github.com/ethereumproject/go-ethereum@v5.5.2+incompatible/crypto/secp256k1/libsecp256k1/src/ecmult_impl.h (about)

     1  /**********************************************************************
     2   * Copyright (c) 2013, 2014 Pieter Wuille                             *
     3   * Distributed under the MIT software license, see the accompanying   *
     4   * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
     5   **********************************************************************/
     6  
     7  #ifndef _SECP256K1_ECMULT_IMPL_H_
     8  #define _SECP256K1_ECMULT_IMPL_H_
     9  
    10  #include "group.h"
    11  #include "scalar.h"
    12  #include "ecmult.h"
    13  
    14  /* optimal for 128-bit and 256-bit exponents. */
    15  #define WINDOW_A 5
    16  
    17  /** larger numbers may result in slightly better performance, at the cost of
    18      exponentially larger precomputed tables. */
    19  #ifdef USE_ENDOMORPHISM
    20  /** Two tables for window size 15: 1.375 MiB. */
    21  #define WINDOW_G 15
    22  #else
    23  /** One table for window size 16: 1.375 MiB. */
    24  #define WINDOW_G 16
    25  #endif
    26  
    27  /** The number of entries a table with precomputed multiples needs to have. */
    28  #define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
    29  
    30  /** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain
    31   *  the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will
    32   *  contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z.
    33   *  Prej's Z values are undefined, except for the last value.
    34   */
    35  static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, secp256k1_fe *zr, const secp256k1_gej *a) {
    36      secp256k1_gej d;
    37      secp256k1_ge a_ge, d_ge;
    38      int i;
    39  
    40      VERIFY_CHECK(!a->infinity);
    41  
    42      secp256k1_gej_double_var(&d, a, NULL);
    43  
    44      /*
    45       * Perform the additions on an isomorphism where 'd' is affine: drop the z coordinate
    46       * of 'd', and scale the 1P starting value's x/y coordinates without changing its z.
    47       */
    48      d_ge.x = d.x;
    49      d_ge.y = d.y;
    50      d_ge.infinity = 0;
    51  
    52      secp256k1_ge_set_gej_zinv(&a_ge, a, &d.z);
    53      prej[0].x = a_ge.x;
    54      prej[0].y = a_ge.y;
    55      prej[0].z = a->z;
    56      prej[0].infinity = 0;
    57  
    58      zr[0] = d.z;
    59      for (i = 1; i < n; i++) {
    60          secp256k1_gej_add_ge_var(&prej[i], &prej[i-1], &d_ge, &zr[i]);
    61      }
    62  
    63      /*
    64       * Each point in 'prej' has a z coordinate too small by a factor of 'd.z'. Only
    65       * the final point's z coordinate is actually used though, so just update that.
    66       */
    67      secp256k1_fe_mul(&prej[n-1].z, &prej[n-1].z, &d.z);
    68  }
    69  
    70  /** Fill a table 'pre' with precomputed odd multiples of a.
    71   *
    72   *  There are two versions of this function:
    73   *  - secp256k1_ecmult_odd_multiples_table_globalz_windowa which brings its
    74   *    resulting point set to a single constant Z denominator, stores the X and Y
    75   *    coordinates as ge_storage points in pre, and stores the global Z in rz.
    76   *    It only operates on tables sized for WINDOW_A wnaf multiples.
    77   *  - secp256k1_ecmult_odd_multiples_table_storage_var, which converts its
    78   *    resulting point set to actually affine points, and stores those in pre.
    79   *    It operates on tables of any size, but uses heap-allocated temporaries.
    80   *
    81   *  To compute a*P + b*G, we compute a table for P using the first function,
    82   *  and for G using the second (which requires an inverse, but it only needs to
    83   *  happen once).
    84   */
    85  static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
    86      secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)];
    87      secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
    88  
    89      /* Compute the odd multiples in Jacobian form. */
    90      secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a);
    91      /* Bring them to the same Z denominator. */
    92      secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr);
    93  }
    94  
    95  static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) {
    96      secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n);
    97      secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n);
    98      secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n);
    99      int i;
   100  
   101      /* Compute the odd multiples in Jacobian form. */
   102      secp256k1_ecmult_odd_multiples_table(n, prej, zr, a);
   103      /* Convert them in batch to affine coordinates. */
   104      secp256k1_ge_set_table_gej_var(n, prea, prej, zr);
   105      /* Convert them to compact storage form. */
   106      for (i = 0; i < n; i++) {
   107          secp256k1_ge_to_storage(&pre[i], &prea[i]);
   108      }
   109  
   110      free(prea);
   111      free(prej);
   112      free(zr);
   113  }
   114  
   115  /** The following two macro retrieves a particular odd multiple from a table
   116   *  of precomputed multiples. */
   117  #define ECMULT_TABLE_GET_GE(r,pre,n,w) do { \
   118      VERIFY_CHECK(((n) & 1) == 1); \
   119      VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
   120      VERIFY_CHECK((n) <=  ((1 << ((w)-1)) - 1)); \
   121      if ((n) > 0) { \
   122          *(r) = (pre)[((n)-1)/2]; \
   123      } else { \
   124          secp256k1_ge_neg((r), &(pre)[(-(n)-1)/2]); \
   125      } \
   126  } while(0)
   127  
   128  #define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \
   129      VERIFY_CHECK(((n) & 1) == 1); \
   130      VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
   131      VERIFY_CHECK((n) <=  ((1 << ((w)-1)) - 1)); \
   132      if ((n) > 0) { \
   133          secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \
   134      } else { \
   135          secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \
   136          secp256k1_ge_neg((r), (r)); \
   137      } \
   138  } while(0)
   139  
   140  static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx) {
   141      ctx->pre_g = NULL;
   142  #ifdef USE_ENDOMORPHISM
   143      ctx->pre_g_128 = NULL;
   144  #endif
   145  }
   146  
   147  static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb) {
   148      secp256k1_gej gj;
   149  
   150      if (ctx->pre_g != NULL) {
   151          return;
   152      }
   153  
   154      /* get the generator */
   155      secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
   156  
   157      ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
   158  
   159      /* precompute the tables with odd multiples */
   160      secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb);
   161  
   162  #ifdef USE_ENDOMORPHISM
   163      {
   164          secp256k1_gej g_128j;
   165          int i;
   166  
   167          ctx->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
   168  
   169          /* calculate 2^128*generator */
   170          g_128j = gj;
   171          for (i = 0; i < 128; i++) {
   172              secp256k1_gej_double_var(&g_128j, &g_128j, NULL);
   173          }
   174          secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb);
   175      }
   176  #endif
   177  }
   178  
   179  static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
   180                                             const secp256k1_ecmult_context *src, const secp256k1_callback *cb) {
   181      if (src->pre_g == NULL) {
   182          dst->pre_g = NULL;
   183      } else {
   184          size_t size = sizeof((*dst->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
   185          dst->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
   186          memcpy(dst->pre_g, src->pre_g, size);
   187      }
   188  #ifdef USE_ENDOMORPHISM
   189      if (src->pre_g_128 == NULL) {
   190          dst->pre_g_128 = NULL;
   191      } else {
   192          size_t size = sizeof((*dst->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
   193          dst->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
   194          memcpy(dst->pre_g_128, src->pre_g_128, size);
   195      }
   196  #endif
   197  }
   198  
   199  static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx) {
   200      return ctx->pre_g != NULL;
   201  }
   202  
   203  static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx) {
   204      free(ctx->pre_g);
   205  #ifdef USE_ENDOMORPHISM
   206      free(ctx->pre_g_128);
   207  #endif
   208      secp256k1_ecmult_context_init(ctx);
   209  }
   210  
   211  /** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
   212   *  with the following guarantees:
   213   *  - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
   214   *  - two non-zero entries in wnaf are separated by at least w-1 zeroes.
   215   *  - the number of set values in wnaf is returned. This number is at most 256, and at most one more
   216   *    than the number of bits in the (absolute value) of the input.
   217   */
   218  static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) {
   219      secp256k1_scalar s = *a;
   220      int last_set_bit = -1;
   221      int bit = 0;
   222      int sign = 1;
   223      int carry = 0;
   224  
   225      VERIFY_CHECK(wnaf != NULL);
   226      VERIFY_CHECK(0 <= len && len <= 256);
   227      VERIFY_CHECK(a != NULL);
   228      VERIFY_CHECK(2 <= w && w <= 31);
   229  
   230      memset(wnaf, 0, len * sizeof(wnaf[0]));
   231  
   232      if (secp256k1_scalar_get_bits(&s, 255, 1)) {
   233          secp256k1_scalar_negate(&s, &s);
   234          sign = -1;
   235      }
   236  
   237      while (bit < len) {
   238          int now;
   239          int word;
   240          if (secp256k1_scalar_get_bits(&s, bit, 1) == (unsigned int)carry) {
   241              bit++;
   242              continue;
   243          }
   244  
   245          now = w;
   246          if (now > len - bit) {
   247              now = len - bit;
   248          }
   249  
   250          word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry;
   251  
   252          carry = (word >> (w-1)) & 1;
   253          word -= carry << w;
   254  
   255          wnaf[bit] = sign * word;
   256          last_set_bit = bit;
   257  
   258          bit += now;
   259      }
   260  #ifdef VERIFY
   261      CHECK(carry == 0);
   262      while (bit < 256) {
   263          CHECK(secp256k1_scalar_get_bits(&s, bit++, 1) == 0);
   264      } 
   265  #endif
   266      return last_set_bit + 1;
   267  }
   268  
   269  static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
   270      secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
   271      secp256k1_ge tmpa;
   272      secp256k1_fe Z;
   273  #ifdef USE_ENDOMORPHISM
   274      secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
   275      secp256k1_scalar na_1, na_lam;
   276      /* Splitted G factors. */
   277      secp256k1_scalar ng_1, ng_128;
   278      int wnaf_na_1[130];
   279      int wnaf_na_lam[130];
   280      int bits_na_1;
   281      int bits_na_lam;
   282      int wnaf_ng_1[129];
   283      int bits_ng_1;
   284      int wnaf_ng_128[129];
   285      int bits_ng_128;
   286  #else
   287      int wnaf_na[256];
   288      int bits_na;
   289      int wnaf_ng[256];
   290      int bits_ng;
   291  #endif
   292      int i;
   293      int bits;
   294  
   295  #ifdef USE_ENDOMORPHISM
   296      /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
   297      secp256k1_scalar_split_lambda(&na_1, &na_lam, na);
   298  
   299      /* build wnaf representation for na_1 and na_lam. */
   300      bits_na_1   = secp256k1_ecmult_wnaf(wnaf_na_1,   130, &na_1,   WINDOW_A);
   301      bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, 130, &na_lam, WINDOW_A);
   302      VERIFY_CHECK(bits_na_1 <= 130);
   303      VERIFY_CHECK(bits_na_lam <= 130);
   304      bits = bits_na_1;
   305      if (bits_na_lam > bits) {
   306          bits = bits_na_lam;
   307      }
   308  #else
   309      /* build wnaf representation for na. */
   310      bits_na     = secp256k1_ecmult_wnaf(wnaf_na,     256, na,      WINDOW_A);
   311      bits = bits_na;
   312  #endif
   313  
   314      /* Calculate odd multiples of a.
   315       * All multiples are brought to the same Z 'denominator', which is stored
   316       * in Z. Due to secp256k1' isomorphism we can do all operations pretending
   317       * that the Z coordinate was 1, use affine addition formulae, and correct
   318       * the Z coordinate of the result once at the end.
   319       * The exception is the precomputed G table points, which are actually
   320       * affine. Compared to the base used for other points, they have a Z ratio
   321       * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
   322       * isomorphism to efficiently add with a known Z inverse.
   323       */
   324      secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, a);
   325  
   326  #ifdef USE_ENDOMORPHISM
   327      for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
   328          secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
   329      }
   330  
   331      /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
   332      secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
   333  
   334      /* Build wnaf representation for ng_1 and ng_128 */
   335      bits_ng_1   = secp256k1_ecmult_wnaf(wnaf_ng_1,   129, &ng_1,   WINDOW_G);
   336      bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
   337      if (bits_ng_1 > bits) {
   338          bits = bits_ng_1;
   339      }
   340      if (bits_ng_128 > bits) {
   341          bits = bits_ng_128;
   342      }
   343  #else
   344      bits_ng     = secp256k1_ecmult_wnaf(wnaf_ng,     256, ng,      WINDOW_G);
   345      if (bits_ng > bits) {
   346          bits = bits_ng;
   347      }
   348  #endif
   349  
   350      secp256k1_gej_set_infinity(r);
   351  
   352      for (i = bits - 1; i >= 0; i--) {
   353          int n;
   354          secp256k1_gej_double_var(r, r, NULL);
   355  #ifdef USE_ENDOMORPHISM
   356          if (i < bits_na_1 && (n = wnaf_na_1[i])) {
   357              ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
   358              secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
   359          }
   360          if (i < bits_na_lam && (n = wnaf_na_lam[i])) {
   361              ECMULT_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
   362              secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
   363          }
   364          if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
   365              ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
   366              secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
   367          }
   368          if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
   369              ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G);
   370              secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
   371          }
   372  #else
   373          if (i < bits_na && (n = wnaf_na[i])) {
   374              ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
   375              secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
   376          }
   377          if (i < bits_ng && (n = wnaf_ng[i])) {
   378              ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
   379              secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
   380          }
   381  #endif
   382      }
   383  
   384      if (!r->infinity) {
   385          secp256k1_fe_mul(&r->z, &r->z, &Z);
   386      }
   387  }
   388  
   389  #endif