github.com/ethereum/go-ethereum@v1.16.1/crypto/signature_nocgo.go (about) 1 // Copyright 2017 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 //go:build nacl || js || wasip1 || !cgo || gofuzz || tinygo 18 // +build nacl js wasip1 !cgo gofuzz tinygo 19 20 package crypto 21 22 import ( 23 "crypto/ecdsa" 24 "errors" 25 "fmt" 26 "math/big" 27 28 "github.com/decred/dcrd/dcrec/secp256k1/v4" 29 decred_ecdsa "github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa" 30 ) 31 32 // Ecrecover returns the uncompressed public key that created the given signature. 33 func Ecrecover(hash, sig []byte) ([]byte, error) { 34 pub, err := sigToPub(hash, sig) 35 if err != nil { 36 return nil, err 37 } 38 bytes := pub.SerializeUncompressed() 39 return bytes, err 40 } 41 42 func sigToPub(hash, sig []byte) (*secp256k1.PublicKey, error) { 43 if len(sig) != SignatureLength { 44 return nil, errors.New("invalid signature") 45 } 46 // Convert to secp256k1 input format with 'recovery id' v at the beginning. 47 btcsig := make([]byte, SignatureLength) 48 btcsig[0] = sig[RecoveryIDOffset] + 27 49 copy(btcsig[1:], sig) 50 51 pub, _, err := decred_ecdsa.RecoverCompact(btcsig, hash) 52 return pub, err 53 } 54 55 // SigToPub returns the public key that created the given signature. 56 func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) { 57 pub, err := sigToPub(hash, sig) 58 if err != nil { 59 return nil, err 60 } 61 // We need to explicitly set the curve here, because we're wrapping 62 // the original curve to add (un-)marshalling 63 return &ecdsa.PublicKey{ 64 Curve: S256(), 65 X: pub.X(), 66 Y: pub.Y(), 67 }, nil 68 } 69 70 // Sign calculates an ECDSA signature. 71 // 72 // This function is susceptible to chosen plaintext attacks that can leak 73 // information about the private key that is used for signing. Callers must 74 // be aware that the given hash cannot be chosen by an adversary. Common 75 // solution is to hash any input before calculating the signature. 76 // 77 // The produced signature is in the [R || S || V] format where V is 0 or 1. 78 func Sign(hash []byte, prv *ecdsa.PrivateKey) ([]byte, error) { 79 if len(hash) != 32 { 80 return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash)) 81 } 82 if prv.Curve != S256() { 83 return nil, errors.New("private key curve is not secp256k1") 84 } 85 // ecdsa.PrivateKey -> secp256k1.PrivateKey 86 var priv secp256k1.PrivateKey 87 if overflow := priv.Key.SetByteSlice(prv.D.Bytes()); overflow || priv.Key.IsZero() { 88 return nil, errors.New("invalid private key") 89 } 90 defer priv.Zero() 91 sig := decred_ecdsa.SignCompact(&priv, hash, false) // ref uncompressed pubkey 92 // Convert to Ethereum signature format with 'recovery id' v at the end. 93 v := sig[0] - 27 94 copy(sig, sig[1:]) 95 sig[RecoveryIDOffset] = v 96 return sig, nil 97 } 98 99 // VerifySignature checks that the given public key created signature over hash. 100 // The public key should be in compressed (33 bytes) or uncompressed (65 bytes) format. 101 // The signature should have the 64 byte [R || S] format. 102 func VerifySignature(pubkey, hash, signature []byte) bool { 103 if len(signature) != 64 { 104 return false 105 } 106 var r, s secp256k1.ModNScalar 107 if r.SetByteSlice(signature[:32]) { 108 return false // overflow 109 } 110 if s.SetByteSlice(signature[32:]) { 111 return false 112 } 113 sig := decred_ecdsa.NewSignature(&r, &s) 114 key, err := secp256k1.ParsePubKey(pubkey) 115 if err != nil { 116 return false 117 } 118 // Reject malleable signatures. libsecp256k1 does this check but decred doesn't. 119 if s.IsOverHalfOrder() { 120 return false 121 } 122 return sig.Verify(hash, key) 123 } 124 125 // DecompressPubkey parses a public key in the 33-byte compressed format. 126 func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) { 127 if len(pubkey) != 33 { 128 return nil, errors.New("invalid compressed public key length") 129 } 130 key, err := secp256k1.ParsePubKey(pubkey) 131 if err != nil { 132 return nil, err 133 } 134 // We need to explicitly set the curve here, because we're wrapping 135 // the original curve to add (un-)marshalling 136 return &ecdsa.PublicKey{ 137 Curve: S256(), 138 X: key.X(), 139 Y: key.Y(), 140 }, nil 141 } 142 143 // CompressPubkey encodes a public key to the 33-byte compressed format. The 144 // provided PublicKey must be valid. Namely, the coordinates must not be larger 145 // than 32 bytes each, they must be less than the field prime, and it must be a 146 // point on the secp256k1 curve. This is the case for a PublicKey constructed by 147 // elliptic.Unmarshal (see UnmarshalPubkey), or by ToECDSA and ecdsa.GenerateKey 148 // when constructing a PrivateKey. 149 func CompressPubkey(pubkey *ecdsa.PublicKey) []byte { 150 // NOTE: the coordinates may be validated with 151 // secp256k1.ParsePubKey(FromECDSAPub(pubkey)) 152 var x, y secp256k1.FieldVal 153 x.SetByteSlice(pubkey.X.Bytes()) 154 y.SetByteSlice(pubkey.Y.Bytes()) 155 return secp256k1.NewPublicKey(&x, &y).SerializeCompressed() 156 } 157 158 // S256 returns an instance of the secp256k1 curve. 159 func S256() EllipticCurve { 160 return btCurve{secp256k1.S256()} 161 } 162 163 type btCurve struct { 164 *secp256k1.KoblitzCurve 165 } 166 167 // Marshal converts a point given as (x, y) into a byte slice. 168 func (curve btCurve) Marshal(x, y *big.Int) []byte { 169 byteLen := (curve.Params().BitSize + 7) / 8 170 171 ret := make([]byte, 1+2*byteLen) 172 ret[0] = 4 // uncompressed point 173 174 x.FillBytes(ret[1 : 1+byteLen]) 175 y.FillBytes(ret[1+byteLen : 1+2*byteLen]) 176 177 return ret 178 } 179 180 // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On 181 // error, x = nil. 182 func (curve btCurve) Unmarshal(data []byte) (x, y *big.Int) { 183 byteLen := (curve.Params().BitSize + 7) / 8 184 if len(data) != 1+2*byteLen { 185 return nil, nil 186 } 187 if data[0] != 4 { // uncompressed form 188 return nil, nil 189 } 190 x = new(big.Int).SetBytes(data[1 : 1+byteLen]) 191 y = new(big.Int).SetBytes(data[1+byteLen:]) 192 return 193 }