github.com/ethereum/go-ethereum@v1.16.1/crypto/secp256k1/libsecp256k1/src/group.h (about)

     1  /***********************************************************************
     2   * Copyright (c) 2013, 2014 Pieter Wuille                              *
     3   * Distributed under the MIT software license, see the accompanying    *
     4   * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
     5   ***********************************************************************/
     6  
     7  #ifndef SECP256K1_GROUP_H
     8  #define SECP256K1_GROUP_H
     9  
    10  #include "field.h"
    11  
    12  /** A group element in affine coordinates on the secp256k1 curve,
    13   *  or occasionally on an isomorphic curve of the form y^2 = x^3 + 7*t^6.
    14   *  Note: For exhaustive test mode, secp256k1 is replaced by a small subgroup of a different curve.
    15   */
    16  typedef struct {
    17      secp256k1_fe x;
    18      secp256k1_fe y;
    19      int infinity; /* whether this represents the point at infinity */
    20  } secp256k1_ge;
    21  
    22  #define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
    23  #define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
    24  
    25  /** A group element of the secp256k1 curve, in jacobian coordinates.
    26   *  Note: For exhastive test mode, secp256k1 is replaced by a small subgroup of a different curve.
    27   */
    28  typedef struct {
    29      secp256k1_fe x; /* actual X: x/z^2 */
    30      secp256k1_fe y; /* actual Y: y/z^3 */
    31      secp256k1_fe z;
    32      int infinity; /* whether this represents the point at infinity */
    33  } secp256k1_gej;
    34  
    35  #define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0}
    36  #define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
    37  
    38  typedef struct {
    39      secp256k1_fe_storage x;
    40      secp256k1_fe_storage y;
    41  } secp256k1_ge_storage;
    42  
    43  #define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))}
    44  
    45  #define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y)
    46  
    47  /** Maximum allowed magnitudes for group element coordinates
    48   *  in affine (x, y) and jacobian (x, y, z) representation. */
    49  #define SECP256K1_GE_X_MAGNITUDE_MAX  4
    50  #define SECP256K1_GE_Y_MAGNITUDE_MAX  3
    51  #define SECP256K1_GEJ_X_MAGNITUDE_MAX 4
    52  #define SECP256K1_GEJ_Y_MAGNITUDE_MAX 4
    53  #define SECP256K1_GEJ_Z_MAGNITUDE_MAX 1
    54  
    55  /** Set a group element equal to the point with given X and Y coordinates */
    56  static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
    57  
    58  /** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
    59   *  for Y. Return value indicates whether the result is valid. */
    60  static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
    61  
    62  /** Determine whether x is a valid X coordinate on the curve. */
    63  static int secp256k1_ge_x_on_curve_var(const secp256k1_fe *x);
    64  
    65  /** Determine whether fraction xn/xd is a valid X coordinate on the curve (xd != 0). */
    66  static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe *xn, const secp256k1_fe *xd);
    67  
    68  /** Check whether a group element is the point at infinity. */
    69  static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
    70  
    71  /** Check whether a group element is valid (i.e., on the curve). */
    72  static int secp256k1_ge_is_valid_var(const secp256k1_ge *a);
    73  
    74  /** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
    75  static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
    76  
    77  /** Set a group element equal to another which is given in jacobian coordinates. Constant time. */
    78  static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);
    79  
    80  /** Set a group element equal to another which is given in jacobian coordinates. */
    81  static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a);
    82  
    83  /** Set a batch of group elements equal to the inputs given in jacobian coordinates */
    84  static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len);
    85  
    86  /** Bring a batch of inputs to the same global z "denominator", based on ratios between
    87   *  (omitted) z coordinates of adjacent elements.
    88   *
    89   *  Although the elements a[i] are _ge rather than _gej, they actually represent elements
    90   *  in Jacobian coordinates with their z coordinates omitted.
    91   *
    92   *  Using the notation z(b) to represent the omitted z coordinate of b, the array zr of
    93   *  z coordinate ratios must satisfy zr[i] == z(a[i]) / z(a[i-1]) for 0 < 'i' < len.
    94   *  The zr[0] value is unused.
    95   *
    96   *  This function adjusts the coordinates of 'a' in place so that for all 'i', z(a[i]) == z(a[len-1]).
    97   *  In other words, the initial value of z(a[len-1]) becomes the global z "denominator". Only the
    98   *  a[i].x and a[i].y coordinates are explicitly modified; the adjustment of the omitted z coordinate is
    99   *  implicit.
   100   *
   101   *  The coordinates of the final element a[len-1] are not changed.
   102   */
   103  static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr);
   104  
   105  /** Check two group elements (affine) for equality in variable time. */
   106  static int secp256k1_ge_eq_var(const secp256k1_ge *a, const secp256k1_ge *b);
   107  
   108  /** Set a group element (affine) equal to the point at infinity. */
   109  static void secp256k1_ge_set_infinity(secp256k1_ge *r);
   110  
   111  /** Set a group element (jacobian) equal to the point at infinity. */
   112  static void secp256k1_gej_set_infinity(secp256k1_gej *r);
   113  
   114  /** Set a group element (jacobian) equal to another which is given in affine coordinates. */
   115  static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a);
   116  
   117  /** Check two group elements (jacobian) for equality in variable time. */
   118  static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b);
   119  
   120  /** Check two group elements (jacobian and affine) for equality in variable time. */
   121  static int secp256k1_gej_eq_ge_var(const secp256k1_gej *a, const secp256k1_ge *b);
   122  
   123  /** Compare the X coordinate of a group element (jacobian).
   124    * The magnitude of the group element's X coordinate must not exceed 31. */
   125  static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a);
   126  
   127  /** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
   128  static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a);
   129  
   130  /** Check whether a group element is the point at infinity. */
   131  static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
   132  
   133  /** Set r equal to the double of a. Constant time. */
   134  static void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a);
   135  
   136  /** Set r equal to the double of a. If rzr is not-NULL this sets *rzr such that r->z == a->z * *rzr (where infinity means an implicit z = 0). */
   137  static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
   138  
   139  /** Set r equal to the sum of a and b. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */
   140  static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr);
   141  
   142  /** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
   143  static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b);
   144  
   145  /** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
   146      than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
   147      guarantee, and b is allowed to be infinity. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */
   148  static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr);
   149  
   150  /** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */
   151  static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv);
   152  
   153  /** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
   154  static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a);
   155  
   156  /** Clear a secp256k1_gej to prevent leaking sensitive information. */
   157  static void secp256k1_gej_clear(secp256k1_gej *r);
   158  
   159  /** Clear a secp256k1_ge to prevent leaking sensitive information. */
   160  static void secp256k1_ge_clear(secp256k1_ge *r);
   161  
   162  /** Convert a group element to the storage type. */
   163  static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a);
   164  
   165  /** Convert a group element back from the storage type. */
   166  static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a);
   167  
   168  /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time.  Both *r and *a must be initialized.*/
   169  static void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag);
   170  
   171  /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time.  Both *r and *a must be initialized.*/
   172  static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag);
   173  
   174  /** Rescale a jacobian point by b which must be non-zero. Constant-time. */
   175  static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b);
   176  
   177  /** Convert a group element that is not infinity to a 64-byte array. The output
   178   *  array is platform-dependent. */
   179  static void secp256k1_ge_to_bytes(unsigned char *buf, const secp256k1_ge *a);
   180  
   181  /** Convert a 64-byte array into group element. This function assumes that the
   182   *  provided buffer correctly encodes a group element. */
   183  static void secp256k1_ge_from_bytes(secp256k1_ge *r, const unsigned char *buf);
   184  
   185  /** Convert a group element (that is allowed to be infinity) to a 64-byte
   186   *  array. The output array is platform-dependent. */
   187  static void secp256k1_ge_to_bytes_ext(unsigned char *data, const secp256k1_ge *ge);
   188  
   189  /** Convert a 64-byte array into a group element. This function assumes that the
   190   *  provided buffer is the output of secp256k1_ge_to_bytes_ext. */
   191  static void secp256k1_ge_from_bytes_ext(secp256k1_ge *ge, const unsigned char *data);
   192  
   193  /** Determine if a point (which is assumed to be on the curve) is in the correct (sub)group of the curve.
   194   *
   195   * In normal mode, the used group is secp256k1, which has cofactor=1 meaning that every point on the curve is in the
   196   * group, and this function returns always true.
   197   *
   198   * When compiling in exhaustive test mode, a slightly different curve equation is used, leading to a group with a
   199   * (very) small subgroup, and that subgroup is what is used for all cryptographic operations. In that mode, this
   200   * function checks whether a point that is on the curve is in fact also in that subgroup.
   201   */
   202  static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge);
   203  
   204  /** Check invariants on an affine group element (no-op unless VERIFY is enabled). */
   205  static void secp256k1_ge_verify(const secp256k1_ge *a);
   206  #define SECP256K1_GE_VERIFY(a) secp256k1_ge_verify(a)
   207  
   208  /** Check invariants on a Jacobian group element (no-op unless VERIFY is enabled). */
   209  static void secp256k1_gej_verify(const secp256k1_gej *a);
   210  #define SECP256K1_GEJ_VERIFY(a) secp256k1_gej_verify(a)
   211  
   212  #endif /* SECP256K1_GROUP_H */