github.com/ethereum/go-ethereum@v1.16.1/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h (about)

     1  /***********************************************************************
     2   * Copyright (c) 2013-2015 Pieter Wuille                               *
     3   * Distributed under the MIT software license, see the accompanying    *
     4   * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
     5   ***********************************************************************/
     6  
     7  
     8  #ifndef SECP256K1_ECDSA_IMPL_H
     9  #define SECP256K1_ECDSA_IMPL_H
    10  
    11  #include "scalar.h"
    12  #include "field.h"
    13  #include "group.h"
    14  #include "ecmult.h"
    15  #include "ecmult_gen.h"
    16  #include "ecdsa.h"
    17  
    18  /** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
    19   *  $ sage -c 'load("secp256k1_params.sage"); print(hex(N))'
    20   *  0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
    21   */
    22  static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
    23      0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
    24      0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
    25  );
    26  
    27  /** Difference between field and order, values 'p' and 'n' values defined in
    28   *  "Standards for Efficient Cryptography" (SEC2) 2.7.1.
    29   *  $ sage -c 'load("secp256k1_params.sage"); print(hex(P-N))'
    30   *  0x14551231950b75fc4402da1722fc9baee
    31   */
    32  static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
    33      0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
    34  );
    35  
    36  static int secp256k1_der_read_len(size_t *len, const unsigned char **sigp, const unsigned char *sigend) {
    37      size_t lenleft;
    38      unsigned char b1;
    39      VERIFY_CHECK(len != NULL);
    40      *len = 0;
    41      if (*sigp >= sigend) {
    42          return 0;
    43      }
    44      b1 = *((*sigp)++);
    45      if (b1 == 0xFF) {
    46          /* X.690-0207 8.1.3.5.c the value 0xFF shall not be used. */
    47          return 0;
    48      }
    49      if ((b1 & 0x80) == 0) {
    50          /* X.690-0207 8.1.3.4 short form length octets */
    51          *len = b1;
    52          return 1;
    53      }
    54      if (b1 == 0x80) {
    55          /* Indefinite length is not allowed in DER. */
    56          return 0;
    57      }
    58      /* X.690-207 8.1.3.5 long form length octets */
    59      lenleft = b1 & 0x7F; /* lenleft is at least 1 */
    60      if (lenleft > (size_t)(sigend - *sigp)) {
    61          return 0;
    62      }
    63      if (**sigp == 0) {
    64          /* Not the shortest possible length encoding. */
    65          return 0;
    66      }
    67      if (lenleft > sizeof(size_t)) {
    68          /* The resulting length would exceed the range of a size_t, so
    69           * it is certainly longer than the passed array size. */
    70          return 0;
    71      }
    72      while (lenleft > 0) {
    73          *len = (*len << 8) | **sigp;
    74          (*sigp)++;
    75          lenleft--;
    76      }
    77      if (*len > (size_t)(sigend - *sigp)) {
    78          /* Result exceeds the length of the passed array.
    79             (Checking this is the responsibility of the caller but it
    80             can't hurt do it here, too.) */
    81          return 0;
    82      }
    83      if (*len < 128) {
    84          /* Not the shortest possible length encoding. */
    85          return 0;
    86      }
    87      return 1;
    88  }
    89  
    90  static int secp256k1_der_parse_integer(secp256k1_scalar *r, const unsigned char **sig, const unsigned char *sigend) {
    91      int overflow = 0;
    92      unsigned char ra[32] = {0};
    93      size_t rlen;
    94  
    95      if (*sig == sigend || **sig != 0x02) {
    96          /* Not a primitive integer (X.690-0207 8.3.1). */
    97          return 0;
    98      }
    99      (*sig)++;
   100      if (secp256k1_der_read_len(&rlen, sig, sigend) == 0) {
   101          return 0;
   102      }
   103      if (rlen == 0 || rlen > (size_t)(sigend - *sig)) {
   104          /* Exceeds bounds or not at least length 1 (X.690-0207 8.3.1).  */
   105          return 0;
   106      }
   107      if (**sig == 0x00 && rlen > 1 && (((*sig)[1]) & 0x80) == 0x00) {
   108          /* Excessive 0x00 padding. */
   109          return 0;
   110      }
   111      if (**sig == 0xFF && rlen > 1 && (((*sig)[1]) & 0x80) == 0x80) {
   112          /* Excessive 0xFF padding. */
   113          return 0;
   114      }
   115      if ((**sig & 0x80) == 0x80) {
   116          /* Negative. */
   117          overflow = 1;
   118      }
   119      /* There is at most one leading zero byte:
   120       * if there were two leading zero bytes, we would have failed and returned 0
   121       * because of excessive 0x00 padding already. */
   122      if (rlen > 0 && **sig == 0) {
   123          /* Skip leading zero byte */
   124          rlen--;
   125          (*sig)++;
   126      }
   127      if (rlen > 32) {
   128          overflow = 1;
   129      }
   130      if (!overflow) {
   131          if (rlen) memcpy(ra + 32 - rlen, *sig, rlen);
   132          secp256k1_scalar_set_b32(r, ra, &overflow);
   133      }
   134      if (overflow) {
   135          secp256k1_scalar_set_int(r, 0);
   136      }
   137      (*sig) += rlen;
   138      return 1;
   139  }
   140  
   141  static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
   142      const unsigned char *sigend = sig + size;
   143      size_t rlen;
   144      if (sig == sigend || *(sig++) != 0x30) {
   145          /* The encoding doesn't start with a constructed sequence (X.690-0207 8.9.1). */
   146          return 0;
   147      }
   148      if (secp256k1_der_read_len(&rlen, &sig, sigend) == 0) {
   149          return 0;
   150      }
   151      if (rlen != (size_t)(sigend - sig)) {
   152          /* Tuple exceeds bounds or garage after tuple. */
   153          return 0;
   154      }
   155  
   156      if (!secp256k1_der_parse_integer(rr, &sig, sigend)) {
   157          return 0;
   158      }
   159      if (!secp256k1_der_parse_integer(rs, &sig, sigend)) {
   160          return 0;
   161      }
   162  
   163      if (sig != sigend) {
   164          /* Trailing garbage inside tuple. */
   165          return 0;
   166      }
   167  
   168      return 1;
   169  }
   170  
   171  static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) {
   172      unsigned char r[33] = {0}, s[33] = {0};
   173      unsigned char *rp = r, *sp = s;
   174      size_t lenR = 33, lenS = 33;
   175      secp256k1_scalar_get_b32(&r[1], ar);
   176      secp256k1_scalar_get_b32(&s[1], as);
   177      while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
   178      while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
   179      if (*size < 6+lenS+lenR) {
   180          *size = 6 + lenS + lenR;
   181          return 0;
   182      }
   183      *size = 6 + lenS + lenR;
   184      sig[0] = 0x30;
   185      sig[1] = 4 + lenS + lenR;
   186      sig[2] = 0x02;
   187      sig[3] = lenR;
   188      memcpy(sig+4, rp, lenR);
   189      sig[4+lenR] = 0x02;
   190      sig[5+lenR] = lenS;
   191      memcpy(sig+lenR+6, sp, lenS);
   192      return 1;
   193  }
   194  
   195  static int secp256k1_ecdsa_sig_verify(const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
   196      unsigned char c[32];
   197      secp256k1_scalar sn, u1, u2;
   198  #if !defined(EXHAUSTIVE_TEST_ORDER)
   199      secp256k1_fe xr;
   200  #endif
   201      secp256k1_gej pubkeyj;
   202      secp256k1_gej pr;
   203  
   204      if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
   205          return 0;
   206      }
   207  
   208      secp256k1_scalar_inverse_var(&sn, sigs);
   209      secp256k1_scalar_mul(&u1, &sn, message);
   210      secp256k1_scalar_mul(&u2, &sn, sigr);
   211      secp256k1_gej_set_ge(&pubkeyj, pubkey);
   212      secp256k1_ecmult(&pr, &pubkeyj, &u2, &u1);
   213      if (secp256k1_gej_is_infinity(&pr)) {
   214          return 0;
   215      }
   216  
   217  #if defined(EXHAUSTIVE_TEST_ORDER)
   218  {
   219      secp256k1_scalar computed_r;
   220      secp256k1_ge pr_ge;
   221      secp256k1_ge_set_gej(&pr_ge, &pr);
   222      secp256k1_fe_normalize(&pr_ge.x);
   223  
   224      secp256k1_fe_get_b32(c, &pr_ge.x);
   225      secp256k1_scalar_set_b32(&computed_r, c, NULL);
   226      return secp256k1_scalar_eq(sigr, &computed_r);
   227  }
   228  #else
   229      secp256k1_scalar_get_b32(c, sigr);
   230      /* we can ignore the fe_set_b32_limit return value, because we know the input is in range */
   231      (void)secp256k1_fe_set_b32_limit(&xr, c);
   232  
   233      /** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
   234       *  in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
   235       *  compute the remainder modulo n, and compare it to xr. However:
   236       *
   237       *        xr == X(pr) mod n
   238       *    <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
   239       *    [Since 2 * n > p, h can only be 0 or 1]
   240       *    <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
   241       *    [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
   242       *    <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
   243       *    [Multiplying both sides of the equations by pr.z^2 mod p]
   244       *    <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
   245       *
   246       *  Thus, we can avoid the inversion, but we have to check both cases separately.
   247       *  secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
   248       */
   249      if (secp256k1_gej_eq_x_var(&xr, &pr)) {
   250          /* xr * pr.z^2 mod p == pr.x, so the signature is valid. */
   251          return 1;
   252      }
   253      if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
   254          /* xr + n >= p, so we can skip testing the second case. */
   255          return 0;
   256      }
   257      secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe);
   258      if (secp256k1_gej_eq_x_var(&xr, &pr)) {
   259          /* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
   260          return 1;
   261      }
   262      return 0;
   263  #endif
   264  }
   265  
   266  static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
   267      unsigned char b[32];
   268      secp256k1_gej rp;
   269      secp256k1_ge r;
   270      secp256k1_scalar n;
   271      int overflow = 0;
   272      int high;
   273  
   274      secp256k1_ecmult_gen(ctx, &rp, nonce);
   275      secp256k1_ge_set_gej(&r, &rp);
   276      secp256k1_fe_normalize(&r.x);
   277      secp256k1_fe_normalize(&r.y);
   278      secp256k1_fe_get_b32(b, &r.x);
   279      secp256k1_scalar_set_b32(sigr, b, &overflow);
   280      if (recid) {
   281          /* The overflow condition is cryptographically unreachable as hitting it requires finding the discrete log
   282           * of some P where P.x >= order, and only 1 in about 2^127 points meet this criteria.
   283           */
   284          *recid = (overflow << 1) | secp256k1_fe_is_odd(&r.y);
   285      }
   286      secp256k1_scalar_mul(&n, sigr, seckey);
   287      secp256k1_scalar_add(&n, &n, message);
   288      secp256k1_scalar_inverse(sigs, nonce);
   289      secp256k1_scalar_mul(sigs, sigs, &n);
   290      secp256k1_scalar_clear(&n);
   291      secp256k1_gej_clear(&rp);
   292      secp256k1_ge_clear(&r);
   293      high = secp256k1_scalar_is_high(sigs);
   294      secp256k1_scalar_cond_negate(sigs, high);
   295      if (recid) {
   296          *recid ^= high;
   297      }
   298      /* P.x = order is on the curve, so technically sig->r could end up being zero, which would be an invalid signature.
   299       * This is cryptographically unreachable as hitting it requires finding the discrete log of P.x = N.
   300       */
   301      return (int)(!secp256k1_scalar_is_zero(sigr)) & (int)(!secp256k1_scalar_is_zero(sigs));
   302  }
   303  
   304  #endif /* SECP256K1_ECDSA_IMPL_H */