github.com/ethereum/go-ethereum@v1.16.1/crypto/secp256k1/libsecp256k1/src/ecmult_impl.h (about)

     1  /******************************************************************************
     2   * Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra, Jonas Nick  *
     3   * Distributed under the MIT software license, see the accompanying           *
     4   * file COPYING or https://www.opensource.org/licenses/mit-license.php.       *
     5   ******************************************************************************/
     6  
     7  #ifndef SECP256K1_ECMULT_IMPL_H
     8  #define SECP256K1_ECMULT_IMPL_H
     9  
    10  #include <string.h>
    11  #include <stdint.h>
    12  
    13  #include "util.h"
    14  #include "group.h"
    15  #include "scalar.h"
    16  #include "ecmult.h"
    17  #include "precomputed_ecmult.h"
    18  
    19  #if defined(EXHAUSTIVE_TEST_ORDER)
    20  /* We need to lower these values for exhaustive tests because
    21   * the tables cannot have infinities in them (this breaks the
    22   * affine-isomorphism stuff which tracks z-ratios) */
    23  #  if EXHAUSTIVE_TEST_ORDER > 128
    24  #    define WINDOW_A 5
    25  #  elif EXHAUSTIVE_TEST_ORDER > 8
    26  #    define WINDOW_A 4
    27  #  else
    28  #    define WINDOW_A 2
    29  #  endif
    30  #else
    31  /* optimal for 128-bit and 256-bit exponents. */
    32  #  define WINDOW_A 5
    33  /** Larger values for ECMULT_WINDOW_SIZE result in possibly better
    34   *  performance at the cost of an exponentially larger precomputed
    35   *  table. The exact table size is
    36   *      (1 << (WINDOW_G - 2)) * sizeof(secp256k1_ge_storage)  bytes,
    37   *  where sizeof(secp256k1_ge_storage) is typically 64 bytes but can
    38   *  be larger due to platform-specific padding and alignment.
    39   *  Two tables of this size are used (due to the endomorphism
    40   *  optimization).
    41   */
    42  #endif
    43  
    44  #define WNAF_BITS 128
    45  #define WNAF_SIZE_BITS(bits, w) CEIL_DIV(bits, w)
    46  #define WNAF_SIZE(w) WNAF_SIZE_BITS(WNAF_BITS, w)
    47  
    48  /* The number of objects allocated on the scratch space for ecmult_multi algorithms */
    49  #define PIPPENGER_SCRATCH_OBJECTS 6
    50  #define STRAUSS_SCRATCH_OBJECTS 5
    51  
    52  #define PIPPENGER_MAX_BUCKET_WINDOW 12
    53  
    54  /* Minimum number of points for which pippenger_wnaf is faster than strauss wnaf */
    55  #define ECMULT_PIPPENGER_THRESHOLD 88
    56  
    57  #define ECMULT_MAX_POINTS_PER_BATCH 5000000
    58  
    59  /** Fill a table 'pre_a' with precomputed odd multiples of a.
    60   *  pre_a will contain [1*a,3*a,...,(2*n-1)*a], so it needs space for n group elements.
    61   *  zr needs space for n field elements.
    62   *
    63   *  Although pre_a is an array of _ge rather than _gej, it actually represents elements
    64   *  in Jacobian coordinates with their z coordinates omitted. The omitted z-coordinates
    65   *  can be recovered using z and zr. Using the notation z(b) to represent the omitted
    66   *  z coordinate of b:
    67   *  - z(pre_a[n-1]) = 'z'
    68   *  - z(pre_a[i-1]) = z(pre_a[i]) / zr[i] for n > i > 0
    69   *
    70   *  Lastly the zr[0] value, which isn't used above, is set so that:
    71   *  - a.z = z(pre_a[0]) / zr[0]
    72   */
    73  static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_ge *pre_a, secp256k1_fe *zr, secp256k1_fe *z, const secp256k1_gej *a) {
    74      secp256k1_gej d, ai;
    75      secp256k1_ge d_ge;
    76      int i;
    77  
    78      VERIFY_CHECK(!a->infinity);
    79  
    80      secp256k1_gej_double_var(&d, a, NULL);
    81  
    82      /*
    83       * Perform the additions using an isomorphic curve Y^2 = X^3 + 7*C^6 where C := d.z.
    84       * The isomorphism, phi, maps a secp256k1 point (x, y) to the point (x*C^2, y*C^3) on the other curve.
    85       * In Jacobian coordinates phi maps (x, y, z) to (x*C^2, y*C^3, z) or, equivalently to (x, y, z/C).
    86       *
    87       *     phi(x, y, z) = (x*C^2, y*C^3, z) = (x, y, z/C)
    88       *   d_ge := phi(d) = (d.x, d.y, 1)
    89       *     ai := phi(a) = (a.x*C^2, a.y*C^3, a.z)
    90       *
    91       * The group addition functions work correctly on these isomorphic curves.
    92       * In particular phi(d) is easy to represent in affine coordinates under this isomorphism.
    93       * This lets us use the faster secp256k1_gej_add_ge_var group addition function that we wouldn't be able to use otherwise.
    94       */
    95      secp256k1_ge_set_xy(&d_ge, &d.x, &d.y);
    96      secp256k1_ge_set_gej_zinv(&pre_a[0], a, &d.z);
    97      secp256k1_gej_set_ge(&ai, &pre_a[0]);
    98      ai.z = a->z;
    99  
   100      /* pre_a[0] is the point (a.x*C^2, a.y*C^3, a.z*C) which is equivalent to a.
   101       * Set zr[0] to C, which is the ratio between the omitted z(pre_a[0]) value and a.z.
   102       */
   103      zr[0] = d.z;
   104  
   105      for (i = 1; i < n; i++) {
   106          secp256k1_gej_add_ge_var(&ai, &ai, &d_ge, &zr[i]);
   107          secp256k1_ge_set_xy(&pre_a[i], &ai.x, &ai.y);
   108      }
   109  
   110      /* Multiply the last z-coordinate by C to undo the isomorphism.
   111       * Since the z-coordinates of the pre_a values are implied by the zr array of z-coordinate ratios,
   112       * undoing the isomorphism here undoes the isomorphism for all pre_a values.
   113       */
   114      secp256k1_fe_mul(z, &ai.z, &d.z);
   115  }
   116  
   117  SECP256K1_INLINE static void secp256k1_ecmult_table_verify(int n, int w) {
   118      (void)n;
   119      (void)w;
   120      VERIFY_CHECK(((n) & 1) == 1);
   121      VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1));
   122      VERIFY_CHECK((n) <=  ((1 << ((w)-1)) - 1));
   123  }
   124  
   125  SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge(secp256k1_ge *r, const secp256k1_ge *pre, int n, int w) {
   126      secp256k1_ecmult_table_verify(n,w);
   127      if (n > 0) {
   128          *r = pre[(n-1)/2];
   129      } else {
   130          *r = pre[(-n-1)/2];
   131          secp256k1_fe_negate(&(r->y), &(r->y), 1);
   132      }
   133  }
   134  
   135  SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge_lambda(secp256k1_ge *r, const secp256k1_ge *pre, const secp256k1_fe *x, int n, int w) {
   136      secp256k1_ecmult_table_verify(n,w);
   137      if (n > 0) {
   138          secp256k1_ge_set_xy(r, &x[(n-1)/2], &pre[(n-1)/2].y);
   139      } else {
   140          secp256k1_ge_set_xy(r, &x[(-n-1)/2], &pre[(-n-1)/2].y);
   141          secp256k1_fe_negate(&(r->y), &(r->y), 1);
   142      }
   143  }
   144  
   145  SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge_storage(secp256k1_ge *r, const secp256k1_ge_storage *pre, int n, int w) {
   146      secp256k1_ecmult_table_verify(n,w);
   147      if (n > 0) {
   148          secp256k1_ge_from_storage(r, &pre[(n-1)/2]);
   149      } else {
   150          secp256k1_ge_from_storage(r, &pre[(-n-1)/2]);
   151          secp256k1_fe_negate(&(r->y), &(r->y), 1);
   152      }
   153  }
   154  
   155  /** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
   156   *  with the following guarantees:
   157   *  - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
   158   *  - two non-zero entries in wnaf are separated by at least w-1 zeroes.
   159   *  - the number of set values in wnaf is returned. This number is at most 256, and at most one more
   160   *    than the number of bits in the (absolute value) of the input.
   161   */
   162  static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) {
   163      secp256k1_scalar s;
   164      int last_set_bit = -1;
   165      int bit = 0;
   166      int sign = 1;
   167      int carry = 0;
   168  
   169      VERIFY_CHECK(wnaf != NULL);
   170      VERIFY_CHECK(0 <= len && len <= 256);
   171      VERIFY_CHECK(a != NULL);
   172      VERIFY_CHECK(2 <= w && w <= 31);
   173  
   174      for (bit = 0; bit < len; bit++) {
   175          wnaf[bit] = 0;
   176      }
   177  
   178      s = *a;
   179      if (secp256k1_scalar_get_bits_limb32(&s, 255, 1)) {
   180          secp256k1_scalar_negate(&s, &s);
   181          sign = -1;
   182      }
   183  
   184      bit = 0;
   185      while (bit < len) {
   186          int now;
   187          int word;
   188          if (secp256k1_scalar_get_bits_limb32(&s, bit, 1) == (unsigned int)carry) {
   189              bit++;
   190              continue;
   191          }
   192  
   193          now = w;
   194          if (now > len - bit) {
   195              now = len - bit;
   196          }
   197  
   198          word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry;
   199  
   200          carry = (word >> (w-1)) & 1;
   201          word -= carry << w;
   202  
   203          wnaf[bit] = sign * word;
   204          last_set_bit = bit;
   205  
   206          bit += now;
   207      }
   208  #ifdef VERIFY
   209      {
   210          int verify_bit = bit;
   211  
   212          VERIFY_CHECK(carry == 0);
   213  
   214          while (verify_bit < 256) {
   215              VERIFY_CHECK(secp256k1_scalar_get_bits_limb32(&s, verify_bit, 1) == 0);
   216              verify_bit++;
   217          }
   218      }
   219  #endif
   220      return last_set_bit + 1;
   221  }
   222  
   223  struct secp256k1_strauss_point_state {
   224      int wnaf_na_1[129];
   225      int wnaf_na_lam[129];
   226      int bits_na_1;
   227      int bits_na_lam;
   228  };
   229  
   230  struct secp256k1_strauss_state {
   231      /* aux is used to hold z-ratios, and then used to hold pre_a[i].x * BETA values. */
   232      secp256k1_fe* aux;
   233      secp256k1_ge* pre_a;
   234      struct secp256k1_strauss_point_state* ps;
   235  };
   236  
   237  static void secp256k1_ecmult_strauss_wnaf(const struct secp256k1_strauss_state *state, secp256k1_gej *r, size_t num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
   238      secp256k1_ge tmpa;
   239      secp256k1_fe Z;
   240      /* Split G factors. */
   241      secp256k1_scalar ng_1, ng_128;
   242      int wnaf_ng_1[129];
   243      int bits_ng_1 = 0;
   244      int wnaf_ng_128[129];
   245      int bits_ng_128 = 0;
   246      int i;
   247      int bits = 0;
   248      size_t np;
   249      size_t no = 0;
   250  
   251      secp256k1_fe_set_int(&Z, 1);
   252      for (np = 0; np < num; ++np) {
   253          secp256k1_gej tmp;
   254          secp256k1_scalar na_1, na_lam;
   255          if (secp256k1_scalar_is_zero(&na[np]) || secp256k1_gej_is_infinity(&a[np])) {
   256              continue;
   257          }
   258          /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
   259          secp256k1_scalar_split_lambda(&na_1, &na_lam, &na[np]);
   260  
   261          /* build wnaf representation for na_1 and na_lam. */
   262          state->ps[no].bits_na_1   = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1,   129, &na_1,   WINDOW_A);
   263          state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 129, &na_lam, WINDOW_A);
   264          VERIFY_CHECK(state->ps[no].bits_na_1 <= 129);
   265          VERIFY_CHECK(state->ps[no].bits_na_lam <= 129);
   266          if (state->ps[no].bits_na_1 > bits) {
   267              bits = state->ps[no].bits_na_1;
   268          }
   269          if (state->ps[no].bits_na_lam > bits) {
   270              bits = state->ps[no].bits_na_lam;
   271          }
   272  
   273          /* Calculate odd multiples of a.
   274           * All multiples are brought to the same Z 'denominator', which is stored
   275           * in Z. Due to secp256k1' isomorphism we can do all operations pretending
   276           * that the Z coordinate was 1, use affine addition formulae, and correct
   277           * the Z coordinate of the result once at the end.
   278           * The exception is the precomputed G table points, which are actually
   279           * affine. Compared to the base used for other points, they have a Z ratio
   280           * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
   281           * isomorphism to efficiently add with a known Z inverse.
   282           */
   283          tmp = a[np];
   284          if (no) {
   285              secp256k1_gej_rescale(&tmp, &Z);
   286          }
   287          secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->pre_a + no * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), &Z, &tmp);
   288          if (no) secp256k1_fe_mul(state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), &(a[np].z));
   289  
   290          ++no;
   291      }
   292  
   293      /* Bring them to the same Z denominator. */
   294      if (no) {
   295          secp256k1_ge_table_set_globalz(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, state->aux);
   296      }
   297  
   298      for (np = 0; np < no; ++np) {
   299          for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
   300              secp256k1_fe_mul(&state->aux[np * ECMULT_TABLE_SIZE(WINDOW_A) + i], &state->pre_a[np * ECMULT_TABLE_SIZE(WINDOW_A) + i].x, &secp256k1_const_beta);
   301          }
   302      }
   303  
   304      if (ng) {
   305          /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
   306          secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
   307  
   308          /* Build wnaf representation for ng_1 and ng_128 */
   309          bits_ng_1   = secp256k1_ecmult_wnaf(wnaf_ng_1,   129, &ng_1,   WINDOW_G);
   310          bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
   311          if (bits_ng_1 > bits) {
   312              bits = bits_ng_1;
   313          }
   314          if (bits_ng_128 > bits) {
   315              bits = bits_ng_128;
   316          }
   317      }
   318  
   319      secp256k1_gej_set_infinity(r);
   320  
   321      for (i = bits - 1; i >= 0; i--) {
   322          int n;
   323          secp256k1_gej_double_var(r, r, NULL);
   324          for (np = 0; np < no; ++np) {
   325              if (i < state->ps[np].bits_na_1 && (n = state->ps[np].wnaf_na_1[i])) {
   326                  secp256k1_ecmult_table_get_ge(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
   327                  secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
   328              }
   329              if (i < state->ps[np].bits_na_lam && (n = state->ps[np].wnaf_na_lam[i])) {
   330                  secp256k1_ecmult_table_get_ge_lambda(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
   331                  secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
   332              }
   333          }
   334          if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
   335              secp256k1_ecmult_table_get_ge_storage(&tmpa, secp256k1_pre_g, n, WINDOW_G);
   336              secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
   337          }
   338          if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
   339              secp256k1_ecmult_table_get_ge_storage(&tmpa, secp256k1_pre_g_128, n, WINDOW_G);
   340              secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
   341          }
   342      }
   343  
   344      if (!r->infinity) {
   345          secp256k1_fe_mul(&r->z, &r->z, &Z);
   346      }
   347  }
   348  
   349  static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
   350      secp256k1_fe aux[ECMULT_TABLE_SIZE(WINDOW_A)];
   351      secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
   352      struct secp256k1_strauss_point_state ps[1];
   353      struct secp256k1_strauss_state state;
   354  
   355      state.aux = aux;
   356      state.pre_a = pre_a;
   357      state.ps = ps;
   358      secp256k1_ecmult_strauss_wnaf(&state, r, 1, a, na, ng);
   359  }
   360  
   361  static size_t secp256k1_strauss_scratch_size(size_t n_points) {
   362      static const size_t point_size = (sizeof(secp256k1_ge) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar);
   363      return n_points*point_size;
   364  }
   365  
   366  static int secp256k1_ecmult_strauss_batch(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
   367      secp256k1_gej* points;
   368      secp256k1_scalar* scalars;
   369      struct secp256k1_strauss_state state;
   370      size_t i;
   371      const size_t scratch_checkpoint = secp256k1_scratch_checkpoint(error_callback, scratch);
   372  
   373      secp256k1_gej_set_infinity(r);
   374      if (inp_g_sc == NULL && n_points == 0) {
   375          return 1;
   376      }
   377  
   378      /* We allocate STRAUSS_SCRATCH_OBJECTS objects on the scratch space. If these
   379       * allocations change, make sure to update the STRAUSS_SCRATCH_OBJECTS
   380       * constant and strauss_scratch_size accordingly. */
   381      points = (secp256k1_gej*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_gej));
   382      scalars = (secp256k1_scalar*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_scalar));
   383      state.aux = (secp256k1_fe*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe));
   384      state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge));
   385      state.ps = (struct secp256k1_strauss_point_state*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(struct secp256k1_strauss_point_state));
   386  
   387      if (points == NULL || scalars == NULL || state.aux == NULL || state.pre_a == NULL || state.ps == NULL) {
   388          secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
   389          return 0;
   390      }
   391  
   392      for (i = 0; i < n_points; i++) {
   393          secp256k1_ge point;
   394          if (!cb(&scalars[i], &point, i+cb_offset, cbdata)) {
   395              secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
   396              return 0;
   397          }
   398          secp256k1_gej_set_ge(&points[i], &point);
   399      }
   400      secp256k1_ecmult_strauss_wnaf(&state, r, n_points, points, scalars, inp_g_sc);
   401      secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
   402      return 1;
   403  }
   404  
   405  /* Wrapper for secp256k1_ecmult_multi_func interface */
   406  static int secp256k1_ecmult_strauss_batch_single(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
   407      return secp256k1_ecmult_strauss_batch(error_callback, scratch, r, inp_g_sc, cb, cbdata, n, 0);
   408  }
   409  
   410  static size_t secp256k1_strauss_max_points(const secp256k1_callback* error_callback, secp256k1_scratch *scratch) {
   411      return secp256k1_scratch_max_allocation(error_callback, scratch, STRAUSS_SCRATCH_OBJECTS) / secp256k1_strauss_scratch_size(1);
   412  }
   413  
   414  /** Convert a number to WNAF notation.
   415   *  The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val.
   416   *  It has the following guarantees:
   417   *  - each wnaf[i] is either 0 or an odd integer between -(1 << w) and (1 << w)
   418   *  - the number of words set is always WNAF_SIZE(w)
   419   *  - the returned skew is 0 or 1
   420   */
   421  static int secp256k1_wnaf_fixed(int *wnaf, const secp256k1_scalar *s, int w) {
   422      int skew = 0;
   423      int pos;
   424      int max_pos;
   425      int last_w;
   426      const secp256k1_scalar *work = s;
   427  
   428      if (secp256k1_scalar_is_zero(s)) {
   429          for (pos = 0; pos < WNAF_SIZE(w); pos++) {
   430              wnaf[pos] = 0;
   431          }
   432          return 0;
   433      }
   434  
   435      if (secp256k1_scalar_is_even(s)) {
   436          skew = 1;
   437      }
   438  
   439      wnaf[0] = secp256k1_scalar_get_bits_var(work, 0, w) + skew;
   440      /* Compute last window size. Relevant when window size doesn't divide the
   441       * number of bits in the scalar */
   442      last_w = WNAF_BITS - (WNAF_SIZE(w) - 1) * w;
   443  
   444      /* Store the position of the first nonzero word in max_pos to allow
   445       * skipping leading zeros when calculating the wnaf. */
   446      for (pos = WNAF_SIZE(w) - 1; pos > 0; pos--) {
   447          int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w);
   448          if(val != 0) {
   449              break;
   450          }
   451          wnaf[pos] = 0;
   452      }
   453      max_pos = pos;
   454      pos = 1;
   455  
   456      while (pos <= max_pos) {
   457          int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w);
   458          if ((val & 1) == 0) {
   459              wnaf[pos - 1] -= (1 << w);
   460              wnaf[pos] = (val + 1);
   461          } else {
   462              wnaf[pos] = val;
   463          }
   464          /* Set a coefficient to zero if it is 1 or -1 and the proceeding digit
   465           * is strictly negative or strictly positive respectively. Only change
   466           * coefficients at previous positions because above code assumes that
   467           * wnaf[pos - 1] is odd.
   468           */
   469          if (pos >= 2 && ((wnaf[pos - 1] == 1 && wnaf[pos - 2] < 0) || (wnaf[pos - 1] == -1 && wnaf[pos - 2] > 0))) {
   470              if (wnaf[pos - 1] == 1) {
   471                  wnaf[pos - 2] += 1 << w;
   472              } else {
   473                  wnaf[pos - 2] -= 1 << w;
   474              }
   475              wnaf[pos - 1] = 0;
   476          }
   477          ++pos;
   478      }
   479  
   480      return skew;
   481  }
   482  
   483  struct secp256k1_pippenger_point_state {
   484      int skew_na;
   485      size_t input_pos;
   486  };
   487  
   488  struct secp256k1_pippenger_state {
   489      int *wnaf_na;
   490      struct secp256k1_pippenger_point_state* ps;
   491  };
   492  
   493  /*
   494   * pippenger_wnaf computes the result of a multi-point multiplication as
   495   * follows: The scalars are brought into wnaf with n_wnaf elements each. Then
   496   * for every i < n_wnaf, first each point is added to a "bucket" corresponding
   497   * to the point's wnaf[i]. Second, the buckets are added together such that
   498   * r += 1*bucket[0] + 3*bucket[1] + 5*bucket[2] + ...
   499   */
   500  static int secp256k1_ecmult_pippenger_wnaf(secp256k1_gej *buckets, int bucket_window, struct secp256k1_pippenger_state *state, secp256k1_gej *r, const secp256k1_scalar *sc, const secp256k1_ge *pt, size_t num) {
   501      size_t n_wnaf = WNAF_SIZE(bucket_window+1);
   502      size_t np;
   503      size_t no = 0;
   504      int i;
   505      int j;
   506  
   507      for (np = 0; np < num; ++np) {
   508          if (secp256k1_scalar_is_zero(&sc[np]) || secp256k1_ge_is_infinity(&pt[np])) {
   509              continue;
   510          }
   511          state->ps[no].input_pos = np;
   512          state->ps[no].skew_na = secp256k1_wnaf_fixed(&state->wnaf_na[no*n_wnaf], &sc[np], bucket_window+1);
   513          no++;
   514      }
   515      secp256k1_gej_set_infinity(r);
   516  
   517      if (no == 0) {
   518          return 1;
   519      }
   520  
   521      for (i = n_wnaf - 1; i >= 0; i--) {
   522          secp256k1_gej running_sum;
   523  
   524          for(j = 0; j < ECMULT_TABLE_SIZE(bucket_window+2); j++) {
   525              secp256k1_gej_set_infinity(&buckets[j]);
   526          }
   527  
   528          for (np = 0; np < no; ++np) {
   529              int n = state->wnaf_na[np*n_wnaf + i];
   530              struct secp256k1_pippenger_point_state point_state = state->ps[np];
   531              secp256k1_ge tmp;
   532              int idx;
   533  
   534              if (i == 0) {
   535                  /* correct for wnaf skew */
   536                  int skew = point_state.skew_na;
   537                  if (skew) {
   538                      secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]);
   539                      secp256k1_gej_add_ge_var(&buckets[0], &buckets[0], &tmp, NULL);
   540                  }
   541              }
   542              if (n > 0) {
   543                  idx = (n - 1)/2;
   544                  secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &pt[point_state.input_pos], NULL);
   545              } else if (n < 0) {
   546                  idx = -(n + 1)/2;
   547                  secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]);
   548                  secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &tmp, NULL);
   549              }
   550          }
   551  
   552          for(j = 0; j < bucket_window; j++) {
   553              secp256k1_gej_double_var(r, r, NULL);
   554          }
   555  
   556          secp256k1_gej_set_infinity(&running_sum);
   557          /* Accumulate the sum: bucket[0] + 3*bucket[1] + 5*bucket[2] + 7*bucket[3] + ...
   558           *                   = bucket[0] +   bucket[1] +   bucket[2] +   bucket[3] + ...
   559           *                   +         2 *  (bucket[1] + 2*bucket[2] + 3*bucket[3] + ...)
   560           * using an intermediate running sum:
   561           * running_sum = bucket[0] +   bucket[1] +   bucket[2] + ...
   562           *
   563           * The doubling is done implicitly by deferring the final window doubling (of 'r').
   564           */
   565          for(j = ECMULT_TABLE_SIZE(bucket_window+2) - 1; j > 0; j--) {
   566              secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[j], NULL);
   567              secp256k1_gej_add_var(r, r, &running_sum, NULL);
   568          }
   569  
   570          secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[0], NULL);
   571          secp256k1_gej_double_var(r, r, NULL);
   572          secp256k1_gej_add_var(r, r, &running_sum, NULL);
   573      }
   574      return 1;
   575  }
   576  
   577  /**
   578   * Returns optimal bucket_window (number of bits of a scalar represented by a
   579   * set of buckets) for a given number of points.
   580   */
   581  static int secp256k1_pippenger_bucket_window(size_t n) {
   582      if (n <= 1) {
   583          return 1;
   584      } else if (n <= 4) {
   585          return 2;
   586      } else if (n <= 20) {
   587          return 3;
   588      } else if (n <= 57) {
   589          return 4;
   590      } else if (n <= 136) {
   591          return 5;
   592      } else if (n <= 235) {
   593          return 6;
   594      } else if (n <= 1260) {
   595          return 7;
   596      } else if (n <= 4420) {
   597          return 9;
   598      } else if (n <= 7880) {
   599          return 10;
   600      } else if (n <= 16050) {
   601          return 11;
   602      } else {
   603          return PIPPENGER_MAX_BUCKET_WINDOW;
   604      }
   605  }
   606  
   607  /**
   608   * Returns the maximum optimal number of points for a bucket_window.
   609   */
   610  static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window) {
   611      switch(bucket_window) {
   612          case 1: return 1;
   613          case 2: return 4;
   614          case 3: return 20;
   615          case 4: return 57;
   616          case 5: return 136;
   617          case 6: return 235;
   618          case 7: return 1260;
   619          case 8: return 1260;
   620          case 9: return 4420;
   621          case 10: return 7880;
   622          case 11: return 16050;
   623          case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX;
   624      }
   625      return 0;
   626  }
   627  
   628  
   629  SECP256K1_INLINE static void secp256k1_ecmult_endo_split(secp256k1_scalar *s1, secp256k1_scalar *s2, secp256k1_ge *p1, secp256k1_ge *p2) {
   630      secp256k1_scalar tmp = *s1;
   631      secp256k1_scalar_split_lambda(s1, s2, &tmp);
   632      secp256k1_ge_mul_lambda(p2, p1);
   633  
   634      if (secp256k1_scalar_is_high(s1)) {
   635          secp256k1_scalar_negate(s1, s1);
   636          secp256k1_ge_neg(p1, p1);
   637      }
   638      if (secp256k1_scalar_is_high(s2)) {
   639          secp256k1_scalar_negate(s2, s2);
   640          secp256k1_ge_neg(p2, p2);
   641      }
   642  }
   643  
   644  /**
   645   * Returns the scratch size required for a given number of points (excluding
   646   * base point G) without considering alignment.
   647   */
   648  static size_t secp256k1_pippenger_scratch_size(size_t n_points, int bucket_window) {
   649      size_t entries = 2*n_points + 2;
   650      size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
   651      return (sizeof(secp256k1_gej) << bucket_window) + sizeof(struct secp256k1_pippenger_state) + entries * entry_size;
   652  }
   653  
   654  static int secp256k1_ecmult_pippenger_batch(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
   655      const size_t scratch_checkpoint = secp256k1_scratch_checkpoint(error_callback, scratch);
   656      /* Use 2(n+1) with the endomorphism, when calculating batch
   657       * sizes. The reason for +1 is that we add the G scalar to the list of
   658       * other scalars. */
   659      size_t entries = 2*n_points + 2;
   660      secp256k1_ge *points;
   661      secp256k1_scalar *scalars;
   662      secp256k1_gej *buckets;
   663      struct secp256k1_pippenger_state *state_space;
   664      size_t idx = 0;
   665      size_t point_idx = 0;
   666      int bucket_window;
   667  
   668      secp256k1_gej_set_infinity(r);
   669      if (inp_g_sc == NULL && n_points == 0) {
   670          return 1;
   671      }
   672      bucket_window = secp256k1_pippenger_bucket_window(n_points);
   673  
   674      /* We allocate PIPPENGER_SCRATCH_OBJECTS objects on the scratch space. If
   675       * these allocations change, make sure to update the
   676       * PIPPENGER_SCRATCH_OBJECTS constant and pippenger_scratch_size
   677       * accordingly. */
   678      points = (secp256k1_ge *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*points));
   679      scalars = (secp256k1_scalar *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*scalars));
   680      state_space = (struct secp256k1_pippenger_state *) secp256k1_scratch_alloc(error_callback, scratch, sizeof(*state_space));
   681      if (points == NULL || scalars == NULL || state_space == NULL) {
   682          secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
   683          return 0;
   684      }
   685      state_space->ps = (struct secp256k1_pippenger_point_state *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*state_space->ps));
   686      state_space->wnaf_na = (int *) secp256k1_scratch_alloc(error_callback, scratch, entries*(WNAF_SIZE(bucket_window+1)) * sizeof(int));
   687      buckets = (secp256k1_gej *) secp256k1_scratch_alloc(error_callback, scratch, ((size_t)1 << bucket_window) * sizeof(*buckets));
   688      if (state_space->ps == NULL || state_space->wnaf_na == NULL || buckets == NULL) {
   689          secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
   690          return 0;
   691      }
   692  
   693      if (inp_g_sc != NULL) {
   694          scalars[0] = *inp_g_sc;
   695          points[0] = secp256k1_ge_const_g;
   696          idx++;
   697          secp256k1_ecmult_endo_split(&scalars[0], &scalars[1], &points[0], &points[1]);
   698          idx++;
   699      }
   700  
   701      while (point_idx < n_points) {
   702          if (!cb(&scalars[idx], &points[idx], point_idx + cb_offset, cbdata)) {
   703              secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
   704              return 0;
   705          }
   706          idx++;
   707          secp256k1_ecmult_endo_split(&scalars[idx - 1], &scalars[idx], &points[idx - 1], &points[idx]);
   708          idx++;
   709          point_idx++;
   710      }
   711  
   712      secp256k1_ecmult_pippenger_wnaf(buckets, bucket_window, state_space, r, scalars, points, idx);
   713      secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
   714      return 1;
   715  }
   716  
   717  /* Wrapper for secp256k1_ecmult_multi_func interface */
   718  static int secp256k1_ecmult_pippenger_batch_single(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
   719      return secp256k1_ecmult_pippenger_batch(error_callback, scratch, r, inp_g_sc, cb, cbdata, n, 0);
   720  }
   721  
   722  /**
   723   * Returns the maximum number of points in addition to G that can be used with
   724   * a given scratch space. The function ensures that fewer points may also be
   725   * used.
   726   */
   727  static size_t secp256k1_pippenger_max_points(const secp256k1_callback* error_callback, secp256k1_scratch *scratch) {
   728      size_t max_alloc = secp256k1_scratch_max_allocation(error_callback, scratch, PIPPENGER_SCRATCH_OBJECTS);
   729      int bucket_window;
   730      size_t res = 0;
   731  
   732      for (bucket_window = 1; bucket_window <= PIPPENGER_MAX_BUCKET_WINDOW; bucket_window++) {
   733          size_t n_points;
   734          size_t max_points = secp256k1_pippenger_bucket_window_inv(bucket_window);
   735          size_t space_for_points;
   736          size_t space_overhead;
   737          size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
   738  
   739          entry_size = 2*entry_size;
   740          space_overhead = (sizeof(secp256k1_gej) << bucket_window) + entry_size + sizeof(struct secp256k1_pippenger_state);
   741          if (space_overhead > max_alloc) {
   742              break;
   743          }
   744          space_for_points = max_alloc - space_overhead;
   745  
   746          n_points = space_for_points/entry_size;
   747          n_points = n_points > max_points ? max_points : n_points;
   748          if (n_points > res) {
   749              res = n_points;
   750          }
   751          if (n_points < max_points) {
   752              /* A larger bucket_window may support even more points. But if we
   753               * would choose that then the caller couldn't safely use any number
   754               * smaller than what this function returns */
   755              break;
   756          }
   757      }
   758      return res;
   759  }
   760  
   761  /* Computes ecmult_multi by simply multiplying and adding each point. Does not
   762   * require a scratch space */
   763  static int secp256k1_ecmult_multi_simple_var(secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points) {
   764      size_t point_idx;
   765      secp256k1_gej tmpj;
   766  
   767      secp256k1_gej_set_infinity(r);
   768      secp256k1_gej_set_infinity(&tmpj);
   769      /* r = inp_g_sc*G */
   770      secp256k1_ecmult(r, &tmpj, &secp256k1_scalar_zero, inp_g_sc);
   771      for (point_idx = 0; point_idx < n_points; point_idx++) {
   772          secp256k1_ge point;
   773          secp256k1_gej pointj;
   774          secp256k1_scalar scalar;
   775          if (!cb(&scalar, &point, point_idx, cbdata)) {
   776              return 0;
   777          }
   778          /* r += scalar*point */
   779          secp256k1_gej_set_ge(&pointj, &point);
   780          secp256k1_ecmult(&tmpj, &pointj, &scalar, NULL);
   781          secp256k1_gej_add_var(r, r, &tmpj, NULL);
   782      }
   783      return 1;
   784  }
   785  
   786  /* Compute the number of batches and the batch size given the maximum batch size and the
   787   * total number of points */
   788  static int secp256k1_ecmult_multi_batch_size_helper(size_t *n_batches, size_t *n_batch_points, size_t max_n_batch_points, size_t n) {
   789      if (max_n_batch_points == 0) {
   790          return 0;
   791      }
   792      if (max_n_batch_points > ECMULT_MAX_POINTS_PER_BATCH) {
   793          max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH;
   794      }
   795      if (n == 0) {
   796          *n_batches = 0;
   797          *n_batch_points = 0;
   798          return 1;
   799      }
   800      /* Compute ceil(n/max_n_batch_points) and ceil(n/n_batches) */
   801      *n_batches = CEIL_DIV(n, max_n_batch_points);
   802      *n_batch_points = CEIL_DIV(n, *n_batches);
   803      return 1;
   804  }
   805  
   806  typedef int (*secp256k1_ecmult_multi_func)(const secp256k1_callback* error_callback, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t);
   807  static int secp256k1_ecmult_multi_var(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
   808      size_t i;
   809  
   810      int (*f)(const secp256k1_callback* error_callback, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t, size_t);
   811      size_t n_batches;
   812      size_t n_batch_points;
   813  
   814      secp256k1_gej_set_infinity(r);
   815      if (inp_g_sc == NULL && n == 0) {
   816          return 1;
   817      } else if (n == 0) {
   818          secp256k1_ecmult(r, r, &secp256k1_scalar_zero, inp_g_sc);
   819          return 1;
   820      }
   821      if (scratch == NULL) {
   822          return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
   823      }
   824  
   825      /* Compute the batch sizes for Pippenger's algorithm given a scratch space. If it's greater than
   826       * a threshold use Pippenger's algorithm. Otherwise use Strauss' algorithm.
   827       * As a first step check if there's enough space for Pippenger's algo (which requires less space
   828       * than Strauss' algo) and if not, use the simple algorithm. */
   829      if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_pippenger_max_points(error_callback, scratch), n)) {
   830          return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
   831      }
   832      if (n_batch_points >= ECMULT_PIPPENGER_THRESHOLD) {
   833          f = secp256k1_ecmult_pippenger_batch;
   834      } else {
   835          if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_strauss_max_points(error_callback, scratch), n)) {
   836              return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
   837          }
   838          f = secp256k1_ecmult_strauss_batch;
   839      }
   840      for(i = 0; i < n_batches; i++) {
   841          size_t nbp = n < n_batch_points ? n : n_batch_points;
   842          size_t offset = n_batch_points*i;
   843          secp256k1_gej tmp;
   844          if (!f(error_callback, scratch, &tmp, i == 0 ? inp_g_sc : NULL, cb, cbdata, nbp, offset)) {
   845              return 0;
   846          }
   847          secp256k1_gej_add_var(r, r, &tmp, NULL);
   848          n -= nbp;
   849      }
   850      return 1;
   851  }
   852  
   853  #endif /* SECP256K1_ECMULT_IMPL_H */