github.com/ethereum/go-ethereum@v1.16.1/crypto/secp256k1/libsecp256k1/src/field.h (about)

     1  /***********************************************************************
     2   * Copyright (c) 2013, 2014 Pieter Wuille                              *
     3   * Distributed under the MIT software license, see the accompanying    *
     4   * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
     5   ***********************************************************************/
     6  
     7  #ifndef SECP256K1_FIELD_H
     8  #define SECP256K1_FIELD_H
     9  
    10  #include "util.h"
    11  
    12  /* This file defines the generic interface for working with secp256k1_fe
    13   * objects, which represent field elements (integers modulo 2^256 - 2^32 - 977).
    14   *
    15   * The actual definition of the secp256k1_fe type depends on the chosen field
    16   * implementation; see the field_5x52.h and field_10x26.h files for details.
    17   *
    18   * All secp256k1_fe objects have implicit properties that determine what
    19   * operations are permitted on it. These are purely a function of what
    20   * secp256k1_fe_ operations are applied on it, generally (implicitly) fixed at
    21   * compile time, and do not depend on the chosen field implementation. Despite
    22   * that, what these properties actually entail for the field representation
    23   * values depends on the chosen field implementation. These properties are:
    24   * - magnitude: an integer in [0,32]
    25   * - normalized: 0 or 1; normalized=1 implies magnitude <= 1.
    26   *
    27   * In VERIFY mode, they are materialized explicitly as fields in the struct,
    28   * allowing run-time verification of these properties. In that case, the field
    29   * implementation also provides a secp256k1_fe_verify routine to verify that
    30   * these fields match the run-time value and perform internal consistency
    31   * checks. */
    32  #ifdef VERIFY
    33  #  define SECP256K1_FE_VERIFY_FIELDS \
    34      int magnitude; \
    35      int normalized;
    36  #else
    37  #  define SECP256K1_FE_VERIFY_FIELDS
    38  #endif
    39  
    40  #if defined(SECP256K1_WIDEMUL_INT128)
    41  #include "field_5x52.h"
    42  #elif defined(SECP256K1_WIDEMUL_INT64)
    43  #include "field_10x26.h"
    44  #else
    45  #error "Please select wide multiplication implementation"
    46  #endif
    47  
    48  #ifdef VERIFY
    49  /* Magnitude and normalized value for constants. */
    50  #define SECP256K1_FE_VERIFY_CONST(d7, d6, d5, d4, d3, d2, d1, d0) \
    51      /* Magnitude is 0 for constant 0; 1 otherwise. */ \
    52      , (((d7) | (d6) | (d5) | (d4) | (d3) | (d2) | (d1) | (d0)) != 0) \
    53      /* Normalized is 1 unless sum(d_i<<(32*i) for i=0..7) exceeds field modulus. */ \
    54      , (!(((d7) & (d6) & (d5) & (d4) & (d3) & (d2)) == 0xfffffffful && ((d1) == 0xfffffffful || ((d1) == 0xfffffffe && (d0 >= 0xfffffc2f)))))
    55  #else
    56  #define SECP256K1_FE_VERIFY_CONST(d7, d6, d5, d4, d3, d2, d1, d0)
    57  #endif
    58  
    59  /** This expands to an initializer for a secp256k1_fe valued sum((i*32) * d_i, i=0..7) mod p.
    60   *
    61   * It has magnitude 1, unless d_i are all 0, in which case the magnitude is 0.
    62   * It is normalized, unless sum(2^(i*32) * d_i, i=0..7) >= p.
    63   *
    64   * SECP256K1_FE_CONST_INNER is provided by the implementation.
    65   */
    66  #define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)) SECP256K1_FE_VERIFY_CONST((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)) }
    67  
    68  static const secp256k1_fe secp256k1_fe_one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
    69  static const secp256k1_fe secp256k1_const_beta = SECP256K1_FE_CONST(
    70      0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
    71      0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
    72  );
    73  
    74  #ifndef VERIFY
    75  /* In non-VERIFY mode, we #define the fe operations to be identical to their
    76   * internal field implementation, to avoid the potential overhead of a
    77   * function call (even though presumably inlinable). */
    78  #  define secp256k1_fe_normalize secp256k1_fe_impl_normalize
    79  #  define secp256k1_fe_normalize_weak secp256k1_fe_impl_normalize_weak
    80  #  define secp256k1_fe_normalize_var secp256k1_fe_impl_normalize_var
    81  #  define secp256k1_fe_normalizes_to_zero secp256k1_fe_impl_normalizes_to_zero
    82  #  define secp256k1_fe_normalizes_to_zero_var secp256k1_fe_impl_normalizes_to_zero_var
    83  #  define secp256k1_fe_set_int secp256k1_fe_impl_set_int
    84  #  define secp256k1_fe_is_zero secp256k1_fe_impl_is_zero
    85  #  define secp256k1_fe_is_odd secp256k1_fe_impl_is_odd
    86  #  define secp256k1_fe_cmp_var secp256k1_fe_impl_cmp_var
    87  #  define secp256k1_fe_set_b32_mod secp256k1_fe_impl_set_b32_mod
    88  #  define secp256k1_fe_set_b32_limit secp256k1_fe_impl_set_b32_limit
    89  #  define secp256k1_fe_get_b32 secp256k1_fe_impl_get_b32
    90  #  define secp256k1_fe_negate_unchecked secp256k1_fe_impl_negate_unchecked
    91  #  define secp256k1_fe_mul_int_unchecked secp256k1_fe_impl_mul_int_unchecked
    92  #  define secp256k1_fe_add secp256k1_fe_impl_add
    93  #  define secp256k1_fe_mul secp256k1_fe_impl_mul
    94  #  define secp256k1_fe_sqr secp256k1_fe_impl_sqr
    95  #  define secp256k1_fe_cmov secp256k1_fe_impl_cmov
    96  #  define secp256k1_fe_to_storage secp256k1_fe_impl_to_storage
    97  #  define secp256k1_fe_from_storage secp256k1_fe_impl_from_storage
    98  #  define secp256k1_fe_inv secp256k1_fe_impl_inv
    99  #  define secp256k1_fe_inv_var secp256k1_fe_impl_inv_var
   100  #  define secp256k1_fe_get_bounds secp256k1_fe_impl_get_bounds
   101  #  define secp256k1_fe_half secp256k1_fe_impl_half
   102  #  define secp256k1_fe_add_int secp256k1_fe_impl_add_int
   103  #  define secp256k1_fe_is_square_var secp256k1_fe_impl_is_square_var
   104  #endif /* !defined(VERIFY) */
   105  
   106  /** Normalize a field element.
   107   *
   108   * On input, r must be a valid field element.
   109   * On output, r represents the same value but has normalized=1 and magnitude=1.
   110   */
   111  static void secp256k1_fe_normalize(secp256k1_fe *r);
   112  
   113  /** Give a field element magnitude 1.
   114   *
   115   * On input, r must be a valid field element.
   116   * On output, r represents the same value but has magnitude=1. Normalized is unchanged.
   117   */
   118  static void secp256k1_fe_normalize_weak(secp256k1_fe *r);
   119  
   120  /** Normalize a field element, without constant-time guarantee.
   121   *
   122   * Identical in behavior to secp256k1_fe_normalize, but not constant time in r.
   123   */
   124  static void secp256k1_fe_normalize_var(secp256k1_fe *r);
   125  
   126  /** Determine whether r represents field element 0.
   127   *
   128   * On input, r must be a valid field element.
   129   * Returns whether r = 0 (mod p).
   130   */
   131  static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r);
   132  
   133  /** Determine whether r represents field element 0, without constant-time guarantee.
   134   *
   135   * Identical in behavior to secp256k1_normalizes_to_zero, but not constant time in r.
   136   */
   137  static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r);
   138  
   139  /** Set a field element to an integer in range [0,0x7FFF].
   140   *
   141   * On input, r does not need to be initialized, a must be in [0,0x7FFF].
   142   * On output, r represents value a, is normalized and has magnitude (a!=0).
   143   */
   144  static void secp256k1_fe_set_int(secp256k1_fe *r, int a);
   145  
   146  /** Clear a field element to prevent leaking sensitive information. */
   147  static void secp256k1_fe_clear(secp256k1_fe *a);
   148  
   149  /** Determine whether a represents field element 0.
   150   *
   151   * On input, a must be a valid normalized field element.
   152   * Returns whether a = 0 (mod p).
   153   *
   154   * This behaves identical to secp256k1_normalizes_to_zero{,_var}, but requires
   155   * normalized input (and is much faster).
   156   */
   157  static int secp256k1_fe_is_zero(const secp256k1_fe *a);
   158  
   159  /** Determine whether a (mod p) is odd.
   160   *
   161   * On input, a must be a valid normalized field element.
   162   * Returns (int(a) mod p) & 1.
   163   */
   164  static int secp256k1_fe_is_odd(const secp256k1_fe *a);
   165  
   166  /** Determine whether two field elements are equal.
   167   *
   168   * On input, a and b must be valid field elements with magnitudes not exceeding
   169   * 1 and 31, respectively.
   170   * Returns a = b (mod p).
   171   */
   172  static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b);
   173  
   174  /** Compare the values represented by 2 field elements, without constant-time guarantee.
   175   *
   176   * On input, a and b must be valid normalized field elements.
   177   * Returns 1 if a > b, -1 if a < b, and 0 if a = b (comparisons are done as integers
   178   * in range 0..p-1).
   179   */
   180  static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
   181  
   182  /** Set a field element equal to the element represented by a provided 32-byte big endian value
   183   * interpreted modulo p.
   184   *
   185   * On input, r does not need to be initialized. a must be a pointer to an initialized 32-byte array.
   186   * On output, r = a (mod p). It will have magnitude 1, and not be normalized.
   187   */
   188  static void secp256k1_fe_set_b32_mod(secp256k1_fe *r, const unsigned char *a);
   189  
   190  /** Set a field element equal to a provided 32-byte big endian value, checking for overflow.
   191   *
   192   * On input, r does not need to be initialized. a must be a pointer to an initialized 32-byte array.
   193   * On output, r = a if (a < p), it will be normalized with magnitude 1, and 1 is returned.
   194   * If a >= p, 0 is returned, and r will be made invalid (and must not be used without overwriting).
   195   */
   196  static int secp256k1_fe_set_b32_limit(secp256k1_fe *r, const unsigned char *a);
   197  
   198  /** Convert a field element to 32-byte big endian byte array.
   199   * On input, a must be a valid normalized field element, and r a pointer to a 32-byte array.
   200   * On output, r = a (mod p).
   201   */
   202  static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a);
   203  
   204  /** Negate a field element.
   205   *
   206   * On input, r does not need to be initialized. a must be a valid field element with
   207   * magnitude not exceeding m. m must be an integer constant expression in [0,31].
   208   * Performs {r = -a}.
   209   * On output, r will not be normalized, and will have magnitude m+1.
   210   */
   211  #define secp256k1_fe_negate(r, a, m) ASSERT_INT_CONST_AND_DO(m, secp256k1_fe_negate_unchecked(r, a, m))
   212  
   213  /** Like secp256k1_fe_negate_unchecked but m is not checked to be an integer constant expression.
   214   *
   215   * Should not be called directly outside of tests.
   216   */
   217  static void secp256k1_fe_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m);
   218  
   219  /** Add a small integer to a field element.
   220   *
   221   * Performs {r += a}. The magnitude of r increases by 1, and normalized is cleared.
   222   * a must be in range [0,0x7FFF].
   223   */
   224  static void secp256k1_fe_add_int(secp256k1_fe *r, int a);
   225  
   226  /** Multiply a field element with a small integer.
   227   *
   228   * On input, r must be a valid field element. a must be an integer constant expression in [0,32].
   229   * The magnitude of r times a must not exceed 32.
   230   * Performs {r *= a}.
   231   * On output, r's magnitude is multiplied by a, and r will not be normalized.
   232   */
   233  #define secp256k1_fe_mul_int(r, a) ASSERT_INT_CONST_AND_DO(a, secp256k1_fe_mul_int_unchecked(r, a))
   234  
   235  /** Like secp256k1_fe_mul_int but a is not checked to be an integer constant expression.
   236   * 
   237   * Should not be called directly outside of tests.
   238   */
   239  static void secp256k1_fe_mul_int_unchecked(secp256k1_fe *r, int a);
   240  
   241  /** Increment a field element by another.
   242   *
   243   * On input, r and a must be valid field elements, not necessarily normalized.
   244   * The sum of their magnitudes must not exceed 32.
   245   * Performs {r += a}.
   246   * On output, r will not be normalized, and will have magnitude incremented by a's.
   247   */
   248  static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a);
   249  
   250  /** Multiply two field elements.
   251   *
   252   * On input, a and b must be valid field elements; r does not need to be initialized.
   253   * r and a may point to the same object, but neither may point to the object pointed
   254   * to by b. The magnitudes of a and b must not exceed 8.
   255   * Performs {r = a * b}
   256   * On output, r will have magnitude 1, but won't be normalized.
   257   */
   258  static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
   259  
   260  /** Square a field element.
   261   *
   262   * On input, a must be a valid field element; r does not need to be initialized. The magnitude
   263   * of a must not exceed 8.
   264   * Performs {r = a**2}
   265   * On output, r will have magnitude 1, but won't be normalized.
   266   */
   267  static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
   268  
   269  /** Compute a square root of a field element.
   270   *
   271   * On input, a must be a valid field element with magnitude<=8; r need not be initialized.
   272   * If sqrt(a) exists, performs {r = sqrt(a)} and returns 1.
   273   * Otherwise, sqrt(-a) exists. The function performs {r = sqrt(-a)} and returns 0.
   274   * The resulting value represented by r will be a square itself.
   275   * Variables r and a must not point to the same object.
   276   * On output, r will have magnitude 1 but will not be normalized.
   277   */
   278  static int secp256k1_fe_sqrt(secp256k1_fe * SECP256K1_RESTRICT r, const secp256k1_fe * SECP256K1_RESTRICT a);
   279  
   280  /** Compute the modular inverse of a field element.
   281   *
   282   * On input, a must be a valid field element; r need not be initialized.
   283   * Performs {r = a**(p-2)} (which maps 0 to 0, and every other element to its
   284   * inverse).
   285   * On output, r will have magnitude (a.magnitude != 0) and be normalized.
   286   */
   287  static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a);
   288  
   289  /** Compute the modular inverse of a field element, without constant-time guarantee.
   290   *
   291   * Behaves identically to secp256k1_fe_inv, but is not constant-time in a.
   292   */
   293  static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a);
   294  
   295  /** Convert a field element to secp256k1_fe_storage.
   296   *
   297   * On input, a must be a valid normalized field element.
   298   * Performs {r = a}.
   299   */
   300  static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
   301  
   302  /** Convert a field element back from secp256k1_fe_storage.
   303   *
   304   * On input, r need not be initialized.
   305   * Performs {r = a}.
   306   * On output, r will be normalized and will have magnitude 1.
   307   */
   308  static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a);
   309  
   310  /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time.  Both *r and *a must be initialized.*/
   311  static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag);
   312  
   313  /** Conditionally move a field element in constant time.
   314   *
   315   * On input, both r and a must be valid field elements. Flag must be 0 or 1.
   316   * Performs {r = flag ? a : r}.
   317   *
   318   * On output, r's magnitude will be the maximum of both input magnitudes.
   319   * It will be normalized if and only if both inputs were normalized.
   320   */
   321  static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
   322  
   323  /** Halve the value of a field element modulo the field prime in constant-time.
   324   *
   325   * On input, r must be a valid field element.
   326   * On output, r will be normalized and have magnitude floor(m/2) + 1 where m is
   327   * the magnitude of r on input.
   328   */
   329  static void secp256k1_fe_half(secp256k1_fe *r);
   330  
   331  /** Sets r to a field element with magnitude m, normalized if (and only if) m==0.
   332   *  The value is chosen so that it is likely to trigger edge cases related to
   333   *  internal overflows. */
   334  static void secp256k1_fe_get_bounds(secp256k1_fe *r, int m);
   335  
   336  /** Determine whether a is a square (modulo p).
   337   *
   338   * On input, a must be a valid field element.
   339   */
   340  static int secp256k1_fe_is_square_var(const secp256k1_fe *a);
   341  
   342  /** Check invariants on a field element (no-op unless VERIFY is enabled). */
   343  static void secp256k1_fe_verify(const secp256k1_fe *a);
   344  #define SECP256K1_FE_VERIFY(a) secp256k1_fe_verify(a)
   345  
   346  /** Check that magnitude of a is at most m (no-op unless VERIFY is enabled). */
   347  static void secp256k1_fe_verify_magnitude(const secp256k1_fe *a, int m);
   348  #define SECP256K1_FE_VERIFY_MAGNITUDE(a, m) secp256k1_fe_verify_magnitude(a, m)
   349  
   350  #endif /* SECP256K1_FIELD_H */