github.com/ethereumproject/go-ethereum@v5.5.2+incompatible/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h (about) 1 /********************************************************************** 2 * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell * 3 * Distributed under the MIT software license, see the accompanying * 4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.* 5 **********************************************************************/ 6 7 #ifndef _SECP256K1_ECMULT_GEN_IMPL_H_ 8 #define _SECP256K1_ECMULT_GEN_IMPL_H_ 9 10 #include "scalar.h" 11 #include "group.h" 12 #include "ecmult_gen.h" 13 #include "hash_impl.h" 14 #ifdef USE_ECMULT_STATIC_PRECOMPUTATION 15 #include "ecmult_static_context.h" 16 #endif 17 static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) { 18 ctx->prec = NULL; 19 } 20 21 static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) { 22 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION 23 secp256k1_ge prec[1024]; 24 secp256k1_gej gj; 25 secp256k1_gej nums_gej; 26 int i, j; 27 #endif 28 29 if (ctx->prec != NULL) { 30 return; 31 } 32 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION 33 ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec)); 34 35 /* get the generator */ 36 secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); 37 38 /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */ 39 { 40 static const unsigned char nums_b32[33] = "The scalar for this x is unknown"; 41 secp256k1_fe nums_x; 42 secp256k1_ge nums_ge; 43 VERIFY_CHECK(secp256k1_fe_set_b32(&nums_x, nums_b32)); 44 VERIFY_CHECK(secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0)); 45 secp256k1_gej_set_ge(&nums_gej, &nums_ge); 46 /* Add G to make the bits in x uniformly distributed. */ 47 secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL); 48 } 49 50 /* compute prec. */ 51 { 52 secp256k1_gej precj[1024]; /* Jacobian versions of prec. */ 53 secp256k1_gej gbase; 54 secp256k1_gej numsbase; 55 gbase = gj; /* 16^j * G */ 56 numsbase = nums_gej; /* 2^j * nums. */ 57 for (j = 0; j < 64; j++) { 58 /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */ 59 precj[j*16] = numsbase; 60 for (i = 1; i < 16; i++) { 61 secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL); 62 } 63 /* Multiply gbase by 16. */ 64 for (i = 0; i < 4; i++) { 65 secp256k1_gej_double_var(&gbase, &gbase, NULL); 66 } 67 /* Multiply numbase by 2. */ 68 secp256k1_gej_double_var(&numsbase, &numsbase, NULL); 69 if (j == 62) { 70 /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */ 71 secp256k1_gej_neg(&numsbase, &numsbase); 72 secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL); 73 } 74 } 75 secp256k1_ge_set_all_gej_var(1024, prec, precj, cb); 76 } 77 for (j = 0; j < 64; j++) { 78 for (i = 0; i < 16; i++) { 79 secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]); 80 } 81 } 82 #else 83 (void)cb; 84 ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context; 85 #endif 86 secp256k1_ecmult_gen_blind(ctx, NULL); 87 } 88 89 static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) { 90 return ctx->prec != NULL; 91 } 92 93 static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst, 94 const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) { 95 if (src->prec == NULL) { 96 dst->prec = NULL; 97 } else { 98 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION 99 dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec)); 100 memcpy(dst->prec, src->prec, sizeof(*dst->prec)); 101 #else 102 (void)cb; 103 dst->prec = src->prec; 104 #endif 105 dst->initial = src->initial; 106 dst->blind = src->blind; 107 } 108 } 109 110 static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) { 111 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION 112 free(ctx->prec); 113 #endif 114 secp256k1_scalar_clear(&ctx->blind); 115 secp256k1_gej_clear(&ctx->initial); 116 ctx->prec = NULL; 117 } 118 119 static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) { 120 secp256k1_ge add; 121 secp256k1_ge_storage adds; 122 secp256k1_scalar gnb; 123 int bits; 124 int i, j; 125 memset(&adds, 0, sizeof(adds)); 126 *r = ctx->initial; 127 /* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */ 128 secp256k1_scalar_add(&gnb, gn, &ctx->blind); 129 add.infinity = 0; 130 for (j = 0; j < 64; j++) { 131 bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4); 132 for (i = 0; i < 16; i++) { 133 /** This uses a conditional move to avoid any secret data in array indexes. 134 * _Any_ use of secret indexes has been demonstrated to result in timing 135 * sidechannels, even when the cache-line access patterns are uniform. 136 * See also: 137 * "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe 138 * (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and 139 * "Cache Attacks and Countermeasures: the Case of AES", RSA 2006, 140 * by Dag Arne Osvik, Adi Shamir, and Eran Tromer 141 * (http://www.tau.ac.il/~tromer/papers/cache.pdf) 142 */ 143 secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits); 144 } 145 secp256k1_ge_from_storage(&add, &adds); 146 secp256k1_gej_add_ge(r, r, &add); 147 } 148 bits = 0; 149 secp256k1_ge_clear(&add); 150 secp256k1_scalar_clear(&gnb); 151 } 152 153 /* Setup blinding values for secp256k1_ecmult_gen. */ 154 static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) { 155 secp256k1_scalar b; 156 secp256k1_gej gb; 157 secp256k1_fe s; 158 unsigned char nonce32[32]; 159 secp256k1_rfc6979_hmac_sha256_t rng; 160 int retry; 161 unsigned char keydata[64] = {0}; 162 if (seed32 == NULL) { 163 /* When seed is NULL, reset the initial point and blinding value. */ 164 secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g); 165 secp256k1_gej_neg(&ctx->initial, &ctx->initial); 166 secp256k1_scalar_set_int(&ctx->blind, 1); 167 } 168 /* The prior blinding value (if not reset) is chained forward by including it in the hash. */ 169 secp256k1_scalar_get_b32(nonce32, &ctx->blind); 170 /** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data, 171 * and guards against weak or adversarial seeds. This is a simpler and safer interface than 172 * asking the caller for blinding values directly and expecting them to retry on failure. 173 */ 174 memcpy(keydata, nonce32, 32); 175 if (seed32 != NULL) { 176 memcpy(keydata + 32, seed32, 32); 177 } 178 secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32); 179 memset(keydata, 0, sizeof(keydata)); 180 /* Retry for out of range results to achieve uniformity. */ 181 do { 182 secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); 183 retry = !secp256k1_fe_set_b32(&s, nonce32); 184 retry |= secp256k1_fe_is_zero(&s); 185 } while (retry); 186 /* Randomize the projection to defend against multiplier sidechannels. */ 187 secp256k1_gej_rescale(&ctx->initial, &s); 188 secp256k1_fe_clear(&s); 189 do { 190 secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); 191 secp256k1_scalar_set_b32(&b, nonce32, &retry); 192 /* A blinding value of 0 works, but would undermine the projection hardening. */ 193 retry |= secp256k1_scalar_is_zero(&b); 194 } while (retry); 195 secp256k1_rfc6979_hmac_sha256_finalize(&rng); 196 memset(nonce32, 0, 32); 197 secp256k1_ecmult_gen(ctx, &gb, &b); 198 secp256k1_scalar_negate(&b, &b); 199 ctx->blind = b; 200 ctx->initial = gb; 201 secp256k1_scalar_clear(&b); 202 secp256k1_gej_clear(&gb); 203 } 204 205 #endif