// Decode G2 point p_1
   840  	if p1, err = decodePointG2(input[256:]); err != nil {
   841  		return nil, err
   842  	}
   843  
   844  	// No need to check the subgroup here, as specified by EIP-2537
   845  
   846  	// Compute r = p_0 + p_1
   847  	r := new(bls12381.G2Affine)
   848  	r.Add(p0, p1)
   849  
   850  	// Encode the G2 point into 256 bytes
   851  	return encodePointG2(r), nil
   852  }
   853  
   854  // bls12381G2Mul implements EIP-2537 G2Mul precompile.
   855  type bls12381G2Mul struct{}
   856  
   857  // RequiredGas returns the gas required to execute the pre-compiled contract.
   858  func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 {
   859  	return params.Bls12381G2MulGas
   860  }
   861  
   862  func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) {
   863  	// Implements EIP-2537 G2MUL precompile logic.
   864  	// > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
   865  	// > Output is an encoding of multiplication operation result - single G2 point (`256` bytes).
   866  	if len(input) != 288 {
   867  		return nil, errBLS12381InvalidInputLength
   868  	}
   869  	var err error
   870  	var p0 *bls12381.G2Affine
   871  
   872  	// Decode G2 point
   873  	if p0, err = decodePointG2(input[:256]); err != nil {
   874  		return nil, err
   875  	}
   876  	// 'point is on curve' check already done,
   877  	// Here we need to apply subgroup checks.
   878  	if !p0.IsInSubGroup() {
   879  		return nil, errBLS12381G2PointSubgroup
   880  	}
   881  	// Decode scalar value
   882  	e := new(big.Int).SetBytes(input[256:])
   883  
   884  	// Compute r = e * p_0
   885  	r := new(bls12381.G2Affine)
   886  	r.ScalarMultiplication(p0, e)
   887  
   888  	// Encode the G2 point into 256 bytes
   889  	return encodePointG2(r), nil
   890  }
   891  
   892  // bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile.
   893  type bls12381G2MultiExp struct{}
   894  
   895  // RequiredGas returns the gas required to execute the pre-compiled contract.
   896  func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 {
   897  	// Calculate G2 point, scalar value pair length
   898  	k := len(input) / 288
   899  	if k == 0 {
   900  		// Return 0 gas for small input length
   901  		return 0
   902  	}
   903  	// Lookup discount value for G2 point, scalar value pair length
   904  	var discount uint64
   905  	if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
   906  		discount = params.Bls12381MultiExpDiscountTable[k-1]
   907  	} else {
   908  		discount = params.Bls12381MultiExpDiscountTable[dLen-1]
   909  	}
   910  	// Calculate gas and return the result
   911  	return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000
   912  }
   913  
   914  func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) {
   915  	// Implements EIP-2537 G2MultiExp precompile logic
   916  	// > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
   917  	// > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes).
   918  	k := len(input) / 288
   919  	if len(input) == 0 || len(input)%288 != 0 {
   920  		return nil, errBLS12381InvalidInputLength
   921  	}
   922  	points := make([]bls12381.G2Affine, k)
   923  	scalars := make([]fr.Element, k)
   924  
   925  	// Decode point scalar pairs
   926  	for i := 0; i < k; i++ {
   927  		off := 288 * i
   928  		t0, t1, t2 := off, off+256, off+288
   929  		// Decode G2 point
   930  		p, err := decodePointG2(input[t0:t1])
   931  		if err != nil {
   932  			return nil, err
   933  		}
   934  		// 'point is on curve' check already done,
   935  		// Here we need to apply subgroup checks.
   936  		if !p.IsInSubGroup() {
   937  			return nil, errBLS12381G2PointSubgroup
   938  		}
   939  		points[i] = *p
   940  		// Decode scalar value
   941  		scalars[i] = *new(fr.Element).SetBytes(input[t1:t2])
   942  	}
   943  
   944  	// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
   945  	r := new(bls12381.G2Affine)
   946  	r.MultiExp(points, scalars, ecc.MultiExpConfig{})
   947  
   948  	// Encode the G2 point to 256 bytes.
   949  	return encodePointG2(r), nil
   950  }
   951  
   952  // bls12381Pairing implements EIP-2537 Pairing precompile.
   953  type bls12381Pairing struct{}
   954  
   955  // RequiredGas returns the gas required to execute the pre-compiled contract.
   956  func (c *bls12381Pairing) RequiredGas(input []byte) uint64 {
   957  	return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas
   958  }
   959  
   960  func (c *bls12381Pairing) Run(input []byte) ([]byte, error) {
   961  	// Implements EIP-2537 Pairing precompile logic.
   962  	// > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure:
   963  	// > - `128` bytes of G1 point encoding
   964  	// > - `256` bytes of G2 point encoding
   965  	// > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise
   966  	// > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively).
   967  	k := len(input) / 384
   968  	if len(input) == 0 || len(input)%384 != 0 {
   969  		return nil, errBLS12381InvalidInputLength
   970  	}
   971  
   972  	var (
   973  		p []bls12381.G1Affine
   974  		q []bls12381.G2Affine
   975  	)
   976  
   977  	// Decode pairs
   978  	for i := 0; i < k; i++ {
   979  		off := 384 * i
   980  		t0, t1, t2 := off, off+128, off+384
   981  
   982  		// Decode G1 point
   983  		p1, err := decodePointG1(input[t0:t1])
   984  		if err != nil {
   985  			return nil, err
   986  		}
   987  		// Decode G2 point
   988  		p2, err := decodePointG2(input[t1:t2])
   989  		if err != nil {
   990  			return nil, err
   991  		}
   992  
   993  		// 'point is on curve' check already done,
   994  		// Here we need to apply subgroup checks.
   995  		if !p1.IsInSubGroup() {
   996  			return nil, errBLS12381G1PointSubgroup
   997  		}
   998  		if !p2.IsInSubGroup() {
   999  			return nil, errBLS12381G2PointSubgroup
  1000  		}
  1001  		p = append(p, *p1)
  1002  		q = append(q, *p2)
  1003  	}
  1004  	// Prepare 32 byte output
  1005  	out := make([]byte, 32)
  1006  
  1007  	// Compute pairing and set the result
  1008  	ok, err := bls12381.PairingCheck(p, q)
  1009  	if err == nil && ok {
  1010  		out[31] = 1
  1011  	}
  1012  	return out, nil
  1013  }
  1014  
  1015  func decodePointG1(in []byte) (*bls12381.G1Affine, error) {
  1016  	if len(in) != 128 {
  1017  		return nil, errors.New("invalid g1 point length")
  1018  	}
  1019  	// decode x
  1020  	x, err := decodeBLS12381FieldElement(in[:64])
  1021  	if err != nil {
  1022  		return nil, err
  1023  	}
  1024  	// decode y
  1025  	y, err := decodeBLS12381FieldElement(in[64:])
  1026  	if err != nil {
  1027  		return nil, err
  1028  	}
  1029  	elem := bls12381.G1Affine{X: x, Y: y}
  1030  	if !elem.IsOnCurve() {
  1031  		return nil, errors.New("invalid point: not on curve")
  1032  	}
  1033  
  1034  	return &elem, nil
  1035  }
  1036  
  1037  // decodePointG2 given encoded (x, y) coordinates in 256 bytes returns a valid G2 Point.
  1038  func decodePointG2(in []byte) (*bls12381.G2Affine, error) {
  1039  	if len(in) != 256 {
  1040  		return nil, errors.New("invalid g2 point length")
  1041  	}
  1042  	x0, err := decodeBLS12381FieldElement(in[:64])
  1043  	if err != nil {
  1044  		return nil, err
  1045  	}
  1046  	x1, err := decodeBLS12381FieldElement(in[64:128])
  1047  	if err != nil {
  1048  		return nil, err
  1049  	}
  1050  	y0, err := decodeBLS12381FieldElement(in[128:192])
  1051  	if err != nil {
  1052  		return nil, err
  1053  	}
  1054  	y1, err := decodeBLS12381FieldElement(in[192:])
  1055  	if err != nil {
  1056  		return nil, err
  1057  	}
  1058  
  1059  	p := bls12381.G2Affine{X: bls12381.E2{A0: x0, A1: x1}, Y: bls12381.E2{A0: y0, A1: y1}}
  1060  	if !p.IsOnCurve() {
  1061  		return nil, errors.New("invalid point: not on curve")
  1062  	}
  1063  	return &p, err
  1064  }
  1065  
  1066  // decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element.
  1067  // Removes top 16 bytes of 64 byte input.
  1068  func decodeBLS12381FieldElement(in []byte) (fp.Element, error) {
  1069  	if len(in) != 64 {
  1070  		return fp.Element{}, errors.New("invalid field element length")
  1071  	}
  1072  	// check top bytes
  1073  	for i := 0; i < 16; i++ {
  1074  		if in[i] != byte(0x00) {
  1075  			return fp.Element{}, errBLS12381InvalidFieldElementTopBytes
  1076  		}
  1077  	}
  1078  	var res [48]byte
  1079  	copy(res[:], in[16:])
  1080  
  1081  	return fp.BigEndian.Element(&res)
  1082  }
  1083  
  1084  // encodePointG1 encodes a point into 128 bytes.
  1085  func encodePointG1(p *bls12381.G1Affine) []byte {
  1086  	out := make([]byte, 128)
  1087  	fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[16:]), p.X)
  1088  	fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[64+16:]), p.Y)
  1089  	return out
  1090  }
  1091  
  1092  // encodePointG2 encodes a point into 256 bytes.
  1093  func encodePointG2(p *bls12381.G2Affine) []byte {
  1094  	out := make([]byte, 256)
  1095  	// encode x
  1096  	fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[16:16+48]), p.X.A0)
  1097  	fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[80:80+48]), p.X.A1)
  1098  	// encode y
  1099  	fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[144:144+48]), p.Y.A0)
  1100  	fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[208:208+48]), p.Y.A1)
  1101  	return out
  1102  }
  1103  
  1104  // bls12381MapG1 implements EIP-2537 MapG1 precompile.
  1105  type bls12381MapG1 struct{}
  1106  
  1107  // RequiredGas returns the gas required to execute the pre-compiled contract.
  1108  func (c *bls12381MapG1) RequiredGas(input []byte) uint64 {
  1109  	return params.Bls12381MapG1Gas
  1110  }
  1111  
  1112  func (c *bls12381MapG1) Run(input []byte) ([]byte, error) {
  1113  	// Implements EIP-2537 Map_To_G1 precompile.
  1114  	// > Field-to-curve call expects an `64` bytes input that is interpreted as an element of the base field.
  1115  	// > Output of this call is `128` bytes and is G1 point following respective encoding rules.
  1116  	if len(input) != 64 {
  1117  		return nil, errBLS12381InvalidInputLength
  1118  	}
  1119  
  1120  	// Decode input field element
  1121  	fe, err := decodeBLS12381FieldElement(input)
  1122  	if err != nil {
  1123  		return nil, err
  1124  	}
  1125  
  1126  	// Compute mapping
  1127  	r := bls12381.MapToG1(fe)
  1128  
  1129  	// Encode the G1 point to 128 bytes
  1130  	return encodePointG1(&r), nil
  1131  }
  1132  
  1133  // bls12381MapG2 implements EIP-2537 MapG2 precompile.
  1134  type bls12381MapG2 struct{}
  1135  
  1136  // RequiredGas returns the gas required to execute the pre-compiled contract.
  1137  func (c *bls12381MapG2) RequiredGas(input []byte) uint64 {
  1138  	return params.Bls12381MapG2Gas
  1139  }
  1140  
  1141  func (c *bls12381MapG2) Run(input []byte) ([]byte, error) {
  1142  	// Implements EIP-2537 Map_FP2_TO_G2 precompile logic.
  1143  	// > Field-to-curve call expects an `128` bytes input that is interpreted as an element of the quadratic extension field.
  1144  	// > Output of this call is `256` bytes and is G2 point following respective encoding rules.
  1145  	if len(input) != 128 {
  1146  		return nil, errBLS12381InvalidInputLength
  1147  	}
  1148  
  1149  	// Decode input field element
  1150  	c0, err := decodeBLS12381FieldElement(input[:64])
  1151  	if err != nil {
  1152  		return nil, err
  1153  	}
  1154  	c1, err := decodeBLS12381FieldElement(input[64:])
  1155  	if err != nil {
  1156  		return nil, err
  1157  	}
  1158  
  1159  	// Compute mapping
  1160  	r := bls12381.MapToG2(bls12381.E2{A0: c0, A1: c1})
  1161  
  1162  	// Encode the G2 point to 256 bytes
  1163  	return encodePointG2(&r), nil
  1164  }
  1165  
  1166  // kzgPointEvaluation implements the EIP-4844 point evaluation precompile.
  1167  type kzgPointEvaluation struct{}
  1168  
  1169  // RequiredGas estimates the gas required for running the point evaluation precompile.
  1170  func (b *kzgPointEvaluation) RequiredGas(input []byte) uint64 {
  1171  	return params.BlobTxPointEvaluationPrecompileGas
  1172  }
  1173  
  1174  const (
  1175  	blobVerifyInputLength           = 192  // Max input length for the point evaluation precompile.
  1176  	blobCommitmentVersionKZG  uint8 = 0x01 // Version byte for the point evaluation precompile.
  1177  	blobPrecompileReturnValue       = "000000000000000000000000000000000000000000000000000000000000100073eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001"
  1178  )
  1179  
  1180  var (
  1181  	errBlobVerifyInvalidInputLength = errors.New("invalid input length")
  1182  	errBlobVerifyMismatchedVersion  = errors.New("mismatched versioned hash")
  1183  	errBlobVerifyKZGProof           = errors.New("error verifying kzg proof")
  1184  )
  1185  
  1186  // Run executes the point evaluation precompile.
  1187  func (b *kzgPointEvaluation) Run(input []byte) ([]byte, error) {
  1188  	if len(input) != blobVerifyInputLength {
  1189  		return nil, errBlobVerifyInvalidInputLength
  1190  	}
  1191  	// versioned hash: first 32 bytes
  1192  	var versionedHash common.Hash
  1193  	copy(versionedHash[:], input[:])
  1194  
  1195  	var (
  1196  		point kzg4844.Point
  1197  		claim kzg4844.Claim
  1198  	)
  1199  	// Evaluation point: next 32 bytes
  1200  	copy(point[:], input[32:])
  1201  	// Expected output: next 32 bytes
  1202  	copy(claim[:], input[64:])
  1203  
  1204  	// input kzg point: next 48 bytes
  1205  	var commitment kzg4844.Commitment
  1206  	copy(commitment[:], input[96:])
  1207  	if kZGToVersionedHash(commitment) != versionedHash {
  1208  		return nil, errBlobVerifyMismatchedVersion
  1209  	}
  1210  
  1211  	// Proof: next 48 bytes
  1212  	var proof kzg4844.Proof
  1213  	copy(proof[:], input[144:])
  1214  
  1215  	if err := kzg4844.VerifyProof(commitment, point, claim, proof); err != nil {
  1216  		return nil, fmt.Errorf("%w: %v", errBlobVerifyKZGProof, err)
  1217  	}
  1218  
  1219  	return common.Hex2Bytes(blobPrecompileReturnValue), nil
  1220  }
  1221  
  1222  // kZGToVersionedHash implements kzg_to_versioned_hash from EIP-4844
  1223  func kZGToVersionedHash(kzg kzg4844.Commitment) common.Hash {
  1224  	h := sha256.Sum256(kzg[:])
  1225  	h[0] = blobCommitmentVersionKZG
  1226  
  1227  	return h
  1228  }