github.com/ethereumproject/go-ethereum@v5.5.2+incompatible/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h (about)

     1  /**********************************************************************
     2   * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell      *
     3   * Distributed under the MIT software license, see the accompanying   *
     4   * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
     5   **********************************************************************/
     6  
     7  #ifndef _SECP256K1_ECMULT_GEN_IMPL_H_
     8  #define _SECP256K1_ECMULT_GEN_IMPL_H_
     9  
    10  #include "scalar.h"
    11  #include "group.h"
    12  #include "ecmult_gen.h"
    13  #include "hash_impl.h"
    14  #ifdef USE_ECMULT_STATIC_PRECOMPUTATION
    15  #include "ecmult_static_context.h"
    16  #endif
    17  static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) {
    18      ctx->prec = NULL;
    19  }
    20  
    21  static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) {
    22  #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
    23      secp256k1_ge prec[1024];
    24      secp256k1_gej gj;
    25      secp256k1_gej nums_gej;
    26      int i, j;
    27  #endif
    28  
    29      if (ctx->prec != NULL) {
    30          return;
    31      }
    32  #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
    33      ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec));
    34  
    35      /* get the generator */
    36      secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
    37  
    38      /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
    39      {
    40          static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
    41          secp256k1_fe nums_x;
    42          secp256k1_ge nums_ge;
    43          VERIFY_CHECK(secp256k1_fe_set_b32(&nums_x, nums_b32));
    44          VERIFY_CHECK(secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0));
    45          secp256k1_gej_set_ge(&nums_gej, &nums_ge);
    46          /* Add G to make the bits in x uniformly distributed. */
    47          secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL);
    48      }
    49  
    50      /* compute prec. */
    51      {
    52          secp256k1_gej precj[1024]; /* Jacobian versions of prec. */
    53          secp256k1_gej gbase;
    54          secp256k1_gej numsbase;
    55          gbase = gj; /* 16^j * G */
    56          numsbase = nums_gej; /* 2^j * nums. */
    57          for (j = 0; j < 64; j++) {
    58              /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */
    59              precj[j*16] = numsbase;
    60              for (i = 1; i < 16; i++) {
    61                  secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL);
    62              }
    63              /* Multiply gbase by 16. */
    64              for (i = 0; i < 4; i++) {
    65                  secp256k1_gej_double_var(&gbase, &gbase, NULL);
    66              }
    67              /* Multiply numbase by 2. */
    68              secp256k1_gej_double_var(&numsbase, &numsbase, NULL);
    69              if (j == 62) {
    70                  /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
    71                  secp256k1_gej_neg(&numsbase, &numsbase);
    72                  secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
    73              }
    74          }
    75          secp256k1_ge_set_all_gej_var(1024, prec, precj, cb);
    76      }
    77      for (j = 0; j < 64; j++) {
    78          for (i = 0; i < 16; i++) {
    79              secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]);
    80          }
    81      }
    82  #else
    83      (void)cb;
    84      ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context;
    85  #endif
    86      secp256k1_ecmult_gen_blind(ctx, NULL);
    87  }
    88  
    89  static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) {
    90      return ctx->prec != NULL;
    91  }
    92  
    93  static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
    94                                                 const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) {
    95      if (src->prec == NULL) {
    96          dst->prec = NULL;
    97      } else {
    98  #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
    99          dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec));
   100          memcpy(dst->prec, src->prec, sizeof(*dst->prec));
   101  #else
   102          (void)cb;
   103          dst->prec = src->prec;
   104  #endif
   105          dst->initial = src->initial;
   106          dst->blind = src->blind;
   107      }
   108  }
   109  
   110  static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) {
   111  #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
   112      free(ctx->prec);
   113  #endif
   114      secp256k1_scalar_clear(&ctx->blind);
   115      secp256k1_gej_clear(&ctx->initial);
   116      ctx->prec = NULL;
   117  }
   118  
   119  static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) {
   120      secp256k1_ge add;
   121      secp256k1_ge_storage adds;
   122      secp256k1_scalar gnb;
   123      int bits;
   124      int i, j;
   125      memset(&adds, 0, sizeof(adds));
   126      *r = ctx->initial;
   127      /* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */
   128      secp256k1_scalar_add(&gnb, gn, &ctx->blind);
   129      add.infinity = 0;
   130      for (j = 0; j < 64; j++) {
   131          bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4);
   132          for (i = 0; i < 16; i++) {
   133              /** This uses a conditional move to avoid any secret data in array indexes.
   134               *   _Any_ use of secret indexes has been demonstrated to result in timing
   135               *   sidechannels, even when the cache-line access patterns are uniform.
   136               *  See also:
   137               *   "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe
   138               *    (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and
   139               *   "Cache Attacks and Countermeasures: the Case of AES", RSA 2006,
   140               *    by Dag Arne Osvik, Adi Shamir, and Eran Tromer
   141               *    (http://www.tau.ac.il/~tromer/papers/cache.pdf)
   142               */
   143              secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits);
   144          }
   145          secp256k1_ge_from_storage(&add, &adds);
   146          secp256k1_gej_add_ge(r, r, &add);
   147      }
   148      bits = 0;
   149      secp256k1_ge_clear(&add);
   150      secp256k1_scalar_clear(&gnb);
   151  }
   152  
   153  /* Setup blinding values for secp256k1_ecmult_gen. */
   154  static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) {
   155      secp256k1_scalar b;
   156      secp256k1_gej gb;
   157      secp256k1_fe s;
   158      unsigned char nonce32[32];
   159      secp256k1_rfc6979_hmac_sha256_t rng;
   160      int retry;
   161      unsigned char keydata[64] = {0};
   162      if (seed32 == NULL) {
   163          /* When seed is NULL, reset the initial point and blinding value. */
   164          secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g);
   165          secp256k1_gej_neg(&ctx->initial, &ctx->initial);
   166          secp256k1_scalar_set_int(&ctx->blind, 1);
   167      }
   168      /* The prior blinding value (if not reset) is chained forward by including it in the hash. */
   169      secp256k1_scalar_get_b32(nonce32, &ctx->blind);
   170      /** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data,
   171       *   and guards against weak or adversarial seeds.  This is a simpler and safer interface than
   172       *   asking the caller for blinding values directly and expecting them to retry on failure.
   173       */
   174      memcpy(keydata, nonce32, 32);
   175      if (seed32 != NULL) {
   176          memcpy(keydata + 32, seed32, 32);
   177      }
   178      secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32);
   179      memset(keydata, 0, sizeof(keydata));
   180      /* Retry for out of range results to achieve uniformity. */
   181      do {
   182          secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
   183          retry = !secp256k1_fe_set_b32(&s, nonce32);
   184          retry |= secp256k1_fe_is_zero(&s);
   185      } while (retry);
   186      /* Randomize the projection to defend against multiplier sidechannels. */
   187      secp256k1_gej_rescale(&ctx->initial, &s);
   188      secp256k1_fe_clear(&s);
   189      do {
   190          secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
   191          secp256k1_scalar_set_b32(&b, nonce32, &retry);
   192          /* A blinding value of 0 works, but would undermine the projection hardening. */
   193          retry |= secp256k1_scalar_is_zero(&b);
   194      } while (retry);
   195      secp256k1_rfc6979_hmac_sha256_finalize(&rng);
   196      memset(nonce32, 0, 32);
   197      secp256k1_ecmult_gen(ctx, &gb, &b);
   198      secp256k1_scalar_negate(&b, &b);
   199      ctx->blind = b;
   200      ctx->initial = gb;
   201      secp256k1_scalar_clear(&b);
   202      secp256k1_gej_clear(&gb);
   203  }
   204  
   205  #endif