github.com/ethereumproject/go-ethereum@v5.5.2+incompatible/crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h (about) 1 /********************************************************************** 2 * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra * 3 * Distributed under the MIT software license, see the accompanying * 4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.* 5 **********************************************************************/ 6 7 #ifndef _SECP256K1_ECMULT_CONST_IMPL_ 8 #define _SECP256K1_ECMULT_CONST_IMPL_ 9 10 #include "scalar.h" 11 #include "group.h" 12 #include "ecmult_const.h" 13 #include "ecmult_impl.h" 14 15 #ifdef USE_ENDOMORPHISM 16 #define WNAF_BITS 128 17 #else 18 #define WNAF_BITS 256 19 #endif 20 #define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w)) 21 22 /* This is like `ECMULT_TABLE_GET_GE` but is constant time */ 23 #define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \ 24 int m; \ 25 int abs_n = (n) * (((n) > 0) * 2 - 1); \ 26 int idx_n = abs_n / 2; \ 27 secp256k1_fe neg_y; \ 28 VERIFY_CHECK(((n) & 1) == 1); \ 29 VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ 30 VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ 31 VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \ 32 VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \ 33 for (m = 0; m < ECMULT_TABLE_SIZE(w); m++) { \ 34 /* This loop is used to avoid secret data in array indices. See 35 * the comment in ecmult_gen_impl.h for rationale. */ \ 36 secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \ 37 secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \ 38 } \ 39 (r)->infinity = 0; \ 40 secp256k1_fe_negate(&neg_y, &(r)->y, 1); \ 41 secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \ 42 } while(0) 43 44 45 /** Convert a number to WNAF notation. The number becomes represented by sum(2^{wi} * wnaf[i], i=0..return_val) 46 * with the following guarantees: 47 * - each wnaf[i] an odd integer between -(1 << w) and (1 << w) 48 * - each wnaf[i] is nonzero 49 * - the number of words set is returned; this is always (WNAF_BITS + w - 1) / w 50 * 51 * Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar 52 * Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.) 53 * CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003 54 * 55 * Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335 56 */ 57 static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) { 58 int global_sign; 59 int skew = 0; 60 int word = 0; 61 /* 1 2 3 */ 62 int u_last; 63 int u; 64 65 #ifdef USE_ENDOMORPHISM 66 int flip; 67 int bit; 68 secp256k1_scalar neg_s; 69 int not_neg_one; 70 /* If we are using the endomorphism, we cannot handle even numbers by negating 71 * them, since we are working with 128-bit numbers whose negations would be 256 72 * bits, eliminating the performance advantage. Instead we use a technique from 73 * Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even) 74 * or 2 (for odd) to the number we are encoding, then compensating after the 75 * multiplication. */ 76 /* Negative 128-bit numbers will be negated, since otherwise they are 256-bit */ 77 flip = secp256k1_scalar_is_high(&s); 78 /* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */ 79 bit = flip ^ (s.d[0] & 1); 80 /* We check for negative one, since adding 2 to it will cause an overflow */ 81 secp256k1_scalar_negate(&neg_s, &s); 82 not_neg_one = !secp256k1_scalar_is_one(&neg_s); 83 secp256k1_scalar_cadd_bit(&s, bit, not_neg_one); 84 /* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects 85 * that we added two to it and flipped it. In fact for -1 these operations are 86 * identical. We only flipped, but since skewing is required (in the sense that 87 * the skew must be 1 or 2, never zero) and flipping is not, we need to change 88 * our flags to claim that we only skewed. */ 89 global_sign = secp256k1_scalar_cond_negate(&s, flip); 90 global_sign *= not_neg_one * 2 - 1; 91 skew = 1 << bit; 92 #else 93 /* Otherwise, we just negate to force oddness */ 94 int is_even = secp256k1_scalar_is_even(&s); 95 global_sign = secp256k1_scalar_cond_negate(&s, is_even); 96 #endif 97 98 /* 4 */ 99 u_last = secp256k1_scalar_shr_int(&s, w); 100 while (word * w < WNAF_BITS) { 101 int sign; 102 int even; 103 104 /* 4.1 4.4 */ 105 u = secp256k1_scalar_shr_int(&s, w); 106 /* 4.2 */ 107 even = ((u & 1) == 0); 108 sign = 2 * (u_last > 0) - 1; 109 u += sign * even; 110 u_last -= sign * even * (1 << w); 111 112 /* 4.3, adapted for global sign change */ 113 wnaf[word++] = u_last * global_sign; 114 115 u_last = u; 116 } 117 wnaf[word] = u * global_sign; 118 119 VERIFY_CHECK(secp256k1_scalar_is_zero(&s)); 120 VERIFY_CHECK(word == WNAF_SIZE(w)); 121 return skew; 122 } 123 124 125 static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) { 126 secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; 127 secp256k1_ge tmpa; 128 secp256k1_fe Z; 129 130 #ifdef USE_ENDOMORPHISM 131 secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; 132 int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)]; 133 int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)]; 134 int skew_1; 135 int skew_lam; 136 secp256k1_scalar q_1, q_lam; 137 #else 138 int wnaf[1 + WNAF_SIZE(WINDOW_A - 1)]; 139 #endif 140 141 int i; 142 secp256k1_scalar sc = *scalar; 143 144 /* build wnaf representation for q. */ 145 #ifdef USE_ENDOMORPHISM 146 /* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */ 147 secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc); 148 /* no need for zero correction when using endomorphism since even 149 * numbers have one added to them anyway */ 150 skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1); 151 skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1); 152 #else 153 int is_zero = secp256k1_scalar_is_zero(scalar); 154 /* the wNAF ladder cannot handle zero, so bump this to one .. we will 155 * correct the result after the fact */ 156 sc.d[0] += is_zero; 157 VERIFY_CHECK(!secp256k1_scalar_is_zero(&sc)); 158 159 secp256k1_wnaf_const(wnaf, sc, WINDOW_A - 1); 160 #endif 161 162 /* Calculate odd multiples of a. 163 * All multiples are brought to the same Z 'denominator', which is stored 164 * in Z. Due to secp256k1' isomorphism we can do all operations pretending 165 * that the Z coordinate was 1, use affine addition formulae, and correct 166 * the Z coordinate of the result once at the end. 167 */ 168 secp256k1_gej_set_ge(r, a); 169 secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r); 170 for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { 171 secp256k1_fe_normalize_weak(&pre_a[i].y); 172 } 173 #ifdef USE_ENDOMORPHISM 174 for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { 175 secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]); 176 } 177 #endif 178 179 /* first loop iteration (separated out so we can directly set r, rather 180 * than having it start at infinity, get doubled several times, then have 181 * its new value added to it) */ 182 #ifdef USE_ENDOMORPHISM 183 i = wnaf_1[WNAF_SIZE(WINDOW_A - 1)]; 184 VERIFY_CHECK(i != 0); 185 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A); 186 secp256k1_gej_set_ge(r, &tmpa); 187 188 i = wnaf_lam[WNAF_SIZE(WINDOW_A - 1)]; 189 VERIFY_CHECK(i != 0); 190 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A); 191 secp256k1_gej_add_ge(r, r, &tmpa); 192 #else 193 i = wnaf[WNAF_SIZE(WINDOW_A - 1)]; 194 VERIFY_CHECK(i != 0); 195 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A); 196 secp256k1_gej_set_ge(r, &tmpa); 197 #endif 198 /* remaining loop iterations */ 199 for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) { 200 int n; 201 int j; 202 for (j = 0; j < WINDOW_A - 1; ++j) { 203 secp256k1_gej_double_nonzero(r, r, NULL); 204 } 205 #ifdef USE_ENDOMORPHISM 206 n = wnaf_1[i]; 207 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A); 208 VERIFY_CHECK(n != 0); 209 secp256k1_gej_add_ge(r, r, &tmpa); 210 211 n = wnaf_lam[i]; 212 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A); 213 VERIFY_CHECK(n != 0); 214 secp256k1_gej_add_ge(r, r, &tmpa); 215 #else 216 n = wnaf[i]; 217 VERIFY_CHECK(n != 0); 218 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A); 219 secp256k1_gej_add_ge(r, r, &tmpa); 220 #endif 221 } 222 223 secp256k1_fe_mul(&r->z, &r->z, &Z); 224 225 #ifdef USE_ENDOMORPHISM 226 { 227 /* Correct for wNAF skew */ 228 secp256k1_ge correction = *a; 229 secp256k1_ge_storage correction_1_stor; 230 secp256k1_ge_storage correction_lam_stor; 231 secp256k1_ge_storage a2_stor; 232 secp256k1_gej tmpj; 233 secp256k1_gej_set_ge(&tmpj, &correction); 234 secp256k1_gej_double_var(&tmpj, &tmpj, NULL); 235 secp256k1_ge_set_gej(&correction, &tmpj); 236 secp256k1_ge_to_storage(&correction_1_stor, a); 237 secp256k1_ge_to_storage(&correction_lam_stor, a); 238 secp256k1_ge_to_storage(&a2_stor, &correction); 239 240 /* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */ 241 secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2); 242 secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2); 243 244 /* Apply the correction */ 245 secp256k1_ge_from_storage(&correction, &correction_1_stor); 246 secp256k1_ge_neg(&correction, &correction); 247 secp256k1_gej_add_ge(r, r, &correction); 248 249 secp256k1_ge_from_storage(&correction, &correction_lam_stor); 250 secp256k1_ge_neg(&correction, &correction); 251 secp256k1_ge_mul_lambda(&correction, &correction); 252 secp256k1_gej_add_ge(r, r, &correction); 253 } 254 #else 255 /* correct for zero */ 256 r->infinity |= is_zero; 257 #endif 258 } 259 260 #endif