github.com/ethereum/go-ethereum@v1.16.1/crypto/secp256k1/libsecp256k1/src/bench_internal.c (about) 1 /*********************************************************************** 2 * Copyright (c) 2014-2015 Pieter Wuille * 3 * Distributed under the MIT software license, see the accompanying * 4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.* 5 ***********************************************************************/ 6 #include <stdio.h> 7 #include <stdlib.h> 8 9 #include "secp256k1.c" 10 #include "../include/secp256k1.h" 11 12 #include "assumptions.h" 13 #include "util.h" 14 #include "hash_impl.h" 15 #include "field_impl.h" 16 #include "group_impl.h" 17 #include "scalar_impl.h" 18 #include "ecmult_impl.h" 19 #include "bench.h" 20 21 static void help(int default_iters) { 22 printf("Benchmarks various internal routines.\n"); 23 printf("\n"); 24 printf("The default number of iterations for each benchmark is %d. This can be\n", default_iters); 25 printf("customized using the SECP256K1_BENCH_ITERS environment variable.\n"); 26 printf("\n"); 27 printf("Usage: ./bench_internal [args]\n"); 28 printf("By default, all benchmarks will be run.\n"); 29 printf("args:\n"); 30 printf(" help : display this help and exit\n"); 31 printf(" scalar : all scalar operations (add, half, inverse, mul, negate, split)\n"); 32 printf(" field : all field operations (half, inverse, issquare, mul, normalize, sqr, sqrt)\n"); 33 printf(" group : all group operations (add, double, to_affine)\n"); 34 printf(" ecmult : all point multiplication operations (ecmult_wnaf) \n"); 35 printf(" hash : all hash algorithms (hmac, rng6979, sha256)\n"); 36 printf(" context : all context object operations (context_create)\n"); 37 printf("\n"); 38 } 39 40 typedef struct { 41 secp256k1_scalar scalar[2]; 42 secp256k1_fe fe[4]; 43 secp256k1_ge ge[2]; 44 secp256k1_gej gej[2]; 45 unsigned char data[64]; 46 int wnaf[256]; 47 } bench_inv; 48 49 static void bench_setup(void* arg) { 50 bench_inv *data = (bench_inv*)arg; 51 52 static const unsigned char init[4][32] = { 53 /* Initializer for scalar[0], fe[0], first half of data, the X coordinate of ge[0], 54 and the (implied affine) X coordinate of gej[0]. */ 55 { 56 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13, 57 0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35, 58 0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59, 59 0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83 60 }, 61 /* Initializer for scalar[1], fe[1], first half of data, the X coordinate of ge[1], 62 and the (implied affine) X coordinate of gej[1]. */ 63 { 64 0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83, 65 0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5, 66 0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9, 67 0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3 68 }, 69 /* Initializer for fe[2] and the Z coordinate of gej[0]. */ 70 { 71 0x3d, 0x2d, 0xef, 0xf4, 0x25, 0x98, 0x4f, 0x5d, 72 0xe2, 0xca, 0x5f, 0x41, 0x3f, 0x3f, 0xce, 0x44, 73 0xaa, 0x2c, 0x53, 0x8a, 0xc6, 0x59, 0x1f, 0x38, 74 0x38, 0x23, 0xe4, 0x11, 0x27, 0xc6, 0xa0, 0xe7 75 }, 76 /* Initializer for fe[3] and the Z coordinate of gej[1]. */ 77 { 78 0xbd, 0x21, 0xa5, 0xe1, 0x13, 0x50, 0x73, 0x2e, 79 0x52, 0x98, 0xc8, 0x9e, 0xab, 0x00, 0xa2, 0x68, 80 0x43, 0xf5, 0xd7, 0x49, 0x80, 0x72, 0xa7, 0xf3, 81 0xd7, 0x60, 0xe6, 0xab, 0x90, 0x92, 0xdf, 0xc5 82 } 83 }; 84 85 secp256k1_scalar_set_b32(&data->scalar[0], init[0], NULL); 86 secp256k1_scalar_set_b32(&data->scalar[1], init[1], NULL); 87 secp256k1_fe_set_b32_limit(&data->fe[0], init[0]); 88 secp256k1_fe_set_b32_limit(&data->fe[1], init[1]); 89 secp256k1_fe_set_b32_limit(&data->fe[2], init[2]); 90 secp256k1_fe_set_b32_limit(&data->fe[3], init[3]); 91 CHECK(secp256k1_ge_set_xo_var(&data->ge[0], &data->fe[0], 0)); 92 CHECK(secp256k1_ge_set_xo_var(&data->ge[1], &data->fe[1], 1)); 93 secp256k1_gej_set_ge(&data->gej[0], &data->ge[0]); 94 secp256k1_gej_rescale(&data->gej[0], &data->fe[2]); 95 secp256k1_gej_set_ge(&data->gej[1], &data->ge[1]); 96 secp256k1_gej_rescale(&data->gej[1], &data->fe[3]); 97 memcpy(data->data, init[0], 32); 98 memcpy(data->data + 32, init[1], 32); 99 } 100 101 static void bench_scalar_add(void* arg, int iters) { 102 int i, j = 0; 103 bench_inv *data = (bench_inv*)arg; 104 105 for (i = 0; i < iters; i++) { 106 j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]); 107 } 108 CHECK(j <= iters); 109 } 110 111 static void bench_scalar_negate(void* arg, int iters) { 112 int i; 113 bench_inv *data = (bench_inv*)arg; 114 115 for (i = 0; i < iters; i++) { 116 secp256k1_scalar_negate(&data->scalar[0], &data->scalar[0]); 117 } 118 } 119 120 static void bench_scalar_half(void* arg, int iters) { 121 int i; 122 bench_inv *data = (bench_inv*)arg; 123 secp256k1_scalar s = data->scalar[0]; 124 125 for (i = 0; i < iters; i++) { 126 secp256k1_scalar_half(&s, &s); 127 } 128 129 data->scalar[0] = s; 130 } 131 132 static void bench_scalar_mul(void* arg, int iters) { 133 int i; 134 bench_inv *data = (bench_inv*)arg; 135 136 for (i = 0; i < iters; i++) { 137 secp256k1_scalar_mul(&data->scalar[0], &data->scalar[0], &data->scalar[1]); 138 } 139 } 140 141 static void bench_scalar_split(void* arg, int iters) { 142 int i, j = 0; 143 bench_inv *data = (bench_inv*)arg; 144 secp256k1_scalar tmp; 145 146 for (i = 0; i < iters; i++) { 147 secp256k1_scalar_split_lambda(&tmp, &data->scalar[1], &data->scalar[0]); 148 j += secp256k1_scalar_add(&data->scalar[0], &tmp, &data->scalar[1]); 149 } 150 CHECK(j <= iters); 151 } 152 153 static void bench_scalar_inverse(void* arg, int iters) { 154 int i, j = 0; 155 bench_inv *data = (bench_inv*)arg; 156 157 for (i = 0; i < iters; i++) { 158 secp256k1_scalar_inverse(&data->scalar[0], &data->scalar[0]); 159 j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]); 160 } 161 CHECK(j <= iters); 162 } 163 164 static void bench_scalar_inverse_var(void* arg, int iters) { 165 int i, j = 0; 166 bench_inv *data = (bench_inv*)arg; 167 168 for (i = 0; i < iters; i++) { 169 secp256k1_scalar_inverse_var(&data->scalar[0], &data->scalar[0]); 170 j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]); 171 } 172 CHECK(j <= iters); 173 } 174 175 static void bench_field_half(void* arg, int iters) { 176 int i; 177 bench_inv *data = (bench_inv*)arg; 178 179 for (i = 0; i < iters; i++) { 180 secp256k1_fe_half(&data->fe[0]); 181 } 182 } 183 184 static void bench_field_normalize(void* arg, int iters) { 185 int i; 186 bench_inv *data = (bench_inv*)arg; 187 188 for (i = 0; i < iters; i++) { 189 secp256k1_fe_normalize(&data->fe[0]); 190 } 191 } 192 193 static void bench_field_normalize_weak(void* arg, int iters) { 194 int i; 195 bench_inv *data = (bench_inv*)arg; 196 197 for (i = 0; i < iters; i++) { 198 secp256k1_fe_normalize_weak(&data->fe[0]); 199 } 200 } 201 202 static void bench_field_mul(void* arg, int iters) { 203 int i; 204 bench_inv *data = (bench_inv*)arg; 205 206 for (i = 0; i < iters; i++) { 207 secp256k1_fe_mul(&data->fe[0], &data->fe[0], &data->fe[1]); 208 } 209 } 210 211 static void bench_field_sqr(void* arg, int iters) { 212 int i; 213 bench_inv *data = (bench_inv*)arg; 214 215 for (i = 0; i < iters; i++) { 216 secp256k1_fe_sqr(&data->fe[0], &data->fe[0]); 217 } 218 } 219 220 static void bench_field_inverse(void* arg, int iters) { 221 int i; 222 bench_inv *data = (bench_inv*)arg; 223 224 for (i = 0; i < iters; i++) { 225 secp256k1_fe_inv(&data->fe[0], &data->fe[0]); 226 secp256k1_fe_add(&data->fe[0], &data->fe[1]); 227 } 228 } 229 230 static void bench_field_inverse_var(void* arg, int iters) { 231 int i; 232 bench_inv *data = (bench_inv*)arg; 233 234 for (i = 0; i < iters; i++) { 235 secp256k1_fe_inv_var(&data->fe[0], &data->fe[0]); 236 secp256k1_fe_add(&data->fe[0], &data->fe[1]); 237 } 238 } 239 240 static void bench_field_sqrt(void* arg, int iters) { 241 int i, j = 0; 242 bench_inv *data = (bench_inv*)arg; 243 secp256k1_fe t; 244 245 for (i = 0; i < iters; i++) { 246 t = data->fe[0]; 247 j += secp256k1_fe_sqrt(&data->fe[0], &t); 248 secp256k1_fe_add(&data->fe[0], &data->fe[1]); 249 } 250 CHECK(j <= iters); 251 } 252 253 static void bench_field_is_square_var(void* arg, int iters) { 254 int i, j = 0; 255 bench_inv *data = (bench_inv*)arg; 256 secp256k1_fe t = data->fe[0]; 257 258 for (i = 0; i < iters; i++) { 259 j += secp256k1_fe_is_square_var(&t); 260 secp256k1_fe_add(&t, &data->fe[1]); 261 secp256k1_fe_normalize_var(&t); 262 } 263 CHECK(j <= iters); 264 } 265 266 static void bench_group_double_var(void* arg, int iters) { 267 int i; 268 bench_inv *data = (bench_inv*)arg; 269 270 for (i = 0; i < iters; i++) { 271 secp256k1_gej_double_var(&data->gej[0], &data->gej[0], NULL); 272 } 273 } 274 275 static void bench_group_add_var(void* arg, int iters) { 276 int i; 277 bench_inv *data = (bench_inv*)arg; 278 279 for (i = 0; i < iters; i++) { 280 secp256k1_gej_add_var(&data->gej[0], &data->gej[0], &data->gej[1], NULL); 281 } 282 } 283 284 static void bench_group_add_affine(void* arg, int iters) { 285 int i; 286 bench_inv *data = (bench_inv*)arg; 287 288 for (i = 0; i < iters; i++) { 289 secp256k1_gej_add_ge(&data->gej[0], &data->gej[0], &data->ge[1]); 290 } 291 } 292 293 static void bench_group_add_affine_var(void* arg, int iters) { 294 int i; 295 bench_inv *data = (bench_inv*)arg; 296 297 for (i = 0; i < iters; i++) { 298 secp256k1_gej_add_ge_var(&data->gej[0], &data->gej[0], &data->ge[1], NULL); 299 } 300 } 301 302 static void bench_group_add_zinv_var(void* arg, int iters) { 303 int i; 304 bench_inv *data = (bench_inv*)arg; 305 306 for (i = 0; i < iters; i++) { 307 secp256k1_gej_add_zinv_var(&data->gej[0], &data->gej[0], &data->ge[1], &data->gej[0].y); 308 } 309 } 310 311 static void bench_group_to_affine_var(void* arg, int iters) { 312 int i; 313 bench_inv *data = (bench_inv*)arg; 314 315 for (i = 0; i < iters; ++i) { 316 secp256k1_ge_set_gej_var(&data->ge[1], &data->gej[0]); 317 /* Use the output affine X/Y coordinates to vary the input X/Y/Z coordinates. 318 Note that the resulting coordinates will generally not correspond to a point 319 on the curve, but this is not a problem for the code being benchmarked here. 320 Adding and normalizing have less overhead than EC operations (which could 321 guarantee the point remains on the curve). */ 322 secp256k1_fe_add(&data->gej[0].x, &data->ge[1].y); 323 secp256k1_fe_add(&data->gej[0].y, &data->fe[2]); 324 secp256k1_fe_add(&data->gej[0].z, &data->ge[1].x); 325 secp256k1_fe_normalize_var(&data->gej[0].x); 326 secp256k1_fe_normalize_var(&data->gej[0].y); 327 secp256k1_fe_normalize_var(&data->gej[0].z); 328 } 329 } 330 331 static void bench_ecmult_wnaf(void* arg, int iters) { 332 int i, bits = 0, overflow = 0; 333 bench_inv *data = (bench_inv*)arg; 334 335 for (i = 0; i < iters; i++) { 336 bits += secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar[0], WINDOW_A); 337 overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]); 338 } 339 CHECK(overflow >= 0); 340 CHECK(bits <= 256*iters); 341 } 342 343 static void bench_sha256(void* arg, int iters) { 344 int i; 345 bench_inv *data = (bench_inv*)arg; 346 secp256k1_sha256 sha; 347 348 for (i = 0; i < iters; i++) { 349 secp256k1_sha256_initialize(&sha); 350 secp256k1_sha256_write(&sha, data->data, 32); 351 secp256k1_sha256_finalize(&sha, data->data); 352 } 353 } 354 355 static void bench_hmac_sha256(void* arg, int iters) { 356 int i; 357 bench_inv *data = (bench_inv*)arg; 358 secp256k1_hmac_sha256 hmac; 359 360 for (i = 0; i < iters; i++) { 361 secp256k1_hmac_sha256_initialize(&hmac, data->data, 32); 362 secp256k1_hmac_sha256_write(&hmac, data->data, 32); 363 secp256k1_hmac_sha256_finalize(&hmac, data->data); 364 } 365 } 366 367 static void bench_rfc6979_hmac_sha256(void* arg, int iters) { 368 int i; 369 bench_inv *data = (bench_inv*)arg; 370 secp256k1_rfc6979_hmac_sha256 rng; 371 372 for (i = 0; i < iters; i++) { 373 secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 64); 374 secp256k1_rfc6979_hmac_sha256_generate(&rng, data->data, 32); 375 } 376 } 377 378 static void bench_context(void* arg, int iters) { 379 int i; 380 (void)arg; 381 for (i = 0; i < iters; i++) { 382 secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_NONE)); 383 } 384 } 385 386 int main(int argc, char **argv) { 387 bench_inv data; 388 int default_iters = 20000; 389 int iters = get_iters(default_iters); 390 int d = argc == 1; /* default */ 391 392 if (argc > 1) { 393 if (have_flag(argc, argv, "-h") 394 || have_flag(argc, argv, "--help") 395 || have_flag(argc, argv, "help")) { 396 help(default_iters); 397 return EXIT_SUCCESS; 398 } 399 } 400 401 print_output_table_header_row(); 402 403 if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "half")) run_benchmark("scalar_half", bench_scalar_half, bench_setup, NULL, &data, 10, iters*100); 404 if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, iters*100); 405 if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, iters*100); 406 if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, iters*10); 407 if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, iters); 408 if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, iters); 409 if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, iters); 410 411 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "half")) run_benchmark("field_half", bench_field_half, bench_setup, NULL, &data, 10, iters*100); 412 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, iters*100); 413 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, iters*100); 414 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, iters*10); 415 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, iters*10); 416 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, iters); 417 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, iters); 418 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "issquare")) run_benchmark("field_is_square_var", bench_field_is_square_var, bench_setup, NULL, &data, 10, iters); 419 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, iters); 420 421 if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, iters*10); 422 if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, iters*10); 423 if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, iters*10); 424 if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, iters*10); 425 if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_zinv_var", bench_group_add_zinv_var, bench_setup, NULL, &data, 10, iters*10); 426 if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "to_affine")) run_benchmark("group_to_affine_var", bench_group_to_affine_var, bench_setup, NULL, &data, 10, iters); 427 428 if (d || have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, iters); 429 430 if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, iters); 431 if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, iters); 432 if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, iters); 433 434 if (d || have_flag(argc, argv, "context")) run_benchmark("context_create", bench_context, bench_setup, NULL, &data, 10, iters); 435 436 return EXIT_SUCCESS; 437 }