github.com/ethereum/go-ethereum@v1.16.1/crypto/secp256k1/libsecp256k1/src/modules/ellswift/main_impl.h (about)

     1  /***********************************************************************
     2   * Distributed under the MIT software license, see the accompanying    *
     3   * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
     4   ***********************************************************************/
     5  
     6  #ifndef SECP256K1_MODULE_ELLSWIFT_MAIN_H
     7  #define SECP256K1_MODULE_ELLSWIFT_MAIN_H
     8  
     9  #include "../../../include/secp256k1.h"
    10  #include "../../../include/secp256k1_ellswift.h"
    11  #include "../../eckey.h"
    12  #include "../../hash.h"
    13  
    14  /** c1 = (sqrt(-3)-1)/2 */
    15  static const secp256k1_fe secp256k1_ellswift_c1 = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa40);
    16  /** c2 = (-sqrt(-3)-1)/2 = -(c1+1) */
    17  static const secp256k1_fe secp256k1_ellswift_c2 = SECP256K1_FE_CONST(0x7ae96a2b, 0x657c0710, 0x6e64479e, 0xac3434e9, 0x9cf04975, 0x12f58995, 0xc1396c28, 0x719501ee);
    18  /** c3 = (-sqrt(-3)+1)/2 = -c1 = c2+1 */
    19  static const secp256k1_fe secp256k1_ellswift_c3 = SECP256K1_FE_CONST(0x7ae96a2b, 0x657c0710, 0x6e64479e, 0xac3434e9, 0x9cf04975, 0x12f58995, 0xc1396c28, 0x719501ef);
    20  /** c4 = (sqrt(-3)+1)/2 = -c2 = c1+1 */
    21  static const secp256k1_fe secp256k1_ellswift_c4 = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa41);
    22  
    23  /** Decode ElligatorSwift encoding (u, t) to a fraction xn/xd representing a curve X coordinate. */
    24  static void secp256k1_ellswift_xswiftec_frac_var(secp256k1_fe *xn, secp256k1_fe *xd, const secp256k1_fe *u, const secp256k1_fe *t) {
    25      /* The implemented algorithm is the following (all operations in GF(p)):
    26       *
    27       * - Let c0 = sqrt(-3) = 0xa2d2ba93507f1df233770c2a797962cc61f6d15da14ecd47d8d27ae1cd5f852.
    28       * - If u = 0, set u = 1.
    29       * - If t = 0, set t = 1.
    30       * - If u^3+7+t^2 = 0, set t = 2*t.
    31       * - Let X = (u^3+7-t^2)/(2*t).
    32       * - Let Y = (X+t)/(c0*u).
    33       * - If x3 = u+4*Y^2 is a valid x coordinate, return it.
    34       * - If x2 = (-X/Y-u)/2 is a valid x coordinate, return it.
    35       * - Return x1 = (X/Y-u)/2 (which is now guaranteed to be a valid x coordinate).
    36       *
    37       * Introducing s=t^2, g=u^3+7, and simplifying x1=-(x2+u) we get:
    38       *
    39       * - Let c0 = ...
    40       * - If u = 0, set u = 1.
    41       * - If t = 0, set t = 1.
    42       * - Let s = t^2
    43       * - Let g = u^3+7
    44       * - If g+s = 0, set t = 2*t, s = 4*s
    45       * - Let X = (g-s)/(2*t).
    46       * - Let Y = (X+t)/(c0*u) = (g+s)/(2*c0*t*u).
    47       * - If x3 = u+4*Y^2 is a valid x coordinate, return it.
    48       * - If x2 = (-X/Y-u)/2 is a valid x coordinate, return it.
    49       * - Return x1 = -(x2+u).
    50       *
    51       * Now substitute Y^2 = -(g+s)^2/(12*s*u^2) and X/Y = c0*u*(g-s)/(g+s). This
    52       * means X and Y do not need to be evaluated explicitly anymore.
    53       *
    54       * - ...
    55       * - If g+s = 0, set s = 4*s.
    56       * - If x3 = u-(g+s)^2/(3*s*u^2) is a valid x coordinate, return it.
    57       * - If x2 = (-c0*u*(g-s)/(g+s)-u)/2 is a valid x coordinate, return it.
    58       * - Return x1 = -(x2+u).
    59       *
    60       * Simplifying x2 using 2 additional constants:
    61       *
    62       * - Let c1 = (c0-1)/2 = 0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40.
    63       * - Let c2 = (-c0-1)/2 = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee.
    64       * - ...
    65       * - If x2 = u*(c1*s+c2*g)/(g+s) is a valid x coordinate, return it.
    66       * - ...
    67       *
    68       * Writing x3 as a fraction:
    69       *
    70       * - ...
    71       * - If x3 = (3*s*u^3-(g+s)^2)/(3*s*u^2) ...
    72       * - ...
    73  
    74       * Overall, we get:
    75       *
    76       * - Let c1 = 0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40.
    77       * - Let c2 = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee.
    78       * - If u = 0, set u = 1.
    79       * - If t = 0, set s = 1, else set s = t^2.
    80       * - Let g = u^3+7.
    81       * - If g+s = 0, set s = 4*s.
    82       * - If x3 = (3*s*u^3-(g+s)^2)/(3*s*u^2) is a valid x coordinate, return it.
    83       * - If x2 = u*(c1*s+c2*g)/(g+s) is a valid x coordinate, return it.
    84       * - Return x1 = -(x2+u).
    85       */
    86      secp256k1_fe u1, s, g, p, d, n, l;
    87      u1 = *u;
    88      if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&u1), 0)) u1 = secp256k1_fe_one;
    89      secp256k1_fe_sqr(&s, t);
    90      if (EXPECT(secp256k1_fe_normalizes_to_zero_var(t), 0)) s = secp256k1_fe_one;
    91      secp256k1_fe_sqr(&l, &u1);                                   /* l = u^2 */
    92      secp256k1_fe_mul(&g, &l, &u1);                               /* g = u^3 */
    93      secp256k1_fe_add_int(&g, SECP256K1_B);                       /* g = u^3 + 7 */
    94      p = g;                                                       /* p = g */
    95      secp256k1_fe_add(&p, &s);                                    /* p = g+s */
    96      if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&p), 0)) {
    97          secp256k1_fe_mul_int(&s, 4);
    98          /* Recompute p = g+s */
    99          p = g;                                                   /* p = g */
   100          secp256k1_fe_add(&p, &s);                                /* p = g+s */
   101      }
   102      secp256k1_fe_mul(&d, &s, &l);                                /* d = s*u^2 */
   103      secp256k1_fe_mul_int(&d, 3);                                 /* d = 3*s*u^2 */
   104      secp256k1_fe_sqr(&l, &p);                                    /* l = (g+s)^2 */
   105      secp256k1_fe_negate(&l, &l, 1);                              /* l = -(g+s)^2 */
   106      secp256k1_fe_mul(&n, &d, &u1);                               /* n = 3*s*u^3 */
   107      secp256k1_fe_add(&n, &l);                                    /* n = 3*s*u^3-(g+s)^2 */
   108      if (secp256k1_ge_x_frac_on_curve_var(&n, &d)) {
   109          /* Return x3 = n/d = (3*s*u^3-(g+s)^2)/(3*s*u^2) */
   110          *xn = n;
   111          *xd = d;
   112          return;
   113      }
   114      *xd = p;
   115      secp256k1_fe_mul(&l, &secp256k1_ellswift_c1, &s);            /* l = c1*s */
   116      secp256k1_fe_mul(&n, &secp256k1_ellswift_c2, &g);            /* n = c2*g */
   117      secp256k1_fe_add(&n, &l);                                    /* n = c1*s+c2*g */
   118      secp256k1_fe_mul(&n, &n, &u1);                               /* n = u*(c1*s+c2*g) */
   119      /* Possible optimization: in the invocation below, p^2 = (g+s)^2 is computed,
   120       * which we already have computed above. This could be deduplicated. */
   121      if (secp256k1_ge_x_frac_on_curve_var(&n, &p)) {
   122          /* Return x2 = n/p = u*(c1*s+c2*g)/(g+s) */
   123          *xn = n;
   124          return;
   125      }
   126      secp256k1_fe_mul(&l, &p, &u1);                               /* l = u*(g+s) */
   127      secp256k1_fe_add(&n, &l);                                    /* n = u*(c1*s+c2*g)+u*(g+s) */
   128      secp256k1_fe_negate(xn, &n, 2);                              /* n = -u*(c1*s+c2*g)-u*(g+s) */
   129  
   130      VERIFY_CHECK(secp256k1_ge_x_frac_on_curve_var(xn, &p));
   131      /* Return x3 = n/p = -(u*(c1*s+c2*g)/(g+s)+u) */
   132  }
   133  
   134  /** Decode ElligatorSwift encoding (u, t) to X coordinate. */
   135  static void secp256k1_ellswift_xswiftec_var(secp256k1_fe *x, const secp256k1_fe *u, const secp256k1_fe *t) {
   136      secp256k1_fe xn, xd;
   137      secp256k1_ellswift_xswiftec_frac_var(&xn, &xd, u, t);
   138      secp256k1_fe_inv_var(&xd, &xd);
   139      secp256k1_fe_mul(x, &xn, &xd);
   140  }
   141  
   142  /** Decode ElligatorSwift encoding (u, t) to point P. */
   143  static void secp256k1_ellswift_swiftec_var(secp256k1_ge *p, const secp256k1_fe *u, const secp256k1_fe *t) {
   144      secp256k1_fe x;
   145      secp256k1_ellswift_xswiftec_var(&x, u, t);
   146      secp256k1_ge_set_xo_var(p, &x, secp256k1_fe_is_odd(t));
   147  }
   148  
   149  /* Try to complete an ElligatorSwift encoding (u, t) for X coordinate x, given u and x.
   150   *
   151   * There may be up to 8 distinct t values such that (u, t) decodes back to x, but also
   152   * fewer, or none at all. Each such partial inverse can be accessed individually using a
   153   * distinct input argument c (in range 0-7), and some or all of these may return failure.
   154   * The following guarantees exist:
   155   * - Given (x, u), no two distinct c values give the same successful result t.
   156   * - Every successful result maps back to x through secp256k1_ellswift_xswiftec_var.
   157   * - Given (x, u), all t values that map back to x can be reached by combining the
   158   *   successful results from this function over all c values, with the exception of:
   159   *   - this function cannot be called with u=0
   160   *   - no result with t=0 will be returned
   161   *   - no result for which u^3 + t^2 + 7 = 0 will be returned.
   162   *
   163   * The rather unusual encoding of bits in c (a large "if" based on the middle bit, and then
   164   * using the low and high bits to pick signs of square roots) is to match the paper's
   165   * encoding more closely: c=0 through c=3 match branches 1..4 in the paper, while c=4 through
   166   * c=7 are copies of those with an additional negation of sqrt(w).
   167   */
   168  static int secp256k1_ellswift_xswiftec_inv_var(secp256k1_fe *t, const secp256k1_fe *x_in, const secp256k1_fe *u_in, int c) {
   169      /* The implemented algorithm is this (all arithmetic, except involving c, is mod p):
   170       *
   171       * - If (c & 2) = 0:
   172       *   - If (-x-u) is a valid X coordinate, fail.
   173       *   - Let s=-(u^3+7)/(u^2+u*x+x^2).
   174       *   - If s is not square, fail.
   175       *   - Let v=x.
   176       * - If (c & 2) = 2:
   177       *   - Let s=x-u.
   178       *   - If s is not square, fail.
   179       *   - Let r=sqrt(-s*(4*(u^3+7)+3*u^2*s)); fail if it doesn't exist.
   180       *   - If (c & 1) = 1 and r = 0, fail.
   181       *   - If s=0, fail.
   182       *   - Let v=(r/s-u)/2.
   183       * - Let w=sqrt(s).
   184       * - If (c & 5) = 0: return -w*(c3*u + v).
   185       * - If (c & 5) = 1: return  w*(c4*u + v).
   186       * - If (c & 5) = 4: return  w*(c3*u + v).
   187       * - If (c & 5) = 5: return -w*(c4*u + v).
   188       */
   189      secp256k1_fe x = *x_in, u = *u_in, g, v, s, m, r, q;
   190      int ret;
   191  
   192      secp256k1_fe_normalize_weak(&x);
   193      secp256k1_fe_normalize_weak(&u);
   194  
   195      VERIFY_CHECK(c >= 0 && c < 8);
   196      VERIFY_CHECK(secp256k1_ge_x_on_curve_var(&x));
   197  
   198      if (!(c & 2)) {
   199          /* c is in {0, 1, 4, 5}. In this case we look for an inverse under the x1 (if c=0 or
   200           * c=4) formula, or x2 (if c=1 or c=5) formula. */
   201  
   202          /* If -u-x is a valid X coordinate, fail. This would yield an encoding that roundtrips
   203           * back under the x3 formula instead (which has priority over x1 and x2, so the decoding
   204           * would not match x). */
   205          m = x;                                          /* m = x */
   206          secp256k1_fe_add(&m, &u);                       /* m = u+x */
   207          secp256k1_fe_negate(&m, &m, 2);                 /* m = -u-x */
   208          /* Test if (-u-x) is a valid X coordinate. If so, fail. */
   209          if (secp256k1_ge_x_on_curve_var(&m)) return 0;
   210  
   211          /* Let s = -(u^3 + 7)/(u^2 + u*x + x^2) [first part] */
   212          secp256k1_fe_sqr(&s, &m);                       /* s = (u+x)^2 */
   213          secp256k1_fe_negate(&s, &s, 1);                 /* s = -(u+x)^2 */
   214          secp256k1_fe_mul(&m, &u, &x);                   /* m = u*x */
   215          secp256k1_fe_add(&s, &m);                       /* s = -(u^2 + u*x + x^2) */
   216  
   217          /* Note that at this point, s = 0 is impossible. If it were the case:
   218           *             s = -(u^2 + u*x + x^2) = 0
   219           * =>                 u^2 + u*x + x^2 = 0
   220           * =>   (u + 2*x) * (u^2 + u*x + x^2) = 0
   221           * => 2*x^3 + 3*x^2*u + 3*x*u^2 + u^3 = 0
   222           * =>                 (x + u)^3 + x^3 = 0
   223           * =>                             x^3 = -(x + u)^3
   224           * =>                         x^3 + B = (-u - x)^3 + B
   225           *
   226           * However, we know x^3 + B is square (because x is on the curve) and
   227           * that (-u-x)^3 + B is not square (the secp256k1_ge_x_on_curve_var(&m)
   228           * test above would have failed). This is a contradiction, and thus the
   229           * assumption s=0 is false. */
   230          VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(&s));
   231  
   232          /* If s is not square, fail. We have not fully computed s yet, but s is square iff
   233           * -(u^3+7)*(u^2+u*x+x^2) is square (because a/b is square iff a*b is square and b is
   234           * nonzero). */
   235          secp256k1_fe_sqr(&g, &u);                       /* g = u^2 */
   236          secp256k1_fe_mul(&g, &g, &u);                   /* g = u^3 */
   237          secp256k1_fe_add_int(&g, SECP256K1_B);          /* g = u^3+7 */
   238          secp256k1_fe_mul(&m, &s, &g);                   /* m = -(u^3 + 7)*(u^2 + u*x + x^2) */
   239          if (!secp256k1_fe_is_square_var(&m)) return 0;
   240  
   241          /* Let s = -(u^3 + 7)/(u^2 + u*x + x^2) [second part] */
   242          secp256k1_fe_inv_var(&s, &s);                   /* s = -1/(u^2 + u*x + x^2) [no div by 0] */
   243          secp256k1_fe_mul(&s, &s, &g);                   /* s = -(u^3 + 7)/(u^2 + u*x + x^2) */
   244  
   245          /* Let v = x. */
   246          v = x;
   247      } else {
   248          /* c is in {2, 3, 6, 7}. In this case we look for an inverse under the x3 formula. */
   249  
   250          /* Let s = x-u. */
   251          secp256k1_fe_negate(&m, &u, 1);                 /* m = -u */
   252          s = m;                                          /* s = -u */
   253          secp256k1_fe_add(&s, &x);                       /* s = x-u */
   254  
   255          /* If s is not square, fail. */
   256          if (!secp256k1_fe_is_square_var(&s)) return 0;
   257  
   258          /* Let r = sqrt(-s*(4*(u^3+7)+3*u^2*s)); fail if it doesn't exist. */
   259          secp256k1_fe_sqr(&g, &u);                       /* g = u^2 */
   260          secp256k1_fe_mul(&q, &s, &g);                   /* q = s*u^2 */
   261          secp256k1_fe_mul_int(&q, 3);                    /* q = 3*s*u^2 */
   262          secp256k1_fe_mul(&g, &g, &u);                   /* g = u^3 */
   263          secp256k1_fe_mul_int(&g, 4);                    /* g = 4*u^3 */
   264          secp256k1_fe_add_int(&g, 4 * SECP256K1_B);      /* g = 4*(u^3+7) */
   265          secp256k1_fe_add(&q, &g);                       /* q = 4*(u^3+7)+3*s*u^2 */
   266          secp256k1_fe_mul(&q, &q, &s);                   /* q = s*(4*(u^3+7)+3*u^2*s) */
   267          secp256k1_fe_negate(&q, &q, 1);                 /* q = -s*(4*(u^3+7)+3*u^2*s) */
   268          if (!secp256k1_fe_is_square_var(&q)) return 0;
   269          ret = secp256k1_fe_sqrt(&r, &q);                /* r = sqrt(-s*(4*(u^3+7)+3*u^2*s)) */
   270  #ifdef VERIFY
   271          VERIFY_CHECK(ret);
   272  #else
   273          (void)ret;
   274  #endif
   275  
   276          /* If (c & 1) = 1 and r = 0, fail. */
   277          if (EXPECT((c & 1) && secp256k1_fe_normalizes_to_zero_var(&r), 0)) return 0;
   278  
   279          /* If s = 0, fail. */
   280          if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&s), 0)) return 0;
   281  
   282          /* Let v = (r/s-u)/2. */
   283          secp256k1_fe_inv_var(&v, &s);                   /* v = 1/s [no div by 0] */
   284          secp256k1_fe_mul(&v, &v, &r);                   /* v = r/s */
   285          secp256k1_fe_add(&v, &m);                       /* v = r/s-u */
   286          secp256k1_fe_half(&v);                          /* v = (r/s-u)/2 */
   287      }
   288  
   289      /* Let w = sqrt(s). */
   290      ret = secp256k1_fe_sqrt(&m, &s);                    /* m = sqrt(s) = w */
   291      VERIFY_CHECK(ret);
   292  
   293      /* Return logic. */
   294      if ((c & 5) == 0 || (c & 5) == 5) {
   295          secp256k1_fe_negate(&m, &m, 1);                 /* m = -w */
   296      }
   297      /* Now m = {-w if c&5=0 or c&5=5; w otherwise}. */
   298      secp256k1_fe_mul(&u, &u, c&1 ? &secp256k1_ellswift_c4 : &secp256k1_ellswift_c3);
   299      /* u = {c4 if c&1=1; c3 otherwise}*u */
   300      secp256k1_fe_add(&u, &v);                           /* u = {c4 if c&1=1; c3 otherwise}*u + v */
   301      secp256k1_fe_mul(t, &m, &u);
   302      return 1;
   303  }
   304  
   305  /** Use SHA256 as a PRNG, returning SHA256(hasher || cnt).
   306   *
   307   * hasher is a SHA256 object to which an incrementing 4-byte counter is written to generate randomness.
   308   * Writing 13 bytes (4 bytes for counter, plus 9 bytes for the SHA256 padding) cannot cross a
   309   * 64-byte block size boundary (to make sure it only triggers a single SHA256 compression). */
   310  static void secp256k1_ellswift_prng(unsigned char* out32, const secp256k1_sha256 *hasher, uint32_t cnt) {
   311      secp256k1_sha256 hash = *hasher;
   312      unsigned char buf4[4];
   313  #ifdef VERIFY
   314      size_t blocks = hash.bytes >> 6;
   315  #endif
   316      buf4[0] = cnt;
   317      buf4[1] = cnt >> 8;
   318      buf4[2] = cnt >> 16;
   319      buf4[3] = cnt >> 24;
   320      secp256k1_sha256_write(&hash, buf4, 4);
   321      secp256k1_sha256_finalize(&hash, out32);
   322  
   323      /* Writing and finalizing together should trigger exactly one SHA256 compression. */
   324      VERIFY_CHECK(((hash.bytes) >> 6) == (blocks + 1));
   325  }
   326  
   327  /** Find an ElligatorSwift encoding (u, t) for X coordinate x, and random Y coordinate.
   328   *
   329   * u32 is the 32-byte big endian encoding of u; t is the output field element t that still
   330   * needs encoding.
   331   *
   332   * hasher is a hasher in the secp256k1_ellswift_prng sense, with the same restrictions. */
   333  static void secp256k1_ellswift_xelligatorswift_var(unsigned char *u32, secp256k1_fe *t, const secp256k1_fe *x, const secp256k1_sha256 *hasher) {
   334      /* Pool of 3-bit branch values. */
   335      unsigned char branch_hash[32];
   336      /* Number of 3-bit values in branch_hash left. */
   337      int branches_left = 0;
   338      /* Field elements u and branch values are extracted from RNG based on hasher for consecutive
   339       * values of cnt. cnt==0 is first used to populate a pool of 64 4-bit branch values. The 64
   340       * cnt values that follow are used to generate field elements u. cnt==65 (and multiples
   341       * thereof) are used to repopulate the pool and start over, if that were ever necessary.
   342       * On average, 4 iterations are needed. */
   343      uint32_t cnt = 0;
   344      while (1) {
   345          int branch;
   346          secp256k1_fe u;
   347          /* If the pool of branch values is empty, populate it. */
   348          if (branches_left == 0) {
   349              secp256k1_ellswift_prng(branch_hash, hasher, cnt++);
   350              branches_left = 64;
   351          }
   352          /* Take a 3-bit branch value from the branch pool (top bit is discarded). */
   353          --branches_left;
   354          branch = (branch_hash[branches_left >> 1] >> ((branches_left & 1) << 2)) & 7;
   355          /* Compute a new u value by hashing. */
   356          secp256k1_ellswift_prng(u32, hasher, cnt++);
   357          /* overflow is not a problem (we prefer uniform u32 over uniform u). */
   358          secp256k1_fe_set_b32_mod(&u, u32);
   359          /* Since u is the output of a hash, it should practically never be 0. We could apply the
   360           * u=0 to u=1 correction here too to deal with that case still, but it's such a low
   361           * probability event that we do not bother. */
   362          VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(&u));
   363  
   364          /* Find a remainder t, and return it if found. */
   365          if (EXPECT(secp256k1_ellswift_xswiftec_inv_var(t, x, &u, branch), 0)) break;
   366      }
   367  }
   368  
   369  /** Find an ElligatorSwift encoding (u, t) for point P.
   370   *
   371   * This is similar secp256k1_ellswift_xelligatorswift_var, except it takes a full group element p
   372   * as input, and returns an encoding that matches the provided Y coordinate rather than a random
   373   * one.
   374   */
   375  static void secp256k1_ellswift_elligatorswift_var(unsigned char *u32, secp256k1_fe *t, const secp256k1_ge *p, const secp256k1_sha256 *hasher) {
   376      secp256k1_ellswift_xelligatorswift_var(u32, t, &p->x, hasher);
   377      secp256k1_fe_normalize_var(t);
   378      if (secp256k1_fe_is_odd(t) != secp256k1_fe_is_odd(&p->y)) {
   379          secp256k1_fe_negate(t, t, 1);
   380          secp256k1_fe_normalize_var(t);
   381      }
   382  }
   383  
   384  /** Set hash state to the BIP340 tagged hash midstate for "secp256k1_ellswift_encode". */
   385  static void secp256k1_ellswift_sha256_init_encode(secp256k1_sha256* hash) {
   386      secp256k1_sha256_initialize(hash);
   387      hash->s[0] = 0xd1a6524bul;
   388      hash->s[1] = 0x028594b3ul;
   389      hash->s[2] = 0x96e42f4eul;
   390      hash->s[3] = 0x1037a177ul;
   391      hash->s[4] = 0x1b8fcb8bul;
   392      hash->s[5] = 0x56023885ul;
   393      hash->s[6] = 0x2560ede1ul;
   394      hash->s[7] = 0xd626b715ul;
   395  
   396      hash->bytes = 64;
   397  }
   398  
   399  int secp256k1_ellswift_encode(const secp256k1_context *ctx, unsigned char *ell64, const secp256k1_pubkey *pubkey, const unsigned char *rnd32) {
   400      secp256k1_ge p;
   401      VERIFY_CHECK(ctx != NULL);
   402      ARG_CHECK(ell64 != NULL);
   403      ARG_CHECK(pubkey != NULL);
   404      ARG_CHECK(rnd32 != NULL);
   405  
   406      if (secp256k1_pubkey_load(ctx, &p, pubkey)) {
   407          secp256k1_fe t;
   408          unsigned char p64[64] = {0};
   409          size_t ser_size;
   410          int ser_ret;
   411          secp256k1_sha256 hash;
   412  
   413          /* Set up hasher state; the used RNG is H(pubkey || "\x00"*31 || rnd32 || cnt++), using
   414           * BIP340 tagged hash with tag "secp256k1_ellswift_encode". */
   415          secp256k1_ellswift_sha256_init_encode(&hash);
   416          ser_ret = secp256k1_eckey_pubkey_serialize(&p, p64, &ser_size, 1);
   417  #ifdef VERIFY
   418          VERIFY_CHECK(ser_ret && ser_size == 33);
   419  #else
   420          (void)ser_ret;
   421  #endif
   422          secp256k1_sha256_write(&hash, p64, sizeof(p64));
   423          secp256k1_sha256_write(&hash, rnd32, 32);
   424  
   425          /* Compute ElligatorSwift encoding and construct output. */
   426          secp256k1_ellswift_elligatorswift_var(ell64, &t, &p, &hash); /* puts u in ell64[0..32] */
   427          secp256k1_fe_get_b32(ell64 + 32, &t); /* puts t in ell64[32..64] */
   428          return 1;
   429      }
   430      /* Only reached in case the provided pubkey is invalid. */
   431      memset(ell64, 0, 64);
   432      return 0;
   433  }
   434  
   435  /** Set hash state to the BIP340 tagged hash midstate for "secp256k1_ellswift_create". */
   436  static void secp256k1_ellswift_sha256_init_create(secp256k1_sha256* hash) {
   437      secp256k1_sha256_initialize(hash);
   438      hash->s[0] = 0xd29e1bf5ul;
   439      hash->s[1] = 0xf7025f42ul;
   440      hash->s[2] = 0x9b024773ul;
   441      hash->s[3] = 0x094cb7d5ul;
   442      hash->s[4] = 0xe59ed789ul;
   443      hash->s[5] = 0x03bc9786ul;
   444      hash->s[6] = 0x68335b35ul;
   445      hash->s[7] = 0x4e363b53ul;
   446  
   447      hash->bytes = 64;
   448  }
   449  
   450  int secp256k1_ellswift_create(const secp256k1_context *ctx, unsigned char *ell64, const unsigned char *seckey32, const unsigned char *auxrnd32) {
   451      secp256k1_ge p;
   452      secp256k1_fe t;
   453      secp256k1_sha256 hash;
   454      secp256k1_scalar seckey_scalar;
   455      int ret;
   456      static const unsigned char zero32[32] = {0};
   457  
   458      /* Sanity check inputs. */
   459      VERIFY_CHECK(ctx != NULL);
   460      ARG_CHECK(ell64 != NULL);
   461      memset(ell64, 0, 64);
   462      ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
   463      ARG_CHECK(seckey32 != NULL);
   464  
   465      /* Compute (affine) public key */
   466      ret = secp256k1_ec_pubkey_create_helper(&ctx->ecmult_gen_ctx, &seckey_scalar, &p, seckey32);
   467      secp256k1_declassify(ctx, &p, sizeof(p)); /* not constant time in produced pubkey */
   468      secp256k1_fe_normalize_var(&p.x);
   469      secp256k1_fe_normalize_var(&p.y);
   470  
   471      /* Set up hasher state. The used RNG is H(privkey || "\x00"*32 [|| auxrnd32] || cnt++),
   472       * using BIP340 tagged hash with tag "secp256k1_ellswift_create". */
   473      secp256k1_ellswift_sha256_init_create(&hash);
   474      secp256k1_sha256_write(&hash, seckey32, 32);
   475      secp256k1_sha256_write(&hash, zero32, sizeof(zero32));
   476      secp256k1_declassify(ctx, &hash, sizeof(hash)); /* private key is hashed now */
   477      if (auxrnd32) secp256k1_sha256_write(&hash, auxrnd32, 32);
   478  
   479      /* Compute ElligatorSwift encoding and construct output. */
   480      secp256k1_ellswift_elligatorswift_var(ell64, &t, &p, &hash); /* puts u in ell64[0..32] */
   481      secp256k1_fe_get_b32(ell64 + 32, &t); /* puts t in ell64[32..64] */
   482  
   483      secp256k1_memczero(ell64, 64, !ret);
   484      secp256k1_scalar_clear(&seckey_scalar);
   485  
   486      return ret;
   487  }
   488  
   489  int secp256k1_ellswift_decode(const secp256k1_context *ctx, secp256k1_pubkey *pubkey, const unsigned char *ell64) {
   490      secp256k1_fe u, t;
   491      secp256k1_ge p;
   492      VERIFY_CHECK(ctx != NULL);
   493      ARG_CHECK(pubkey != NULL);
   494      ARG_CHECK(ell64 != NULL);
   495  
   496      secp256k1_fe_set_b32_mod(&u, ell64);
   497      secp256k1_fe_set_b32_mod(&t, ell64 + 32);
   498      secp256k1_fe_normalize_var(&t);
   499      secp256k1_ellswift_swiftec_var(&p, &u, &t);
   500      secp256k1_pubkey_save(pubkey, &p);
   501      return 1;
   502  }
   503  
   504  static int ellswift_xdh_hash_function_prefix(unsigned char *output, const unsigned char *x32, const unsigned char *ell_a64, const unsigned char *ell_b64, void *data) {
   505      secp256k1_sha256 sha;
   506  
   507      secp256k1_sha256_initialize(&sha);
   508      secp256k1_sha256_write(&sha, data, 64);
   509      secp256k1_sha256_write(&sha, ell_a64, 64);
   510      secp256k1_sha256_write(&sha, ell_b64, 64);
   511      secp256k1_sha256_write(&sha, x32, 32);
   512      secp256k1_sha256_finalize(&sha, output);
   513      secp256k1_sha256_clear(&sha);
   514  
   515      return 1;
   516  }
   517  
   518  /** Set hash state to the BIP340 tagged hash midstate for "bip324_ellswift_xonly_ecdh". */
   519  static void secp256k1_ellswift_sha256_init_bip324(secp256k1_sha256* hash) {
   520      secp256k1_sha256_initialize(hash);
   521      hash->s[0] = 0x8c12d730ul;
   522      hash->s[1] = 0x827bd392ul;
   523      hash->s[2] = 0x9e4fb2eeul;
   524      hash->s[3] = 0x207b373eul;
   525      hash->s[4] = 0x2292bd7aul;
   526      hash->s[5] = 0xaa5441bcul;
   527      hash->s[6] = 0x15c3779ful;
   528      hash->s[7] = 0xcfb52549ul;
   529  
   530      hash->bytes = 64;
   531  }
   532  
   533  static int ellswift_xdh_hash_function_bip324(unsigned char* output, const unsigned char *x32, const unsigned char *ell_a64, const unsigned char *ell_b64, void *data) {
   534      secp256k1_sha256 sha;
   535  
   536      (void)data;
   537  
   538      secp256k1_ellswift_sha256_init_bip324(&sha);
   539      secp256k1_sha256_write(&sha, ell_a64, 64);
   540      secp256k1_sha256_write(&sha, ell_b64, 64);
   541      secp256k1_sha256_write(&sha, x32, 32);
   542      secp256k1_sha256_finalize(&sha, output);
   543      secp256k1_sha256_clear(&sha);
   544  
   545      return 1;
   546  }
   547  
   548  const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_prefix = ellswift_xdh_hash_function_prefix;
   549  const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_bip324 = ellswift_xdh_hash_function_bip324;
   550  
   551  int secp256k1_ellswift_xdh(const secp256k1_context *ctx, unsigned char *output, const unsigned char *ell_a64, const unsigned char *ell_b64, const unsigned char *seckey32, int party, secp256k1_ellswift_xdh_hash_function hashfp, void *data) {
   552      int ret = 0;
   553      int overflow;
   554      secp256k1_scalar s;
   555      secp256k1_fe xn, xd, px, u, t;
   556      unsigned char sx[32];
   557      const unsigned char* theirs64;
   558  
   559      VERIFY_CHECK(ctx != NULL);
   560      ARG_CHECK(output != NULL);
   561      ARG_CHECK(ell_a64 != NULL);
   562      ARG_CHECK(ell_b64 != NULL);
   563      ARG_CHECK(seckey32 != NULL);
   564      ARG_CHECK(hashfp != NULL);
   565  
   566      /* Load remote public key (as fraction). */
   567      theirs64 = party ? ell_a64 : ell_b64;
   568      secp256k1_fe_set_b32_mod(&u, theirs64);
   569      secp256k1_fe_set_b32_mod(&t, theirs64 + 32);
   570      secp256k1_ellswift_xswiftec_frac_var(&xn, &xd, &u, &t);
   571  
   572      /* Load private key (using one if invalid). */
   573      secp256k1_scalar_set_b32(&s, seckey32, &overflow);
   574      overflow = secp256k1_scalar_is_zero(&s);
   575      secp256k1_scalar_cmov(&s, &secp256k1_scalar_one, overflow);
   576  
   577      /* Compute shared X coordinate. */
   578      secp256k1_ecmult_const_xonly(&px, &xn, &xd, &s, 1);
   579      secp256k1_fe_normalize(&px);
   580      secp256k1_fe_get_b32(sx, &px);
   581  
   582      /* Invoke hasher */
   583      ret = hashfp(output, sx, ell_a64, ell_b64, data);
   584  
   585      secp256k1_memclear(sx, sizeof(sx));
   586      secp256k1_fe_clear(&px);
   587      secp256k1_scalar_clear(&s);
   588  
   589      return !!ret & !overflow;
   590  }
   591  
   592  #endif