github.com/ethereumproject/go-ethereum@v5.5.2+incompatible/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h (about) 1 /********************************************************************** 2 * Copyright (c) 2013, 2014 Pieter Wuille * 3 * Distributed under the MIT software license, see the accompanying * 4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.* 5 **********************************************************************/ 6 7 8 #ifndef _SECP256K1_ECDSA_IMPL_H_ 9 #define _SECP256K1_ECDSA_IMPL_H_ 10 11 #include "scalar.h" 12 #include "field.h" 13 #include "group.h" 14 #include "ecmult.h" 15 #include "ecmult_gen.h" 16 #include "ecdsa.h" 17 18 /** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1 19 * sage: for t in xrange(1023, -1, -1): 20 * .. p = 2**256 - 2**32 - t 21 * .. if p.is_prime(): 22 * .. print '%x'%p 23 * .. break 24 * 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f' 25 * sage: a = 0 26 * sage: b = 7 27 * sage: F = FiniteField (p) 28 * sage: '%x' % (EllipticCurve ([F (a), F (b)]).order()) 29 * 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141' 30 */ 31 static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST( 32 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 33 0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL 34 ); 35 36 /** Difference between field and order, values 'p' and 'n' values defined in 37 * "Standards for Efficient Cryptography" (SEC2) 2.7.1. 38 * sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F 39 * sage: a = 0 40 * sage: b = 7 41 * sage: F = FiniteField (p) 42 * sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order()) 43 * '14551231950b75fc4402da1722fc9baee' 44 */ 45 static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST( 46 0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL 47 ); 48 49 static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) { 50 unsigned char ra[32] = {0}, sa[32] = {0}; 51 const unsigned char *rp; 52 const unsigned char *sp; 53 size_t lenr; 54 size_t lens; 55 int overflow; 56 if (sig[0] != 0x30) { 57 return 0; 58 } 59 lenr = sig[3]; 60 if (5+lenr >= size) { 61 return 0; 62 } 63 lens = sig[lenr+5]; 64 if (sig[1] != lenr+lens+4) { 65 return 0; 66 } 67 if (lenr+lens+6 > size) { 68 return 0; 69 } 70 if (sig[2] != 0x02) { 71 return 0; 72 } 73 if (lenr == 0) { 74 return 0; 75 } 76 if (sig[lenr+4] != 0x02) { 77 return 0; 78 } 79 if (lens == 0) { 80 return 0; 81 } 82 sp = sig + 6 + lenr; 83 while (lens > 0 && sp[0] == 0) { 84 lens--; 85 sp++; 86 } 87 if (lens > 32) { 88 return 0; 89 } 90 rp = sig + 4; 91 while (lenr > 0 && rp[0] == 0) { 92 lenr--; 93 rp++; 94 } 95 if (lenr > 32) { 96 return 0; 97 } 98 memcpy(ra + 32 - lenr, rp, lenr); 99 memcpy(sa + 32 - lens, sp, lens); 100 overflow = 0; 101 secp256k1_scalar_set_b32(rr, ra, &overflow); 102 if (overflow) { 103 return 0; 104 } 105 secp256k1_scalar_set_b32(rs, sa, &overflow); 106 if (overflow) { 107 return 0; 108 } 109 return 1; 110 } 111 112 static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) { 113 unsigned char r[33] = {0}, s[33] = {0}; 114 unsigned char *rp = r, *sp = s; 115 size_t lenR = 33, lenS = 33; 116 secp256k1_scalar_get_b32(&r[1], ar); 117 secp256k1_scalar_get_b32(&s[1], as); 118 while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; } 119 while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; } 120 if (*size < 6+lenS+lenR) { 121 *size = 6 + lenS + lenR; 122 return 0; 123 } 124 *size = 6 + lenS + lenR; 125 sig[0] = 0x30; 126 sig[1] = 4 + lenS + lenR; 127 sig[2] = 0x02; 128 sig[3] = lenR; 129 memcpy(sig+4, rp, lenR); 130 sig[4+lenR] = 0x02; 131 sig[5+lenR] = lenS; 132 memcpy(sig+lenR+6, sp, lenS); 133 return 1; 134 } 135 136 static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) { 137 unsigned char c[32]; 138 secp256k1_scalar sn, u1, u2; 139 secp256k1_fe xr; 140 secp256k1_gej pubkeyj; 141 secp256k1_gej pr; 142 143 if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) { 144 return 0; 145 } 146 147 secp256k1_scalar_inverse_var(&sn, sigs); 148 secp256k1_scalar_mul(&u1, &sn, message); 149 secp256k1_scalar_mul(&u2, &sn, sigr); 150 secp256k1_gej_set_ge(&pubkeyj, pubkey); 151 secp256k1_ecmult(ctx, &pr, &pubkeyj, &u2, &u1); 152 if (secp256k1_gej_is_infinity(&pr)) { 153 return 0; 154 } 155 secp256k1_scalar_get_b32(c, sigr); 156 secp256k1_fe_set_b32(&xr, c); 157 158 /** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n) 159 * in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p), 160 * compute the remainder modulo n, and compare it to xr. However: 161 * 162 * xr == X(pr) mod n 163 * <=> exists h. (xr + h * n < p && xr + h * n == X(pr)) 164 * [Since 2 * n > p, h can only be 0 or 1] 165 * <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr)) 166 * [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p] 167 * <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p) 168 * [Multiplying both sides of the equations by pr.z^2 mod p] 169 * <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x) 170 * 171 * Thus, we can avoid the inversion, but we have to check both cases separately. 172 * secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test. 173 */ 174 if (secp256k1_gej_eq_x_var(&xr, &pr)) { 175 /* xr.x == xr * xr.z^2 mod p, so the signature is valid. */ 176 return 1; 177 } 178 if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) { 179 /* xr + p >= n, so we can skip testing the second case. */ 180 return 0; 181 } 182 secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe); 183 if (secp256k1_gej_eq_x_var(&xr, &pr)) { 184 /* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */ 185 return 1; 186 } 187 return 0; 188 } 189 190 static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar* sigs, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid) { 191 unsigned char brx[32]; 192 secp256k1_fe fx; 193 secp256k1_ge x; 194 secp256k1_gej xj; 195 secp256k1_scalar rn, u1, u2; 196 secp256k1_gej qj; 197 198 if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) { 199 return 0; 200 } 201 202 secp256k1_scalar_get_b32(brx, sigr); 203 VERIFY_CHECK(secp256k1_fe_set_b32(&fx, brx)); /* brx comes from a scalar, so is less than the order; certainly less than p */ 204 if (recid & 2) { 205 if (secp256k1_fe_cmp_var(&fx, &secp256k1_ecdsa_const_p_minus_order) >= 0) { 206 return 0; 207 } 208 secp256k1_fe_add(&fx, &secp256k1_ecdsa_const_order_as_fe); 209 } 210 if (!secp256k1_ge_set_xo_var(&x, &fx, recid & 1)) { 211 return 0; 212 } 213 secp256k1_gej_set_ge(&xj, &x); 214 secp256k1_scalar_inverse_var(&rn, sigr); 215 secp256k1_scalar_mul(&u1, &rn, message); 216 secp256k1_scalar_negate(&u1, &u1); 217 secp256k1_scalar_mul(&u2, &rn, sigs); 218 secp256k1_ecmult(ctx, &qj, &xj, &u2, &u1); 219 secp256k1_ge_set_gej_var(pubkey, &qj); 220 return !secp256k1_gej_is_infinity(&qj); 221 } 222 223 static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) { 224 unsigned char b[32]; 225 secp256k1_gej rp; 226 secp256k1_ge r; 227 secp256k1_scalar n; 228 int overflow = 0; 229 230 secp256k1_ecmult_gen(ctx, &rp, nonce); 231 secp256k1_ge_set_gej(&r, &rp); 232 secp256k1_fe_normalize(&r.x); 233 secp256k1_fe_normalize(&r.y); 234 secp256k1_fe_get_b32(b, &r.x); 235 secp256k1_scalar_set_b32(sigr, b, &overflow); 236 if (secp256k1_scalar_is_zero(sigr)) { 237 /* P.x = order is on the curve, so technically sig->r could end up zero, which would be an invalid signature. */ 238 secp256k1_gej_clear(&rp); 239 secp256k1_ge_clear(&r); 240 return 0; 241 } 242 if (recid) { 243 *recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0); 244 } 245 secp256k1_scalar_mul(&n, sigr, seckey); 246 secp256k1_scalar_add(&n, &n, message); 247 secp256k1_scalar_inverse(sigs, nonce); 248 secp256k1_scalar_mul(sigs, sigs, &n); 249 secp256k1_scalar_clear(&n); 250 secp256k1_gej_clear(&rp); 251 secp256k1_ge_clear(&r); 252 if (secp256k1_scalar_is_zero(sigs)) { 253 return 0; 254 } 255 if (secp256k1_scalar_is_high(sigs)) { 256 secp256k1_scalar_negate(sigs, sigs); 257 if (recid) { 258 *recid ^= 1; 259 } 260 } 261 return 1; 262 } 263 264 #endif