github.com/ethereum/go-ethereum@v1.16.1/accounts/abi/type.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package abi
    18  
    19  import (
    20  	"errors"
    21  	"fmt"
    22  	"reflect"
    23  	"regexp"
    24  	"strconv"
    25  	"strings"
    26  	"unicode"
    27  	"unicode/utf8"
    28  
    29  	"github.com/ethereum/go-ethereum/common"
    30  )
    31  
    32  // Type enumerator
    33  const (
    34  	IntTy byte = iota
    35  	UintTy
    36  	BoolTy
    37  	StringTy
    38  	SliceTy
    39  	ArrayTy
    40  	TupleTy
    41  	AddressTy
    42  	FixedBytesTy
    43  	BytesTy
    44  	HashTy
    45  	FixedPointTy
    46  	FunctionTy
    47  )
    48  
    49  // Type is the reflection of the supported argument type.
    50  type Type struct {
    51  	Elem *Type
    52  	Size int
    53  	T    byte // Our own type checking
    54  
    55  	stringKind string // holds the unparsed string for deriving signatures
    56  
    57  	// Tuple relative fields
    58  	TupleRawName  string       // Raw struct name defined in source code, may be empty.
    59  	TupleElems    []*Type      // Type information of all tuple fields
    60  	TupleRawNames []string     // Raw field name of all tuple fields
    61  	TupleType     reflect.Type // Underlying struct of the tuple
    62  }
    63  
    64  var (
    65  	// typeRegex parses the abi sub types
    66  	typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?")
    67  
    68  	// sliceSizeRegex grab the slice size
    69  	sliceSizeRegex = regexp.MustCompile("[0-9]+")
    70  )
    71  
    72  // NewType creates a new reflection type of abi type given in t.
    73  func NewType(t string, internalType string, components []ArgumentMarshaling) (typ Type, err error) {
    74  	// check that array brackets are equal if they exist
    75  	if strings.Count(t, "[") != strings.Count(t, "]") {
    76  		return Type{}, errors.New("invalid arg type in abi")
    77  	}
    78  	typ.stringKind = t
    79  
    80  	// if there are brackets, get ready to go into slice/array mode and
    81  	// recursively create the type
    82  	if strings.Count(t, "[") != 0 {
    83  		// Note internalType can be empty here.
    84  		subInternal := internalType
    85  		if i := strings.LastIndex(internalType, "["); i != -1 {
    86  			subInternal = subInternal[:i]
    87  		}
    88  		// recursively embed the type
    89  		i := strings.LastIndex(t, "[")
    90  		embeddedType, err := NewType(t[:i], subInternal, components)
    91  		if err != nil {
    92  			return Type{}, err
    93  		}
    94  		// grab the last cell and create a type from there
    95  		sliced := t[i:]
    96  		// grab the slice size with regexp
    97  		intz := sliceSizeRegex.FindAllString(sliced, -1)
    98  
    99  		if len(intz) == 0 {
   100  			// is a slice
   101  			typ.T = SliceTy
   102  			typ.Elem = &embeddedType
   103  			typ.stringKind = embeddedType.stringKind + sliced
   104  		} else if len(intz) == 1 {
   105  			// is an array
   106  			typ.T = ArrayTy
   107  			typ.Elem = &embeddedType
   108  			typ.Size, err = strconv.Atoi(intz[0])
   109  			if err != nil {
   110  				return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
   111  			}
   112  			typ.stringKind = embeddedType.stringKind + sliced
   113  		} else {
   114  			return Type{}, errors.New("invalid formatting of array type")
   115  		}
   116  		return typ, err
   117  	}
   118  	// parse the type and size of the abi-type.
   119  	matches := typeRegex.FindAllStringSubmatch(t, -1)
   120  	if len(matches) == 0 {
   121  		return Type{}, fmt.Errorf("invalid type '%v'", t)
   122  	}
   123  	parsedType := matches[0]
   124  
   125  	// varSize is the size of the variable
   126  	var varSize int
   127  	if len(parsedType[3]) > 0 {
   128  		var err error
   129  		varSize, err = strconv.Atoi(parsedType[2])
   130  		if err != nil {
   131  			return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
   132  		}
   133  	} else {
   134  		if parsedType[0] == "uint" || parsedType[0] == "int" {
   135  			// this should fail because it means that there's something wrong with
   136  			// the abi type (the compiler should always format it to the size...always)
   137  			return Type{}, fmt.Errorf("unsupported arg type: %s", t)
   138  		}
   139  	}
   140  	// varType is the parsed abi type
   141  	switch varType := parsedType[1]; varType {
   142  	case "int":
   143  		typ.Size = varSize
   144  		typ.T = IntTy
   145  	case "uint":
   146  		typ.Size = varSize
   147  		typ.T = UintTy
   148  	case "bool":
   149  		typ.T = BoolTy
   150  	case "address":
   151  		typ.Size = 20
   152  		typ.T = AddressTy
   153  	case "string":
   154  		typ.T = StringTy
   155  	case "bytes":
   156  		if varSize == 0 {
   157  			typ.T = BytesTy
   158  		} else {
   159  			if varSize > 32 {
   160  				return Type{}, fmt.Errorf("unsupported arg type: %s", t)
   161  			}
   162  			typ.T = FixedBytesTy
   163  			typ.Size = varSize
   164  		}
   165  	case "tuple":
   166  		var (
   167  			fields     []reflect.StructField
   168  			elems      []*Type
   169  			names      []string
   170  			expression string // canonical parameter expression
   171  			used       = make(map[string]bool)
   172  		)
   173  		expression += "("
   174  		for idx, c := range components {
   175  			cType, err := NewType(c.Type, c.InternalType, c.Components)
   176  			if err != nil {
   177  				return Type{}, err
   178  			}
   179  			name := ToCamelCase(c.Name)
   180  			if name == "" {
   181  				return Type{}, errors.New("abi: purely anonymous or underscored field is not supported")
   182  			}
   183  			fieldName := ResolveNameConflict(name, func(s string) bool { return used[s] })
   184  			used[fieldName] = true
   185  			if !isValidFieldName(fieldName) {
   186  				return Type{}, fmt.Errorf("field %d has invalid name", idx)
   187  			}
   188  			fields = append(fields, reflect.StructField{
   189  				Name: fieldName, // reflect.StructOf will panic for any exported field.
   190  				Type: cType.GetType(),
   191  				Tag:  reflect.StructTag("json:\"" + c.Name + "\""),
   192  			})
   193  			elems = append(elems, &cType)
   194  			names = append(names, c.Name)
   195  			expression += cType.stringKind
   196  			if idx != len(components)-1 {
   197  				expression += ","
   198  			}
   199  		}
   200  		expression += ")"
   201  
   202  		typ.TupleType = reflect.StructOf(fields)
   203  		typ.TupleElems = elems
   204  		typ.TupleRawNames = names
   205  		typ.T = TupleTy
   206  		typ.stringKind = expression
   207  
   208  		const structPrefix = "struct "
   209  		// After solidity 0.5.10, a new field of abi "internalType"
   210  		// is introduced. From that we can obtain the struct name
   211  		// user defined in the source code.
   212  		if internalType != "" && strings.HasPrefix(internalType, structPrefix) {
   213  			// Foo.Bar type definition is not allowed in golang,
   214  			// convert the format to FooBar
   215  			typ.TupleRawName = strings.ReplaceAll(internalType[len(structPrefix):], ".", "")
   216  		}
   217  
   218  	case "function":
   219  		typ.T = FunctionTy
   220  		typ.Size = 24
   221  	default:
   222  		if strings.HasPrefix(internalType, "contract ") {
   223  			typ.Size = 20
   224  			typ.T = AddressTy
   225  		} else {
   226  			return Type{}, fmt.Errorf("unsupported arg type: %s", t)
   227  		}
   228  	}
   229  
   230  	return
   231  }
   232  
   233  // GetType returns the reflection type of the ABI type.
   234  func (t Type) GetType() reflect.Type {
   235  	switch t.T {
   236  	case IntTy:
   237  		return reflectIntType(false, t.Size)
   238  	case UintTy:
   239  		return reflectIntType(true, t.Size)
   240  	case BoolTy:
   241  		return reflect.TypeOf(false)
   242  	case StringTy:
   243  		return reflect.TypeOf("")
   244  	case SliceTy:
   245  		return reflect.SliceOf(t.Elem.GetType())
   246  	case ArrayTy:
   247  		return reflect.ArrayOf(t.Size, t.Elem.GetType())
   248  	case TupleTy:
   249  		return t.TupleType
   250  	case AddressTy:
   251  		return reflect.TypeOf(common.Address{})
   252  	case FixedBytesTy:
   253  		return reflect.ArrayOf(t.Size, reflect.TypeOf(byte(0)))
   254  	case BytesTy:
   255  		return reflect.SliceOf(reflect.TypeOf(byte(0)))
   256  	case HashTy:
   257  		// hashtype currently not used
   258  		return reflect.ArrayOf(32, reflect.TypeOf(byte(0)))
   259  	case FixedPointTy:
   260  		// fixedpoint type currently not used
   261  		return reflect.ArrayOf(32, reflect.TypeOf(byte(0)))
   262  	case FunctionTy:
   263  		return reflect.ArrayOf(24, reflect.TypeOf(byte(0)))
   264  	default:
   265  		panic("Invalid type")
   266  	}
   267  }
   268  
   269  // String implements Stringer.
   270  func (t Type) String() (out string) {
   271  	return t.stringKind
   272  }
   273  
   274  func (t Type) pack(v reflect.Value) ([]byte, error) {
   275  	// dereference pointer first if it's a pointer
   276  	v = indirect(v)
   277  	if err := typeCheck(t, v); err != nil {
   278  		return nil, err
   279  	}
   280  
   281  	switch t.T {
   282  	case SliceTy, ArrayTy:
   283  		var ret []byte
   284  
   285  		if t.requiresLengthPrefix() {
   286  			// append length
   287  			ret = append(ret, packNum(reflect.ValueOf(v.Len()))...)
   288  		}
   289  
   290  		// calculate offset if any
   291  		offset := 0
   292  		offsetReq := isDynamicType(*t.Elem)
   293  		if offsetReq {
   294  			offset = getTypeSize(*t.Elem) * v.Len()
   295  		}
   296  		var tail []byte
   297  		for i := 0; i < v.Len(); i++ {
   298  			val, err := t.Elem.pack(v.Index(i))
   299  			if err != nil {
   300  				return nil, err
   301  			}
   302  			if !offsetReq {
   303  				ret = append(ret, val...)
   304  				continue
   305  			}
   306  			ret = append(ret, packNum(reflect.ValueOf(offset))...)
   307  			offset += len(val)
   308  			tail = append(tail, val...)
   309  		}
   310  		return append(ret, tail...), nil
   311  	case TupleTy:
   312  		// (T1,...,Tk) for k >= 0 and any types T1, …, Tk
   313  		// enc(X) = head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(k))
   314  		// where X = (X(1), ..., X(k)) and head and tail are defined for Ti being a static
   315  		// type as
   316  		//     head(X(i)) = enc(X(i)) and tail(X(i)) = "" (the empty string)
   317  		// and as
   318  		//     head(X(i)) = enc(len(head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(i-1))))
   319  		//     tail(X(i)) = enc(X(i))
   320  		// otherwise, i.e. if Ti is a dynamic type.
   321  		fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, v)
   322  		if err != nil {
   323  			return nil, err
   324  		}
   325  		// Calculate prefix occupied size.
   326  		offset := 0
   327  		for _, elem := range t.TupleElems {
   328  			offset += getTypeSize(*elem)
   329  		}
   330  		var ret, tail []byte
   331  		for i, elem := range t.TupleElems {
   332  			field := v.FieldByName(fieldmap[t.TupleRawNames[i]])
   333  			if !field.IsValid() {
   334  				return nil, fmt.Errorf("field %s for tuple not found in the given struct", t.TupleRawNames[i])
   335  			}
   336  			val, err := elem.pack(field)
   337  			if err != nil {
   338  				return nil, err
   339  			}
   340  			if isDynamicType(*elem) {
   341  				ret = append(ret, packNum(reflect.ValueOf(offset))...)
   342  				tail = append(tail, val...)
   343  				offset += len(val)
   344  			} else {
   345  				ret = append(ret, val...)
   346  			}
   347  		}
   348  		return append(ret, tail...), nil
   349  
   350  	default:
   351  		return packElement(t, v)
   352  	}
   353  }
   354  
   355  // requiresLengthPrefix returns whether the type requires any sort of length
   356  // prefixing.
   357  func (t Type) requiresLengthPrefix() bool {
   358  	return t.T == StringTy || t.T == BytesTy || t.T == SliceTy
   359  }
   360  
   361  // isDynamicType returns true if the type is dynamic.
   362  // The following types are called “dynamic”:
   363  // * bytes
   364  // * string
   365  // * T[] for any T
   366  // * T[k] for any dynamic T and any k >= 0
   367  // * (T1,...,Tk) if Ti is dynamic for some 1 <= i <= k
   368  func isDynamicType(t Type) bool {
   369  	if t.T == TupleTy {
   370  		for _, elem := range t.TupleElems {
   371  			if isDynamicType(*elem) {
   372  				return true
   373  			}
   374  		}
   375  		return false
   376  	}
   377  	return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem))
   378  }
   379  
   380  // getTypeSize returns the size that this type needs to occupy.
   381  // We distinguish static and dynamic types. Static types are encoded in-place
   382  // and dynamic types are encoded at a separately allocated location after the
   383  // current block.
   384  // So for a static variable, the size returned represents the size that the
   385  // variable actually occupies.
   386  // For a dynamic variable, the returned size is fixed 32 bytes, which is used
   387  // to store the location reference for actual value storage.
   388  func getTypeSize(t Type) int {
   389  	if t.T == ArrayTy && !isDynamicType(*t.Elem) {
   390  		// Recursively calculate type size if it is a nested array
   391  		if t.Elem.T == ArrayTy || t.Elem.T == TupleTy {
   392  			return t.Size * getTypeSize(*t.Elem)
   393  		}
   394  		return t.Size * 32
   395  	} else if t.T == TupleTy && !isDynamicType(t) {
   396  		total := 0
   397  		for _, elem := range t.TupleElems {
   398  			total += getTypeSize(*elem)
   399  		}
   400  		return total
   401  	}
   402  	return 32
   403  }
   404  
   405  // isLetter reports whether a given 'rune' is classified as a Letter.
   406  // This method is copied from reflect/type.go
   407  func isLetter(ch rune) bool {
   408  	return 'a' <= ch && ch <= 'z' || 'A' <= ch && ch <= 'Z' || ch == '_' || ch >= utf8.RuneSelf && unicode.IsLetter(ch)
   409  }
   410  
   411  // isValidFieldName checks if a string is a valid (struct) field name or not.
   412  //
   413  // According to the language spec, a field name should be an identifier.
   414  //
   415  // identifier = letter { letter | unicode_digit } .
   416  // letter = unicode_letter | "_" .
   417  // This method is copied from reflect/type.go
   418  func isValidFieldName(fieldName string) bool {
   419  	for i, c := range fieldName {
   420  		if i == 0 && !isLetter(c) {
   421  			return false
   422  		}
   423  
   424  		if !(isLetter(c) || unicode.IsDigit(c)) {
   425  			return false
   426  		}
   427  	}
   428  
   429  	return len(fieldName) > 0
   430  }