github.com/ethereum/go-ethereum@v1.16.1/crypto/secp256k1/libsecp256k1/examples/ecdsa.c (about) 1 /************************************************************************* 2 * Written in 2020-2022 by Elichai Turkel * 3 * To the extent possible under law, the author(s) have dedicated all * 4 * copyright and related and neighboring rights to the software in this * 5 * file to the public domain worldwide. This software is distributed * 6 * without any warranty. For the CC0 Public Domain Dedication, see * 7 * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 * 8 *************************************************************************/ 9 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <assert.h> 13 #include <string.h> 14 15 #include <secp256k1.h> 16 17 #include "examples_util.h" 18 19 int main(void) { 20 /* Instead of signing the message directly, we must sign a 32-byte hash. 21 * Here the message is "Hello, world!" and the hash function was SHA-256. 22 * An actual implementation should just call SHA-256, but this example 23 * hardcodes the output to avoid depending on an additional library. 24 * See https://bitcoin.stackexchange.com/questions/81115/if-someone-wanted-to-pretend-to-be-satoshi-by-posting-a-fake-signature-to-defrau/81116#81116 */ 25 unsigned char msg_hash[32] = { 26 0x31, 0x5F, 0x5B, 0xDB, 0x76, 0xD0, 0x78, 0xC4, 27 0x3B, 0x8A, 0xC0, 0x06, 0x4E, 0x4A, 0x01, 0x64, 28 0x61, 0x2B, 0x1F, 0xCE, 0x77, 0xC8, 0x69, 0x34, 29 0x5B, 0xFC, 0x94, 0xC7, 0x58, 0x94, 0xED, 0xD3, 30 }; 31 unsigned char seckey[32]; 32 unsigned char randomize[32]; 33 unsigned char compressed_pubkey[33]; 34 unsigned char serialized_signature[64]; 35 size_t len; 36 int is_signature_valid, is_signature_valid2; 37 int return_val; 38 secp256k1_pubkey pubkey; 39 secp256k1_ecdsa_signature sig; 40 /* Before we can call actual API functions, we need to create a "context". */ 41 secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE); 42 if (!fill_random(randomize, sizeof(randomize))) { 43 printf("Failed to generate randomness\n"); 44 return EXIT_FAILURE; 45 } 46 /* Randomizing the context is recommended to protect against side-channel 47 * leakage See `secp256k1_context_randomize` in secp256k1.h for more 48 * information about it. This should never fail. */ 49 return_val = secp256k1_context_randomize(ctx, randomize); 50 assert(return_val); 51 52 /*** Key Generation ***/ 53 if (!fill_random(seckey, sizeof(seckey))) { 54 printf("Failed to generate randomness\n"); 55 return EXIT_FAILURE; 56 } 57 /* If the secret key is zero or out of range (greater than secp256k1's 58 * order), we fail. Note that the probability of this occurring is negligible 59 * with a properly functioning random number generator. */ 60 if (!secp256k1_ec_seckey_verify(ctx, seckey)) { 61 printf("Generated secret key is invalid. This indicates an issue with the random number generator.\n"); 62 return EXIT_FAILURE; 63 } 64 65 /* Public key creation using a valid context with a verified secret key should never fail */ 66 return_val = secp256k1_ec_pubkey_create(ctx, &pubkey, seckey); 67 assert(return_val); 68 69 /* Serialize the pubkey in a compressed form(33 bytes). Should always return 1. */ 70 len = sizeof(compressed_pubkey); 71 return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey, &len, &pubkey, SECP256K1_EC_COMPRESSED); 72 assert(return_val); 73 /* Should be the same size as the size of the output, because we passed a 33 byte array. */ 74 assert(len == sizeof(compressed_pubkey)); 75 76 /*** Signing ***/ 77 78 /* Generate an ECDSA signature `noncefp` and `ndata` allows you to pass a 79 * custom nonce function, passing `NULL` will use the RFC-6979 safe default. 80 * Signing with a valid context, verified secret key 81 * and the default nonce function should never fail. */ 82 return_val = secp256k1_ecdsa_sign(ctx, &sig, msg_hash, seckey, NULL, NULL); 83 assert(return_val); 84 85 /* Serialize the signature in a compact form. Should always return 1 86 * according to the documentation in secp256k1.h. */ 87 return_val = secp256k1_ecdsa_signature_serialize_compact(ctx, serialized_signature, &sig); 88 assert(return_val); 89 90 91 /*** Verification ***/ 92 93 /* Deserialize the signature. This will return 0 if the signature can't be parsed correctly. */ 94 if (!secp256k1_ecdsa_signature_parse_compact(ctx, &sig, serialized_signature)) { 95 printf("Failed parsing the signature\n"); 96 return EXIT_FAILURE; 97 } 98 99 /* Deserialize the public key. This will return 0 if the public key can't be parsed correctly. */ 100 if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, compressed_pubkey, sizeof(compressed_pubkey))) { 101 printf("Failed parsing the public key\n"); 102 return EXIT_FAILURE; 103 } 104 105 /* Verify a signature. This will return 1 if it's valid and 0 if it's not. */ 106 is_signature_valid = secp256k1_ecdsa_verify(ctx, &sig, msg_hash, &pubkey); 107 108 printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false"); 109 printf("Secret Key: "); 110 print_hex(seckey, sizeof(seckey)); 111 printf("Public Key: "); 112 print_hex(compressed_pubkey, sizeof(compressed_pubkey)); 113 printf("Signature: "); 114 print_hex(serialized_signature, sizeof(serialized_signature)); 115 116 /* This will clear everything from the context and free the memory */ 117 secp256k1_context_destroy(ctx); 118 119 /* Bonus example: if all we need is signature verification (and no key 120 generation or signing), we don't need to use a context created via 121 secp256k1_context_create(). We can simply use the static (i.e., global) 122 context secp256k1_context_static. See its description in 123 include/secp256k1.h for details. */ 124 is_signature_valid2 = secp256k1_ecdsa_verify(secp256k1_context_static, 125 &sig, msg_hash, &pubkey); 126 assert(is_signature_valid2 == is_signature_valid); 127 128 /* It's best practice to try to clear secrets from memory after using them. 129 * This is done because some bugs can allow an attacker to leak memory, for 130 * example through "out of bounds" array access (see Heartbleed), or the OS 131 * swapping them to disk. Hence, we overwrite the secret key buffer with zeros. 132 * 133 * Here we are preventing these writes from being optimized out, as any good compiler 134 * will remove any writes that aren't used. */ 135 secure_erase(seckey, sizeof(seckey)); 136 137 return EXIT_SUCCESS; 138 }