github.com/ethereum/go-ethereum@v1.16.1/trie/sync.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package trie 18 19 import ( 20 "errors" 21 "fmt" 22 "sync" 23 24 "github.com/ethereum/go-ethereum/common" 25 "github.com/ethereum/go-ethereum/common/hexutil" 26 "github.com/ethereum/go-ethereum/common/prque" 27 "github.com/ethereum/go-ethereum/core/rawdb" 28 "github.com/ethereum/go-ethereum/core/types" 29 "github.com/ethereum/go-ethereum/crypto" 30 "github.com/ethereum/go-ethereum/ethdb" 31 "github.com/ethereum/go-ethereum/log" 32 "github.com/ethereum/go-ethereum/metrics" 33 ) 34 35 // ErrNotRequested is returned by the trie sync when it's requested to process a 36 // node it did not request. 37 var ErrNotRequested = errors.New("not requested") 38 39 // ErrAlreadyProcessed is returned by the trie sync when it's requested to process a 40 // node it already processed previously. 41 var ErrAlreadyProcessed = errors.New("already processed") 42 43 // maxFetchesPerDepth is the maximum number of pending trie nodes per depth. The 44 // role of this value is to limit the number of trie nodes that get expanded in 45 // memory if the node was configured with a significant number of peers. 46 const maxFetchesPerDepth = 16384 47 48 var ( 49 // deletionGauge is the metric to track how many trie node deletions 50 // are performed in total during the sync process. 51 deletionGauge = metrics.NewRegisteredGauge("trie/sync/delete", nil) 52 53 // lookupGauge is the metric to track how many trie node lookups are 54 // performed to determine if node needs to be deleted. 55 lookupGauge = metrics.NewRegisteredGauge("trie/sync/lookup", nil) 56 57 // accountNodeSyncedGauge is the metric to track how many account trie 58 // node are written during the sync. 59 accountNodeSyncedGauge = metrics.NewRegisteredGauge("trie/sync/nodes/account", nil) 60 61 // storageNodeSyncedGauge is the metric to track how many account trie 62 // node are written during the sync. 63 storageNodeSyncedGauge = metrics.NewRegisteredGauge("trie/sync/nodes/storage", nil) 64 65 // codeSyncedGauge is the metric to track how many contract codes are 66 // written during the sync. 67 codeSyncedGauge = metrics.NewRegisteredGauge("trie/sync/codes", nil) 68 ) 69 70 // SyncPath is a path tuple identifying a particular trie node either in a single 71 // trie (account) or a layered trie (account -> storage). 72 // 73 // Content wise the tuple either has 1 element if it addresses a node in a single 74 // trie or 2 elements if it addresses a node in a stacked trie. 75 // 76 // To support aiming arbitrary trie nodes, the path needs to support odd nibble 77 // lengths. To avoid transferring expanded hex form over the network, the last 78 // part of the tuple (which needs to index into the middle of a trie) is compact 79 // encoded. In case of a 2-tuple, the first item is always 32 bytes so that is 80 // simple binary encoded. 81 // 82 // Examples: 83 // - Path 0x9 -> {0x19} 84 // - Path 0x99 -> {0x0099} 85 // - Path 0x01234567890123456789012345678901012345678901234567890123456789019 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x19} 86 // - Path 0x012345678901234567890123456789010123456789012345678901234567890199 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x0099} 87 type SyncPath [][]byte 88 89 // NewSyncPath converts an expanded trie path from nibble form into a compact 90 // version that can be sent over the network. 91 func NewSyncPath(path []byte) SyncPath { 92 // If the hash is from the account trie, append a single item, if it 93 // is from a storage trie, append a tuple. Note, the length 64 is 94 // clashing between account leaf and storage root. It's fine though 95 // because having a trie node at 64 depth means a hash collision was 96 // found and we're long dead. 97 if len(path) < 64 { 98 return SyncPath{hexToCompact(path)} 99 } 100 return SyncPath{hexToKeybytes(path[:64]), hexToCompact(path[64:])} 101 } 102 103 // LeafCallback is a callback type invoked when a trie operation reaches a leaf 104 // node. 105 // 106 // The keys is a path tuple identifying a particular trie node either in a single 107 // trie (account) or a layered trie (account -> storage). Each key in the tuple 108 // is in the raw format(32 bytes). 109 // 110 // The path is a composite hexary path identifying the trie node. All the key 111 // bytes are converted to the hexary nibbles and composited with the parent path 112 // if the trie node is in a layered trie. 113 // 114 // It's used by state sync and commit to allow handling external references 115 // between account and storage tries. And also it's used in the state healing 116 // for extracting the raw states(leaf nodes) with corresponding paths. 117 type LeafCallback func(keys [][]byte, path []byte, leaf []byte, parent common.Hash, parentPath []byte) error 118 119 // nodeRequest represents a scheduled or already in-flight trie node retrieval request. 120 type nodeRequest struct { 121 hash common.Hash // Hash of the trie node to retrieve 122 path []byte // Merkle path leading to this node for prioritization 123 data []byte // Data content of the node, cached until all subtrees complete 124 125 parent *nodeRequest // Parent state node referencing this entry 126 deps int // Number of dependencies before allowed to commit this node 127 callback LeafCallback // Callback to invoke if a leaf node it reached on this branch 128 } 129 130 // codeRequest represents a scheduled or already in-flight bytecode retrieval request. 131 type codeRequest struct { 132 hash common.Hash // Hash of the contract bytecode to retrieve 133 path []byte // Merkle path leading to this node for prioritization 134 data []byte // Data content of the node, cached until all subtrees complete 135 parents []*nodeRequest // Parent state nodes referencing this entry (notify all upon completion) 136 } 137 138 // NodeSyncResult is a response with requested trie node along with its node path. 139 type NodeSyncResult struct { 140 Path string // Path of the originally unknown trie node 141 Data []byte // Data content of the retrieved trie node 142 } 143 144 // CodeSyncResult is a response with requested bytecode along with its hash. 145 type CodeSyncResult struct { 146 Hash common.Hash // Hash the originally unknown bytecode 147 Data []byte // Data content of the retrieved bytecode 148 } 149 150 // nodeOp represents an operation upon the trie node. It can either represent a 151 // deletion to the specific node or a node write for persisting retrieved node. 152 type nodeOp struct { 153 del bool // flag if op stands for a delete operation 154 owner common.Hash // identifier of the trie (empty for account trie) 155 path []byte // path from the root to the specified node. 156 blob []byte // the content of the node (nil for deletion) 157 hash common.Hash // hash of the node content (empty for node deletion) 158 } 159 160 // valid checks whether the node operation is valid. 161 func (op *nodeOp) valid() bool { 162 if op.del && len(op.blob) != 0 { 163 return false 164 } 165 if !op.del && len(op.blob) == 0 { 166 return false 167 } 168 return true 169 } 170 171 // string returns the node operation in string representation. 172 func (op *nodeOp) string() string { 173 var node string 174 if op.owner == (common.Hash{}) { 175 node = fmt.Sprintf("node: (%v)", op.path) 176 } else { 177 node = fmt.Sprintf("node: (%x-%v)", op.owner, op.path) 178 } 179 var blobHex string 180 if len(op.blob) == 0 { 181 blobHex = "nil" 182 } else { 183 blobHex = hexutil.Encode(op.blob) 184 } 185 if op.del { 186 return fmt.Sprintf("del %s %s %s", node, blobHex, op.hash.Hex()) 187 } 188 return fmt.Sprintf("write %s %s %s", node, blobHex, op.hash.Hex()) 189 } 190 191 // syncMemBatch is an in-memory buffer of successfully downloaded but not yet 192 // persisted data items. 193 type syncMemBatch struct { 194 scheme string // State scheme identifier 195 codes map[common.Hash][]byte // In-memory batch of recently completed codes 196 nodes []nodeOp // In-memory batch of recently completed/deleted nodes 197 size uint64 // Estimated batch-size of in-memory data. 198 } 199 200 // newSyncMemBatch allocates a new memory-buffer for not-yet persisted trie nodes. 201 func newSyncMemBatch(scheme string) *syncMemBatch { 202 return &syncMemBatch{ 203 scheme: scheme, 204 codes: make(map[common.Hash][]byte), 205 } 206 } 207 208 // hasCode reports the contract code with specific hash is already cached. 209 func (batch *syncMemBatch) hasCode(hash common.Hash) bool { 210 _, ok := batch.codes[hash] 211 return ok 212 } 213 214 // addCode caches a contract code database write operation. 215 func (batch *syncMemBatch) addCode(hash common.Hash, code []byte) { 216 batch.codes[hash] = code 217 batch.size += common.HashLength + uint64(len(code)) 218 } 219 220 // addNode caches a node database write operation. 221 func (batch *syncMemBatch) addNode(owner common.Hash, path []byte, blob []byte, hash common.Hash) { 222 if batch.scheme == rawdb.PathScheme { 223 if owner == (common.Hash{}) { 224 batch.size += uint64(len(path) + len(blob)) 225 } else { 226 batch.size += common.HashLength + uint64(len(path)+len(blob)) 227 } 228 } else { 229 batch.size += common.HashLength + uint64(len(blob)) 230 } 231 batch.nodes = append(batch.nodes, nodeOp{ 232 owner: owner, 233 path: path, 234 blob: blob, 235 hash: hash, 236 }) 237 } 238 239 // delNode caches a node database delete operation. 240 func (batch *syncMemBatch) delNode(owner common.Hash, path []byte) { 241 if batch.scheme != rawdb.PathScheme { 242 log.Error("Unexpected node deletion", "owner", owner, "path", path, "scheme", batch.scheme) 243 return // deletion is not supported in hash mode. 244 } 245 if owner == (common.Hash{}) { 246 batch.size += uint64(len(path)) 247 } else { 248 batch.size += common.HashLength + uint64(len(path)) 249 } 250 batch.nodes = append(batch.nodes, nodeOp{ 251 del: true, 252 owner: owner, 253 path: path, 254 }) 255 } 256 257 // Sync is the main state trie synchronisation scheduler, which provides yet 258 // unknown trie hashes to retrieve, accepts node data associated with said hashes 259 // and reconstructs the trie step by step until all is done. 260 type Sync struct { 261 scheme string // Node scheme descriptor used in database. 262 database ethdb.KeyValueReader // Persistent database to check for existing entries 263 membatch *syncMemBatch // Memory buffer to avoid frequent database writes 264 nodeReqs map[string]*nodeRequest // Pending requests pertaining to a trie node path 265 codeReqs map[common.Hash]*codeRequest // Pending requests pertaining to a code hash 266 queue *prque.Prque[int64, any] // Priority queue with the pending requests 267 fetches map[int]int // Number of active fetches per trie node depth 268 } 269 270 // NewSync creates a new trie data download scheduler. 271 func NewSync(root common.Hash, database ethdb.KeyValueReader, callback LeafCallback, scheme string) *Sync { 272 ts := &Sync{ 273 scheme: scheme, 274 database: database, 275 membatch: newSyncMemBatch(scheme), 276 nodeReqs: make(map[string]*nodeRequest), 277 codeReqs: make(map[common.Hash]*codeRequest), 278 queue: prque.New[int64, any](nil), // Ugh, can contain both string and hash, whyyy 279 fetches: make(map[int]int), 280 } 281 ts.AddSubTrie(root, nil, common.Hash{}, nil, callback) 282 return ts 283 } 284 285 // AddSubTrie registers a new trie to the sync code, rooted at the designated 286 // parent for completion tracking. The given path is a unique node path in 287 // hex format and contain all the parent path if it's layered trie node. 288 func (s *Sync) AddSubTrie(root common.Hash, path []byte, parent common.Hash, parentPath []byte, callback LeafCallback) { 289 if root == types.EmptyRootHash { 290 return 291 } 292 owner, inner := ResolvePath(path) 293 exist, inconsistent := s.hasNode(owner, inner, root) 294 if exist { 295 // The entire subtrie is already present in the database. 296 return 297 } else if inconsistent { 298 // There is a pre-existing node with the wrong hash in DB, remove it. 299 s.membatch.delNode(owner, inner) 300 } 301 // Assemble the new sub-trie sync request 302 req := &nodeRequest{ 303 hash: root, 304 path: path, 305 callback: callback, 306 } 307 // If this sub-trie has a designated parent, link them together 308 if parent != (common.Hash{}) { 309 ancestor := s.nodeReqs[string(parentPath)] 310 if ancestor == nil { 311 panic(fmt.Sprintf("sub-trie ancestor not found: %x", parent)) 312 } 313 ancestor.deps++ 314 req.parent = ancestor 315 } 316 s.scheduleNodeRequest(req) 317 } 318 319 // AddCodeEntry schedules the direct retrieval of a contract code that should not 320 // be interpreted as a trie node, but rather accepted and stored into the database 321 // as is. 322 func (s *Sync) AddCodeEntry(hash common.Hash, path []byte, parent common.Hash, parentPath []byte) { 323 // Short circuit if the entry is empty or already known 324 if hash == types.EmptyCodeHash { 325 return 326 } 327 if s.membatch.hasCode(hash) { 328 return 329 } 330 // If database says duplicate, the blob is present for sure. 331 // Note we only check the existence with new code scheme, snap 332 // sync is expected to run with a fresh new node. Even there 333 // exists the code with legacy format, fetch and store with 334 // new scheme anyway. 335 if rawdb.HasCodeWithPrefix(s.database, hash) { 336 return 337 } 338 // Assemble the new sub-trie sync request 339 req := &codeRequest{ 340 path: path, 341 hash: hash, 342 } 343 // If this sub-trie has a designated parent, link them together 344 if parent != (common.Hash{}) { 345 ancestor := s.nodeReqs[string(parentPath)] // the parent of codereq can ONLY be nodereq 346 if ancestor == nil { 347 panic(fmt.Sprintf("raw-entry ancestor not found: %x", parent)) 348 } 349 ancestor.deps++ 350 req.parents = append(req.parents, ancestor) 351 } 352 s.scheduleCodeRequest(req) 353 } 354 355 // Missing retrieves the known missing nodes from the trie for retrieval. To aid 356 // both eth/6x style fast sync and snap/1x style state sync, the paths of trie 357 // nodes are returned too, as well as separate hash list for codes. 358 func (s *Sync) Missing(max int) ([]string, []common.Hash, []common.Hash) { 359 var ( 360 nodePaths []string 361 nodeHashes []common.Hash 362 codeHashes []common.Hash 363 ) 364 for !s.queue.Empty() && (max == 0 || len(nodeHashes)+len(codeHashes) < max) { 365 // Retrieve the next item in line 366 item, prio := s.queue.Peek() 367 368 // If we have too many already-pending tasks for this depth, throttle 369 depth := int(prio >> 56) 370 if s.fetches[depth] > maxFetchesPerDepth { 371 break 372 } 373 // Item is allowed to be scheduled, add it to the task list 374 s.queue.Pop() 375 s.fetches[depth]++ 376 377 switch item := item.(type) { 378 case common.Hash: 379 codeHashes = append(codeHashes, item) 380 case string: 381 req, ok := s.nodeReqs[item] 382 if !ok { 383 log.Error("Missing node request", "path", item) 384 continue // System very wrong, shouldn't happen 385 } 386 nodePaths = append(nodePaths, item) 387 nodeHashes = append(nodeHashes, req.hash) 388 } 389 } 390 return nodePaths, nodeHashes, codeHashes 391 } 392 393 // ProcessCode injects the received data for requested item. Note it can 394 // happen that the single response commits two pending requests(e.g. 395 // there are two requests one for code and one for node but the hash 396 // is same). In this case the second response for the same hash will 397 // be treated as "non-requested" item or "already-processed" item but 398 // there is no downside. 399 func (s *Sync) ProcessCode(result CodeSyncResult) error { 400 // If the code was not requested or it's already processed, bail out 401 req := s.codeReqs[result.Hash] 402 if req == nil { 403 return ErrNotRequested 404 } 405 if req.data != nil { 406 return ErrAlreadyProcessed 407 } 408 req.data = result.Data 409 return s.commitCodeRequest(req) 410 } 411 412 // ProcessNode injects the received data for requested item. Note it can 413 // happen that the single response commits two pending requests(e.g. 414 // there are two requests one for code and one for node but the hash 415 // is same). In this case the second response for the same hash will 416 // be treated as "non-requested" item or "already-processed" item but 417 // there is no downside. 418 func (s *Sync) ProcessNode(result NodeSyncResult) error { 419 // If the trie node was not requested or it's already processed, bail out 420 req := s.nodeReqs[result.Path] 421 if req == nil { 422 return ErrNotRequested 423 } 424 if req.data != nil { 425 return ErrAlreadyProcessed 426 } 427 // Decode the node data content and update the request 428 node, err := decodeNode(req.hash.Bytes(), result.Data) 429 if err != nil { 430 return err 431 } 432 req.data = result.Data 433 434 // Create and schedule a request for all the children nodes 435 requests, err := s.children(req, node) 436 if err != nil { 437 return err 438 } 439 if len(requests) == 0 && req.deps == 0 { 440 s.commitNodeRequest(req) 441 } else { 442 req.deps += len(requests) 443 for _, child := range requests { 444 s.scheduleNodeRequest(child) 445 } 446 } 447 return nil 448 } 449 450 // Commit flushes the data stored in the internal membatch out to persistent 451 // storage, returning any occurred error. The whole data set will be flushed 452 // in an atomic database batch. 453 func (s *Sync) Commit(dbw ethdb.Batch) error { 454 // Flush the pending node writes into database batch. 455 var ( 456 account int 457 storage int 458 ) 459 for _, op := range s.membatch.nodes { 460 if !op.valid() { 461 return fmt.Errorf("invalid op, %s", op.string()) 462 } 463 if op.del { 464 // node deletion is only supported in path mode. 465 if op.owner == (common.Hash{}) { 466 rawdb.DeleteAccountTrieNode(dbw, op.path) 467 } else { 468 rawdb.DeleteStorageTrieNode(dbw, op.owner, op.path) 469 } 470 deletionGauge.Inc(1) 471 } else { 472 if op.owner == (common.Hash{}) { 473 account += 1 474 } else { 475 storage += 1 476 } 477 rawdb.WriteTrieNode(dbw, op.owner, op.path, op.hash, op.blob, s.scheme) 478 } 479 } 480 accountNodeSyncedGauge.Inc(int64(account)) 481 storageNodeSyncedGauge.Inc(int64(storage)) 482 483 // Flush the pending code writes into database batch. 484 for hash, value := range s.membatch.codes { 485 rawdb.WriteCode(dbw, hash, value) 486 } 487 codeSyncedGauge.Inc(int64(len(s.membatch.codes))) 488 489 s.membatch = newSyncMemBatch(s.scheme) // reset the batch 490 return nil 491 } 492 493 // MemSize returns an estimated size (in bytes) of the data held in the membatch. 494 func (s *Sync) MemSize() uint64 { 495 return s.membatch.size 496 } 497 498 // Pending returns the number of state entries currently pending for download. 499 func (s *Sync) Pending() int { 500 return len(s.nodeReqs) + len(s.codeReqs) 501 } 502 503 // scheduleNodeRequest inserts a new state retrieval request into the fetch queue. If there 504 // is already a pending request for this node, the new request will be discarded 505 // and only a parent reference added to the old one. 506 func (s *Sync) scheduleNodeRequest(req *nodeRequest) { 507 s.nodeReqs[string(req.path)] = req 508 509 // Schedule the request for future retrieval. This queue is shared 510 // by both node requests and code requests. 511 prio := int64(len(req.path)) << 56 // depth >= 128 will never happen, storage leaves will be included in their parents 512 for i := 0; i < 14 && i < len(req.path); i++ { 513 prio |= int64(15-req.path[i]) << (52 - i*4) // 15-nibble => lexicographic order 514 } 515 s.queue.Push(string(req.path), prio) 516 } 517 518 // scheduleCodeRequest inserts a new state retrieval request into the fetch queue. If there 519 // is already a pending request for this node, the new request will be discarded 520 // and only a parent reference added to the old one. 521 func (s *Sync) scheduleCodeRequest(req *codeRequest) { 522 // If we're already requesting this node, add a new reference and stop 523 if old, ok := s.codeReqs[req.hash]; ok { 524 old.parents = append(old.parents, req.parents...) 525 return 526 } 527 s.codeReqs[req.hash] = req 528 529 // Schedule the request for future retrieval. This queue is shared 530 // by both node requests and code requests. 531 prio := int64(len(req.path)) << 56 // depth >= 128 will never happen, storage leaves will be included in their parents 532 for i := 0; i < 14 && i < len(req.path); i++ { 533 prio |= int64(15-req.path[i]) << (52 - i*4) // 15-nibble => lexicographic order 534 } 535 s.queue.Push(req.hash, prio) 536 } 537 538 // children retrieves all the missing children of a state trie entry for future 539 // retrieval scheduling. 540 func (s *Sync) children(req *nodeRequest, object node) ([]*nodeRequest, error) { 541 // Gather all the children of the node, irrelevant whether known or not 542 type childNode struct { 543 path []byte 544 node node 545 } 546 var children []childNode 547 548 switch node := (object).(type) { 549 case *shortNode: 550 key := node.Key 551 if hasTerm(key) { 552 key = key[:len(key)-1] 553 } 554 children = []childNode{{ 555 node: node.Val, 556 path: append(append([]byte(nil), req.path...), key...), 557 }} 558 // Mark all internal nodes between shortNode and its **in disk** 559 // child as invalid. This is essential in the case of path mode 560 // scheme; otherwise, state healing might overwrite existing child 561 // nodes silently while leaving a dangling parent node within the 562 // range of this internal path on disk and the persistent state 563 // ends up with a very weird situation that nodes on the same path 564 // are not inconsistent while they all present in disk. This property 565 // would break the guarantee for state healing. 566 // 567 // While it's possible for this shortNode to overwrite a previously 568 // existing full node, the other branches of the fullNode can be 569 // retained as they are not accessible with the new shortNode, and 570 // also the whole sub-trie is still untouched and complete. 571 // 572 // This step is only necessary for path mode, as there is no deletion 573 // in hash mode at all. 574 if _, ok := node.Val.(hashNode); ok && s.scheme == rawdb.PathScheme { 575 owner, inner := ResolvePath(req.path) 576 for i := 1; i < len(key); i++ { 577 // While checking for a non-existent item in Pebble can be less efficient 578 // without a bloom filter, the relatively low frequency of lookups makes 579 // the performance impact negligible. 580 var exists bool 581 if owner == (common.Hash{}) { 582 exists = rawdb.HasAccountTrieNode(s.database, append(inner, key[:i]...)) 583 } else { 584 exists = rawdb.HasStorageTrieNode(s.database, owner, append(inner, key[:i]...)) 585 } 586 if exists { 587 s.membatch.delNode(owner, append(inner, key[:i]...)) 588 log.Debug("Detected dangling node", "owner", owner, "path", append(inner, key[:i]...)) 589 } 590 } 591 lookupGauge.Inc(int64(len(key) - 1)) 592 } 593 case *fullNode: 594 for i := 0; i < 17; i++ { 595 if node.Children[i] != nil { 596 children = append(children, childNode{ 597 node: node.Children[i], 598 path: append(append([]byte(nil), req.path...), byte(i)), 599 }) 600 } 601 } 602 default: 603 panic(fmt.Sprintf("unknown node: %+v", node)) 604 } 605 // Iterate over the children, and request all unknown ones 606 var ( 607 missing = make(chan *nodeRequest, len(children)) 608 pending sync.WaitGroup 609 batchMu sync.Mutex 610 ) 611 for _, child := range children { 612 // Notify any external watcher of a new key/value node 613 if req.callback != nil { 614 if node, ok := (child.node).(valueNode); ok { 615 var paths [][]byte 616 if len(child.path) == 2*common.HashLength { 617 paths = append(paths, hexToKeybytes(child.path)) 618 } else if len(child.path) == 4*common.HashLength { 619 paths = append(paths, hexToKeybytes(child.path[:2*common.HashLength])) 620 paths = append(paths, hexToKeybytes(child.path[2*common.HashLength:])) 621 } 622 if err := req.callback(paths, child.path, node, req.hash, req.path); err != nil { 623 return nil, err 624 } 625 } 626 } 627 // If the child references another node, resolve or schedule. 628 // We check all children concurrently. 629 if node, ok := (child.node).(hashNode); ok { 630 path := child.path 631 hash := common.BytesToHash(node) 632 pending.Add(1) 633 go func() { 634 defer pending.Done() 635 owner, inner := ResolvePath(path) 636 exist, inconsistent := s.hasNode(owner, inner, hash) 637 if exist { 638 return 639 } else if inconsistent { 640 // There is a pre-existing node with the wrong hash in DB, remove it. 641 batchMu.Lock() 642 s.membatch.delNode(owner, inner) 643 batchMu.Unlock() 644 } 645 // Locally unknown node, schedule for retrieval 646 missing <- &nodeRequest{ 647 path: path, 648 hash: hash, 649 parent: req, 650 callback: req.callback, 651 } 652 }() 653 } 654 } 655 pending.Wait() 656 657 requests := make([]*nodeRequest, 0, len(children)) 658 for done := false; !done; { 659 select { 660 case miss := <-missing: 661 requests = append(requests, miss) 662 default: 663 done = true 664 } 665 } 666 return requests, nil 667 } 668 669 // commitNodeRequest finalizes a retrieval request and stores it into the membatch. If any 670 // of the referencing parent requests complete due to this commit, they are also 671 // committed themselves. 672 func (s *Sync) commitNodeRequest(req *nodeRequest) error { 673 // Write the node content to the membatch 674 owner, path := ResolvePath(req.path) 675 s.membatch.addNode(owner, path, req.data, req.hash) 676 677 // Removed the completed node request 678 delete(s.nodeReqs, string(req.path)) 679 s.fetches[len(req.path)]-- 680 681 // Check parent for completion 682 if req.parent != nil { 683 req.parent.deps-- 684 if req.parent.deps == 0 { 685 if err := s.commitNodeRequest(req.parent); err != nil { 686 return err 687 } 688 } 689 } 690 return nil 691 } 692 693 // commitCodeRequest finalizes a retrieval request and stores it into the membatch. If any 694 // of the referencing parent requests complete due to this commit, they are also 695 // committed themselves. 696 func (s *Sync) commitCodeRequest(req *codeRequest) error { 697 // Write the node content to the membatch 698 s.membatch.addCode(req.hash, req.data) 699 700 // Removed the completed code request 701 delete(s.codeReqs, req.hash) 702 s.fetches[len(req.path)]-- 703 704 // Check all parents for completion 705 for _, parent := range req.parents { 706 parent.deps-- 707 if parent.deps == 0 { 708 if err := s.commitNodeRequest(parent); err != nil { 709 return err 710 } 711 } 712 } 713 return nil 714 } 715 716 // hasNode reports whether the specified trie node is present in the database. 717 // 'exists' is true when the node exists in the database and matches the given root 718 // hash. The 'inconsistent' return value is true when the node exists but does not 719 // match the expected hash. 720 func (s *Sync) hasNode(owner common.Hash, path []byte, hash common.Hash) (exists bool, inconsistent bool) { 721 // If node is running with hash scheme, check the presence with node hash. 722 if s.scheme == rawdb.HashScheme { 723 return rawdb.HasLegacyTrieNode(s.database, hash), false 724 } 725 // If node is running with path scheme, check the presence with node path. 726 var blob []byte 727 if owner == (common.Hash{}) { 728 blob = rawdb.ReadAccountTrieNode(s.database, path) 729 } else { 730 blob = rawdb.ReadStorageTrieNode(s.database, owner, path) 731 } 732 exists = hash == crypto.Keccak256Hash(blob) 733 inconsistent = !exists && len(blob) != 0 734 return exists, inconsistent 735 } 736 737 // ResolvePath resolves the provided composite node path by separating the 738 // path in account trie if it's existent. 739 func ResolvePath(path []byte) (common.Hash, []byte) { 740 var owner common.Hash 741 if len(path) >= 2*common.HashLength { 742 owner = common.BytesToHash(hexToKeybytes(path[:2*common.HashLength])) 743 path = path[2*common.HashLength:] 744 } 745 return owner, path 746 }